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Abstract: Massive deformation often occurs when deep coalmine roadways pass through a fault zone
due to the poor integrity of rock mass and high tectonic stress. To study deformation characteristics of
the surrounding rock in the fault zone of a coalmine, a roadway passing through the FD1041 fault zone
in China’s Gugui coalfield was investigated in this research. The geo-stress characteristics of this fault
zone were analyzed based on the Mohr failure theory. Furthermore, a three-dimensional model for
the experimental roadway in the FD1041 fault zone was built and calculated by a numerical program
based on the distinct element method. Stability conditions of the roadway, using several types of
support methods, were calculated and compared. Calculation results indicated that pre-grouting
provides favorable conditions for the stability of a roadway in a fault zone. Finally, an optimized
support strategy was proposed and implemented in the experimental roadway. Monitored results
demonstrated that the optimized support strategy is appropriate for this fault zone.

Keywords: coal mine; faults; support; numerical simulation

1. Introduction

The stability of roadways in underground coalmines is mainly associated with geo-
stress and the strength of the surrounding rock. Geo-stress is mainly induced by the
gravity of the strata and tectonic movements. The strength of the surrounding rock
mainly depends on its inherent strength and integrity degree [1–3]. Faults can significantly
affect the strength and stiffness of rock mass [4]. The rock mass in a fault zone of coal
measure strata is usually weak and fractured. Moreover, tectonic stress is usually high
due to the long period of geological tectonic movement. Therefore, massive deformation
often occurs in roadways that pass through the fault zone of a coal mine, and poses
a serious threat to mining safety [5–7]. In general, a support method using bolts and
cables is considered to be an effective supporting method to reinforce fractured rock mass.
Nonetheless, ordinary anchoring methods can hardly adapt to more adverse geological
conditions in fault zones, especially in deep-buried roadways. Special support strategies
should be investigated to reinforce fractured rock mass in fault zones.

Investigating stress conditions and predicting stability conditions is very important for
determining a supporting strategy for roadways in a fault zone. Empirical and numerical
methods are commonly used to determine a support strategy for roadways. In the 1970s,
Bieniaski originally presented the Rock Mass Rating (RMR) method [8,9], which classifies
rock mass according to six parameters, such as compressive strength, Rock Quality Desig-
nation(RQD), ground water, influences of fractures, etc. The Q method is another one of
the most important empirical methods. In 1974, Barton originally developed the rock mass
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quality Q-value to assist in the empirical design of roadway and cavern reinforcements and
supports [10,11]. According to the Q method, rock mass quality is determined by several
essential parameters, such as the RQD index, the number of joint sets, the roughness of
the weakest joints, etc. Later, based on the RMR and Q methods, Palmström developed
another method named the Rock Mass Index(RMI) method, and conducted an extensive
evaluation of the joint characteristics of the pillars at the Laisvall mine and reported the
unitary volume of rock blocks (Vb) and jointing parameter (Jc) values for the rock mass
at the mine [12,13]. In recent decades, the numerical method has become more and more
popular in roadway support design, along with the development of computer technology.
Based on numerical simulation, Huang, et al. investigated the influence of the main factors,
such as support strength and the mechanical characteristics, of surrounding rock on the
distribution and evolution of the interior and exterior bearing structure [14]. Many re-
searchers have combined and compared empirical and numerical analyses in roadway
support design [15–17], especially in the cases of deep-buried roadways and roadways in
weak rock masses [18,19].

At present, there are not many efficient numerical methods to simulate the combined
anchoring and grouting methods for deep coalmine roadways passing through fault zones.
In engineering practice, grouting is considered an effective method to reinforce fractured
rock mass. However, there are few numerical simulation researches that considered the
pre-grouting effects in the fault zone of a coal mine.

This research mainly focused on numerical simulation of the stability of coal mine
roadways passing through a fault zone. A fault zone named FD1041 in China’s Gugui
coalfield was used as a case study. The stress state of the rock mass in the fault zone
was analyzed based on Mohr theory. Furthermore, a model for the roadway was built
and calculated by a three-dimensional numerical program based on the distinct element
method. The stability conditions of the roadway, using ordinary and optimized supporting
methods, were calculated. Finally, an optimized supporting strategy was implemented in
the experimental roadway passing through the fault zone, and the stability conditions were
monitored. We tried to simulate stability conditions using an improved support system,
in which the pre-grouting effect was considered. A combined support system of bolts,
cables, and grouting for the fault zone was implemented in the distinct element program.
We think that this research provides a new way to approach numerical simulation research
on the stability conditions of a fault zone of a coalmine.

2. Geological Location
2.1. Engineering Background

Gugui coalfield is located in Eastern China. There are many big faults in this coalfield,
and several roadways pass through a fault zone named FD1041. As shown in Figure 1,
the dip of the FD1041 fault is approximately 68◦, and the fault throw is about 17 m.
The strata at this location were formed at the Carboniferous Period. The rock mass in
this fault zone mainly constitutes mudstone, sandy mudstone, and a thin coal seam.
Tectonic stress near the fault is very high, and fractures are dense due to geological tectonic
movements, as shown as Figure 2. The burring depth of the studied rock roadway is nearly
800 m. The width and height of the experimental roadway are 5.6 m and 4.3 m, respectively.
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Figure 2. Image of the exposed dense fractures in the fault zone.

The rock mass in this fault zone is very weak due to its poor integrity. Many road-
ways under such adverse geological conditions in this coalfield were badly damaged
because of the low strength and high tectonic stress of the surrounding rock, as shown in
Figure 3. Common supporting methods hardly prevent roadway damage, and so a special
supporting strategy is required.
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2.2. Mechanical Characteristics of the Surrounding Rock in FD1041

The uniaxial compression test and a conventional triaxial compression test were car-
ried out on sandy mudstone samples collected from the FD1041 fault zone. Testing results
demonstrated that the uniaxial compressive strength of the sandy mudstone was approxi-
mately 18–25 MPa, while the peak stress increased to 70–90 MPa when loading in confining
pressure (20–30 MPa). The tested elasticity modulus was roughly 10–14 GPa, and the
Poisson’s ratio was roughly 0.1–0.26. The calculated cohesion and the internal friction
angle were approximately 2 MPa and 35◦, respectively. Integrity of the rock mass in FD1041
is very poor. Moreover, high tectonic stress and a fault gouge make the surrounding rock
more difficult to support.

2.3. Mineralogical Analysis of the Rock in FD1041

In order to analyze the composition of the surrounding rock, a mineralogical analysis
test was carried out on the sandy mudstone samples collected from the FD1041 fault zone.
Mineral contents of the sample are shown in Table 1. A chemical test showed that the
ingredients were mainly SiO2 (53.81%) and Al2O3 (20.69%).

Table 1. Mineral contents of sandy mudstone.

Mineral Montmorillonite Glimmerton Kaolinite Gypsum Quartz Feldspar

Content/% 6% 14% 40% 5% 25% 10%

The hydrophilicity of argillaceous cemented sedimentary rocks is usually obvious.
Clay mineral and water content are key factors determining the water softening and
expansion behavior of sedimentary rocks. Montmorillonite is a swelling clay mineral with
strong water sensitivity, and can expand to several times its original size. Glimmerton is
not as expansive as montmorillonite, but it can make rock more brittle and weaker when
absorbing water. Kaolinite will not swell, but tends to become soft when absorbing water.
Generally, rock is considered to have apparent swell-shrink characteristics when the content
of montmorillonite exceeds 7%, or the content of glimmerton exceeds 20%. Therefore,
the tested rock samples would become weak and swell slightly when the water content
increased. Some of the construction procedures (for example: drilling holes) use water
piped from the ground. Effluent water may accumulate on the roadway floor, which is



Energies 2021, 14, 2114 5 of 15

harmful for the rock strength if not drained in time. Thus, drainage procedures should be
carried out as soon as possible.

3. Analysis of Geo-Stress State in FD1041 when It Formed

Tectonic stress is a key factor that affects the stability of the surrounding rock in a fault
zone. Geological movements lead to an increase in tectonic stress and cause further strata
failure when the stress exceeds the strength of the rock mass, and subsequently the fault
is formed. It is very hard to test in-situ geo-stress in the extremely fractured zone using
current testing methods. So, we tried to analyze the stress state of the surrounding rock in
the FD1041 fault zone based on the Mohr failure theory, which is widely used for materials
that yield when subjected to shear loading.

Geological exploration reports showed that the FD1041 is a thrust fault, and its forma-
tion is mainly attributed to horizontal squeeze. The mechanical model was generalized
according to the geological features of FD1041, as shown in Figure 4. Shear failure occurs
along the sliding face and plastic yielding occurs when rock mass is squeezed by tectonic
movement near the horizontal direction. The following assumptions were made to facili-
tate the research work: (1) the rock in each rock strata were homogeneous and isotropic
before the fault formed; (2) the vertical stress was mainly associated with the gravity of the
overlying strata; (3) the failure criterion for the rock mass fitted the Mohr theory; (4) the
maximum stress occurred in sandy mudstone when failure occurred.
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The rock elements stayed in the three-dimensional stress balance state before failure
occurred. The stress state changed when tectonic movement happened. According to the
Mohr failure theory, the normal stress components on the failure face can be given as:∣∣∣τf c

∣∣∣ = c + f σn (1)

where τfc and c represent the shear strength and cohesion of the rock, respectively; σn is
the normal stress on the shearing plane; f is the internal friction coefficient of the rock,
and f = tan ϕ; and ϕ is the internal friction angle.

The yield stress depends on the major and minor principal stresses according to the
Mohr failure theory. Normal and shear stresses on the failure plane can be expressed as:

σn =
1
2
(σ1 + σ3) +

1
2
(σ1 − σ3) cos 2α (2)

τf =
1
2
(σ1 − σ3) sin 2α (3)

where σ1 and σ3 are the major and minor principle stressors, respectively; α is the angle
between σ1 and the normal direction of the failure plane; and τf is shearing stress on the
failure plane.

The Mohr failure theory indicates that αf = 45◦ + ϕ/2, where α f is the angle between
σ1 and the normal direction of the failure plane. The cohesion of intact sandy mudstone is
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c = 2.0 MPa and the internal friction angle ϕ = 42◦. Therefore, αf = 45◦ + ϕ/2 = 66◦. As shown
in Figure 5, the angle between σ1 and horizontal plane is calculated as: 68◦ − 24◦ = 44◦. The di-
rection of σ2 (intermediate principal stress) is parallel to the fault strike, which is NW60◦.
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Then, the normal stress and shear stress on the failure plane can be expressed as:

σn =
1
2
(σ1 + σ3) +

1
2
(σ1 − σ3) cos 132◦ (4)

τf =
1
2
(σ1 − σ3) sin 132◦ (5)

With the evolution of the tectonic stress induced by tectonic movement, the shearing
stress on the plane would increase gradually. The critical failure condition can be given as:

τf = τf c = c + f σn (6)

Thus, we can get:

1
2
(σ1 − σ3)sin 132o= 2 + tan 42o

[
1
2
(σ1 + σ3) +

1
2
(σ1 − σ3)cos 132o

]
(7)

Then,
0.223σ1 − 1.124σ3 = 2 (8)

Vertical stress is mainly associated with the gravity of the overlying strata. According
to a previous geo-stress test using a stress-relieving method near the fault zone in this
coalmine, the vertical stress of the surrounding rock in the fault zone was approximately
19 MPa.

Thus, the vertical stress component can be calculated as:

σV =
1
2
(σ1 + σ3) +

1
2
(σ1 − σ3) cos(2 × 46o) = 19 (9)

So,
0.483σ1 + 0.517σ3 = 19 (10)

From Equations (8) and (10), we can get σ1 = 34.02 MPa and σ3 = 4.97 MPa. The hori-
zontal stress component perpendicular to the fault strike can be expressed as:

σH =
1
2
(34.02 + 4.97) +

1
2
(34.02 − 4.97) cos 88◦ ≈ 20MPa (11)
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Thus, the horizontal shear stress can be written as:

τhv =
1
2
(34.02 − 4.97) sin 88◦ ≈ 14.5MPa. (12)

The Mohr stress circle for the sandy mudstone stratum is shown in Figure 6.
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The results from the above analysis roughly describe the stress state of the sandy
mudstone layer when the fault initially formed. The horizontal tectonic stress could change
as result of a long period of tectonic movements.

4. Numerical Simulation
4.1. Model Construction and Calculation Procedure

An important aspect of geo-mechanical analysis and designing is the application of
supporting strategies to stabilize the fractured rock mass. Supporting strategies should act
to conserve inherent rock mass strength so that its self-supporting ability can be enhanced.
In this research, the stability of roadway excavation under in situ conditions and assessment
of the effect of support measures were simulated by 3DEC, which is a three-dimensional
numerical program based on the distinct element method. It can simulate the response of
discontinuous rock mass subjected to either static or dynamic loading. The fractured rock
mass was represented as an assemblage of discrete blocks. The discontinuities were treated
as boundary conditions between blocks. Large displacements along the discontinuities and
rotations of blocks were allowed in this software [20]. It is applicable for simulating the
deformation behavior of rock masses in fault zones.

According to the profile map of the rock strata, the model was built with the size
of 80 × 80 × 80 m, as shown in Figure 7. The model contained two paralleled major
faults, dipping at 68◦ and the dip direction was 190◦. The roadway was horseshoe-shaped
(semi-circular roof and straight wall, 4.3 m in height and 5.6 m in width). It was centered
along the y-axis of the model, and was roughly perpendicular to the fault strike. The origin
of coordinates (x = 0 m, y = 0 m, z = 0 m) was set at center of the model.
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Figure 7. Calculation model.

It was very difficult to determine the precise locations of the interfaces due to the
intrusion of different rock strata. The elements in the fault zone were separately defined.
The discrete joints were treated as several sets of paralleled and crossed planes. The joints
were generated via a built-in command of the software. As we mainly focused on the
stability of the surrounding rocks in the fault zone, the joints in the non-fault zones were
not considered, except for the interfaces between the strata.

The rock type mainly contained sandy mudstone, coal, and mudstone. The rock block
zone in this model was considered as an elastoplastic medium, and the Mohr-coulomb
model was adopted to describe its mechanical behavior. It is a conventional model used
to represent the shear failure in soils and rocks. It was very difficult to obtain the precise
mechanical parameters of the interfaces due to the extremely complex geological conditions
in the fault zone. The main mechanical parameters of the rocks were assigned mainly
according to the mechanical tests, while the parameters of the interfaces were determined
based on previous research [20–23]. The main mechanical parameters of the model are
listed in Table 2, and the mechanical properties of the joints are listed in Table 3. The main
parameters of the structure elements (bolts and cables) are listed in Tables 4 and 5 [20].
The maximum unbalanced force was monitored to identify an initial equilibrium stress
state, which was reached before excavation. The displacements of the model were reset to
zero before the excavating procedure.

Table 2. Main parameters of the model.

Rocks Density (g/cm3)
Bulk Modulus
(GPa)

Shear Modulus
(GPa) Friction Angle (◦) Cohesion (MPa)

Mudstone 2.3 6.02 3.46 28 1.2
Coal 1.3 0.48 0.51 26 0.8
Sandy mudstone 2.6 8.41 5.62 35 2
Rock block in fault zone 2.2 2.0 1.8 25 1.2
Lining 2.6 16 12.5 38 4.1



Energies 2021, 14, 2114 9 of 15

Table 3. Main mechanical parameters of the joints.

Joint Types Normal Stiffness (N/m) Shear Stiffness (N/m) Cohesion (MPa) Friction Angle (◦)

Non-grouted faults 4.0 × 109 3.0 × 109 0 22
Grouted faults 8.0 × 109 5.0 × 109 0.4 30

Interfaces in non-fault zones 10.0 × 109 6.0 × 109 0.8 35

Table 4. Main parameters of the bolts in the model.

Structure Ultimate Tensile Capacity (kN) Axial Stiffness (N/m/m) 1/2 “Active Length” (Rlength)

Bolt 200 1.5 × 108 1.0

Table 5. Main parameters of the cables in the model.

Structure Area (mm2)
Elastic Modulus
(GPa)

Ultimate Tensile
Capacity (kN)

Bond Stiffness
(N/m/m)

Anchoring Cohesive
Strength (N/m)

Cable 370 90 600 1.12 × 108 1.75 × 105

The stress boundary was set according to the stress testing result near the fault zone,
and the analysis on the stress field of this zone. The vertical in situ stress on the top
boundary was set to 19 MPa, while the horizontal stresses parallel and perpendicular to
the roadway were set to 28 MPa and 15 MPa, respectively. The displacement boundary
condition was defined as follows: (1) the bottom boundary of the model was fixed to
restrict vertical displacement; (2) the top boundary was free; and (3) the side boundary was
fixed to restrict horizontal displacement.

4.2. Calculation Support Strategies

The stability of the roadway under different supporting conditions was calculated
and compared. Ordinary support strategies in the coal mine were firstly calculated and
compared with the real deformation conditions of roadways in similar geological con-
ditions. Then, an improved support strategy was calculated. The following calculation
results mainly focus on the displacement fields of the surrounding rock.

(1) Method I (ordinary support strategy): bolts, cables, and lining composed of U-steel
and shotcrete.

This support strategy had been applied in previously excavated roadways passing
through the FD1041 fault zone. As shown in Figure 8, the ordinary supporting structure
contained bolts, cables, and lining (composed of U-steel support and shotcrete, the grade of
steel was 20 MnK with tensile strength > 490 MPa, yielding strength > 335 MPa, and elon-
gation > 16%). The diameter and length of the bolts were 22 mm and 2.5 m, respectively.
Interval space was set to 0.8 × 0.8 m. The diameter of the cables was 22 mm, and the length
was 6.3 m. The row distance of the cables was 2.4 m. The floor was reinforced by three
cables in each section, and the row distance was set to 2.4 m. Pre-forces of bolts and cables
were set to 20 kN and 180 kN, respectively.
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(2) Method II (Improved Method): long pipe pre-grouting, bolts, cables, and lining
made of U-steel and shotcrete.

The supporting structure of the improved support system is shown in Figure 9. Pre-
grouting was introduced in the improved supporting method. Broken rock mass in the
fault zone was reinforced by pre-grouting prior to excavation. The hexahedron zone with
size of 30 × 30 × 15 m was treated as the grouted region (Figure 10). It was assumed that
the cracks in the grouted block were fully filled by cement paste. The mechanical properties
of the grouting block were enhanced compared with the non-grouted blocks. Mechani-
cal parameters of the pre-reinforced rock elements and joints were assigned according to
Tables 2 and 3. The row distance of the cables was changed to 1.8 m, and the length of the
cables in the roof and floor was lengthened to 8.3 m and 7.3 m, respectively.
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4.3. Calculation Results
4.3.1. Results of Method I (Ordinary Support Strategy)

The calculation of the displacement field of the roadway is shown in Figure 11a,b,
indicating that the roadway deformation was large. Vertical displacement showed that
the roof sag exceeded 500 mm, while the floor heave exceeded 350 mm. Figure 9 plots the
vertical displacement of the surrounding rock in the fault zone, indicating discontinuous
features of the displacement field. It can be attributed to the failure of interfaces between
rock blocks.
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Figure 11. Calculation results of the roadway displacement using method I (Unit: m): (a) three-dimensional diagram in the
fault zone; (b) vertical displacement on slice plane x = 0.

The thickness of the loose zone in the roof and floor exceeded 10 m. Bolts and cables
could not achieve optimal load-carrying performance in this condition. The roadway stabil-
ity could not be controlled using the ordinary support system, which was also verified by
monitoring the results of the previously excavated roadways in this fault zone (Figure 12).
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We could see that the monitoring displacement continued to rise gradually during the
160 days following the excavation. The maximum roof sag exceeded 500 mm, and the floor
heave reached nearly 300 mm.
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4.3.2. Results of Method II (Improved Method)

Figure 13 plots the roadway displacement in the fault zone using the improved
supporting strategy. The results showed that the displacement reduced significantly
compared with the ordinary method. The maximum displacement was about 200 mm.
Moreover, the displacement curves became smoother than when using the ordinary support
system, indicating that the shearing displacement between the rock blocks in the fault zone
became smaller.
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The improved support system was implemented in the experimental roadway, and the
displacement of the roadway was monitored. Typical monitoring displacement curves
are shown in Figure 14. We observed that the maximum displacement of the roof, floor,
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and sidewall was approximately 210, 140, and 50 mm, respectively. This is satisfactory for
roadways in such unfavorable geological conditions.
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5. Conclusions

The stability of roadways passing through fault zones of coalmines is affected by
many factors, including tectonic stress, dense fractures, low strength of the rock mass,
etc. A roadway in the FD1041 fault zone of China’s Gugui coalfield was investigated.
Geo-stress characteristics in the fault zone were analyzed based on Mohr failure theory.
The stability conditions of the roadway using ordinary and improved supporting meth-
ods were calculated using a numerical program based on the distinct element method.
The calculation results showed that the surrounding rock was seriously damaged under
the ordinary supporting method, which was also verified by monitoring the results of the
previously excavated roadways in this fault zone. The calculation results for the improved
supporting method showed a satisfactory effect. The monitoring results of the experimental
roadway also indicated that a massive deformation had been successfully avoided using
the improved strategy, which proved to be an effective method for the roadway in this
fault zone.

In engineering practice, grouting is considered an effective method to reinforce frac-
tured rock mass. However, there are few numerical simulation studies that focused on the
pre-grouting effects in the fault zone of a coalmine. We tried to simulate the stability condi-
tions using an improved support system, in which the pre-grouting effect is considered.
Pre-grouting proved to be an effective method to reinforce the fractured rock mass in the
fault zone. The simulation results showed that pre-grouting can significantly enhance the
strength of fractures and resist shearing deformation. Thus, pre-reinforced rock mass can
facilitate the stability of roadways after excavation.
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Notation
The following symbols are used in this paper:
τfc shear strength
c cohesion of rock
σn normal stress on the shearing plane
F internal friction coefficient of the rock
ϕ internal friction angle
σ1 major principle stress
σ2 intermediate principal stress
σ3 minor principle stress
α the angle between σ1 and the normal direction of the failure plane
τf shearing stress on the failure plane
E Young’s modulus
K Bulk modulus
G Shear modulus
ν Poisson’s ratio
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