
energies

Article

An Integrated Approach to Adaptive Control and Supervisory
Optimisation of HVAC Control Systems for Demand
Response Applications

Akinkunmi Adegbenro 1,2, Michael Short 2,* and Claudio Angione 2

����������
�������

Citation: Adegbenro, A.; Short, M.;

Angione, C. An Integrated Approach

to Adaptive Control and Supervisory

Optimisation of HVAC Control

Systems for Demand Response

Applications. Energies 2021, 14, 2078.

https://doi.org/10.3390/en14082078

Academic Editors: Jae-Weon Jeong

and Chi-Ming Lai

Received: 31 January 2021

Accepted: 30 March 2021

Published: 8 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Siemens Mobility Limited, Langley Park Way, Chippenham SN15 1GE, UK; a.adegbenro@tees.ac.uk
2 School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK;

c.angione@tees.ac.uk
* Correspondence: m.short@tees.ac.uk; Tel.: +44-(0)1642-344485

Abstract: Heating, ventilating, and air-conditioning (HVAC) systems account for a large percentage of
energy consumption in buildings. Implementation of efficient optimisation and control mechanisms
has been identified as one crucial way to help reduce and shift HVAC systems’ energy consumption
to both save economic costs and foster improved integration with renewables. This has led to
the development of various control techniques, some of which have produced promising results.
However, very few of these control mechanisms have fully considered important factors such as
electricity time of use (TOU) price information, occupant thermal comfort, computational complexity,
and nonlinear HVAC dynamics to design a demand response schema. In this paper, a novel two-stage
integrated approach for such is proposed and evaluated. A model predictive control (MPC)-based
optimiser for supervisory setpoint control is integrated with a digital parameter-adaptive controller
for use in a demand response/demand management environment. The optimiser is designed to shift
the heating load (and hence electrical load) to off-peak periods by minimising a trade-off between
thermal comfort and electricity costs, generating a setpoint trajectory for the inner loop HVAC
tracking controller. The tracking controller provides HVAC model information to the outer loop for
calibration purposes. By way of calibrated simulations, it was found that significant energy saving
and cost reduction could be achieved in comparison to a traditional on/off or variable HVAC control
system with a fixed setpoint temperature.

Keywords: HVAC; optimisation; adaptive control; MPC; smart energy; demand response

1. Introduction
1.1. Motivation

Increases in the cost and availability of energy as well as concerns about the environ-
ment have driven up interests in demand-based heating, ventilating, and air-conditioning
(HVAC) control. Buildings are estimated to account for approximately 40% of global energy
consumption ahead of other sectors, such as transportation and industry [1,2]. On average,
up to 40% of the energy consumed in buildings is spent on space heating or cooling [3], and
in colder climates such as Canada, this can rise to as high as 60% [4]. This significant share
has sparked grid operators’ interests in numerous techniques for improving efficiency in
the sector, including the concepts of carbon-neutral buildings and associated ICT tools [5],
the use of advanced data-driven modelling to produce effective building digital twins [6],
and also the use of advanced control and informatics concepts to improve efficiency [7]. In
respect to the latter, demand response (DR) strategies offer an appealing way of reducing
peak demand pressure on the grid [1]. DR techniques aim at adjusting consumers’ energy
demand by incentivising energy users to reduce or eliminate non-essential usage at peak
times.
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A crucial factor for the successful implementation of DR strategies in buildings is the
availability of flexible loads. Heating and cooling loads can be seen as flexible due to the
large thermal capacity in buildings with good insulation. For example, a heat pump in
combination with the thermal mass of a building can offer certain load-shifting potential
without a significant compromise to occupants’ thermal comfort. However, to harness
the benefits of such flexibility, existing HVAC control strategies need to be advanced. The
focus of this work is upon the application of a two-step integrated control and optimisation
framework for the implementation of DR in HVAC systems.

1.2. Previous Work

Certain characteristics render HVAC control different and uniquely challenging in
comparison to other processes. These include nonlinear and time-varying dynamics, time-
varying disturbances, and interacting and sometimes conflicting loops. In addition, many
processes in HVAC systems are slow-moving with time delays. There are also constraints
on the actuator rates and range limits [8], all contributing to the complexity of the HVAC
control problem.

Several methods have been developed or proposed for HVAC control; however,
traditional techniques such as thermostatic on/off and PID controllers are still the most
widely used [9]. Other more sophisticated approaches have been found in literature,
including nonlinear controller [10], robust controller [11], and soft control techniques such
as those based on fuzzy logic [12] as well as on artificial neural network (ANN) [13]. A
dynamic programming approach has also been suggested for the dispatch of on/off HVAC
commands to achieve DR in building stock, using a hierarchical approach for multiple unit
aggregation [14].

It is not uncommon to see such an HVAC control setup in hierarchical or supervisory
mode. This control strategy assumes the presence of a local controller (mostly on/off
type) within the heat pump which regulates the operations of its different components.
The supervisory controller receives information such as room temperature and external
temperature from different sensors in the building as well as energy price data and weather
forecasts. This information is then processed to generate a control strategy that directs the
operations of the local level controller.

Two distinct categories of supervisory control were reviewed in [15]: rule-based
control (RBC) and model predictive control (MPC). RBCs usually rely on the condition
of a particular trigger parameter on which a threshold is fixed. When this threshold was
met, the operation of the heat pump was adjusted in a pre-planned way [15]. For example,
a dynamic response controller that used a threshold price (Pth)—a piece of information
specified by the consumer to adjust or maintain a setpoint was presented in [16]. If the retail
price of electricity was higher than the Pth, a 1 ◦C step increase in setpoint temperature was
applied to the thermostat at each control interval. On the other hand, when the retail price
was lower than the Pth, the nominal setpoint temperature was maintained. Other HVAC
applications of RBC can be found in [17,18].

The advantage of RBC lies in its simplicity since it does not require any complex
models or computationally demanding algorithms. However, due to having a fixed trigger
value, it is difficult for the rule-based control to adapt to changing external conditions [15].
Further, RBC lacks the ability to anticipate and optimise HVAC operation over a certain
horizon. For these reasons, a control strategy based on optimisation methods such as MPC
is expected to produce further improvement.

MPC has gained popularity in recent years for HVAC applications. This is because
it offers solutions to some of the aforementioned challenges of HVAC control. A compre-
hensive review of MPC and factors affecting its performance in HVAC control (presented
in [8]) showed that it performs better compared to other control methods such as classical
on/off or PID control, nonlinear control, and adaptive-fuzzy-neural control. MPC can be
deployed for multivariable control as well as handle time delays and actuator constraints.
It also uses cost function and optimisation techniques to achieve multiple objectives. Most
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importantly, for the purpose of this study, MPC can be used in both local and supervisory
levels of HVAC control.

At the local control level, the authors of [19] proposed a model predictive HVAC load
control strategy that was aimed at reducing energy consumption as well as minimising
deviations of indoor temperature from preferred values. They developed a setpoint-price
assignment algorithm that captures a consumer’s attitude towards thermal comfort to
determine reference temperatures for a 24 h planning horizon. Although their tests and
experiments showed favourable results, the optimality of their setpoint trajectory cannot
be ascertained. A simple house heating model was used in combination with electricity
spot prices to evaluate the magnitude of power-saving possible through an MPC-based
optimisation strategy in [20]. The focus of [21] was on the analysis of energy savings
that could be achieved in a building heating system by incorporating weather predictions
with MPC.

At a supervisory control level, ref. [22] trialled an HVAC control and optimisation
system in two office buildings over a period of two months. They interfaced their algorithm
with the buildings’ management and control systems in order to discover the most optimal
power consumption schedules with respect to predicted zone conditions, comfort levels,
and the weather forecast. Their control module then adjusted the supply air setpoint in
accordance with the optimised power consumption schedule. A similar approach was
adopted in [4], where a centralised control scheme comprising of a supervisory MPC
controller and six local levels on/off controllers was deployed to reduce HVAC operating
costs in a multi-zone house.

In summary, there have been multiple works concerned with HVAC control and
energy management in recent years, ranging from relatively simple but sub-optimal rule-
based approaches to the highly complex, nonlinear optimisation-based approaches. Very
few of these control mechanisms seem to have tried to fully consider and integrate all
important factors such as real-time electricity price information, occupant thermal comfort,
computational complexity, and nonlinear HVAC dynamics in the context of a demand
response schema in a fashion that is simultaneously scalable and industrially viable.

1.3. Current Contributions

In this work, our aim was to explore the integrated application of a digital adaptive
controller and a supervisory MPC algorithm for HVAC load control. Unlike classical
controllers, adaptive controllers eliminate the need to retune parameters because of changes
to operating conditions and can provide predictable closed-loop behaviour for HVAC
control. In the methodology that was proposed, the benefits of adaptive control were
combined with those of an MPC-based optimiser. The optimiser was designed to shift
the heating load (and hence electrical load) to off-peak periods by minimising a trade-
off between thermal comfort and electricity costs generating a setpoint trajectory for an
inner loop HVAC controller. The inner loop adaptive control provided real-time model
information to the outer loop MPC supervisor to finely tune the optimisation and provided
a novel integrated two-step system (with separable computational loads).

The adaptive nature of the proposed controller gave much flexibility, in that it was
not restricted to any particular building type or HVAC system type. In addition, although
in this work the principal focus was upon thermal control (specifically heating/cooling
applications), the local control method proposed may also be applied for other related
HVAC variables (e.g., humidity, airflow rate, etc.). With appropriate extensions, which will
be briefly discussed, the supervisory optimisation method may also be used to regulate
multiple interacting loops for demand response applications.

In order to validate and investigate the proposed approach, a number of calibrated
simulations applied to a model HVAC process were presented. It was found that significant
energy saving/shifting and cost reductions could be achieved in comparison to other
control strategies such as rule-based thermostatic control and fixed setpoint control. It was
concluded that with appropriate future development and commercialisation efforts, the
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method may prove to be a good candidate for a scalable, adaptable, and industrially viable
integrated demand response platform for a wide variety of HVAC systems.

1.4. Structure

The rest of the paper is structured as follows. Section 2 provides a brief description
of the system and the mathematical models used. It also provides necessary details of
the adaptive controls, the optimisation, and the cost function and weightings employed.
In Section 3, the implementation of the proposed control and optimisation scheme is
presented, while Section 4 contains the results and analysis. In Section 5, the paper is
concluded with recommendations for future work.

2. System Description

The supervisory control architecture used a hierarchical structure, with a supervisory
optimiser at the upper level and a local digital adaptive controller. A diagram of the
proposed architecture is shown in Figure 1.

Figure 1. Supervisory model predictive control (MPC) plan showing a detailed breakdown of the
inner loop adaptive controller. The MPC optimiser continued iterating until a setpoint trajectory
that produced the least cost was found. These generated setpoints were then sent to the localised
adaptive controller, which in turn sent control signals to the heating, ventilating, and air-conditioning
(HVAC) model.

The supervisory MPC was fed with (known or estimated) energy costs and measured
temperature as inputs (incorporation of weather forecast information is possible and forms
future work). These formed part of the objective function that was used to minimise
overall energy and thermal costs over a finite future time horizon. The MPC optimiser
continued iterating until a setpoint trajectory that minimises the cost functional was found.
These generated setpoints were then sent to the localised adaptive controller, which in turn
sent control signals to the HVAC model. Such a two-stage scheme lent itself readily to
distributed environments, for example, with edge-based adaptive control in the vicinity
of the HVAC zone and cloud-based implementation of the optimisation, using Internet
Protocol (IP) networking and supervisory control for integration purposes [7].

2.1. HVAC Process Models

An HVAC ventilation system often comprises of different elements, including a fan,
heat recovery unit, heating coil, circulating fan, valves, pipes, and ducts [6,9]. However, for
the purpose of this study, our focus was principally upon heating/cooling applications,
specifically the heating coil and thermal dynamics of the specific HVAC zone(s). Extensions
to control of other (related) HVAC process variables were straightforward due to the
ability of the controller, which was proposed to linearise a nonlinear model around specific
operating points and the nature of the HVAC components themselves [6].
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By applying the law of conservation of energy, up to four mathematical models of
temperature changes through a heating coil could be derived (see [6,9,22]). The transfer
function below represents the air-to-air temperature of a heating coil:

G(s) =
Thcll · s + Ks

Thc · s + 1
(1)

If Thcll = 0 in (1), and measured temperature, T, is the output of the closed loop system,
then the HVAC process can be described around a local operating point by the simple
first-order transfer function below [6,9]:

Gcl =
T(s)
R(s)

=
Ks

Thc · s + 1
(2)

If the sampling time is set to Ts, the z-transform of the above transfer function can be
expressed as:

Gcl(z) =
T(z)
R(z)

= z
(

1− eTs

s
· Ks

Thc · s + 1

)
=

bz−1

1− az−1 (3)

where a = e
−Ts/Thc and b = Ks

(
1− e−Ts/Thc

)
= Ks · (1− a). Any delays present in the

system (e.g., due to air transport through ducting) can be incorporated as a leading negative
power of z in (3), with an additional term to capture fractional delay, if needed [6,9].

2.2. Digital Adaptive Controller

Suppose the identified HVAC system model may be presented as the general dis-
crete transfer function, G(z) = B(z)/A(z), and the z-transform shift operator is given as
z = e(α+jω)Ts with sample time, Ts [23]. The digital adaptive controller was previously
proposed in [24] based upon earlier work in [18]. It enables the direct propagation of a pre-
dictive controller D(z) using the preferred closed-loop pole specification, which is encoded
in the polynomial P(z), if the open-loop numerator of the process (i.e., B(z) including zeros
and time delay) is scaled and embedded in the closed-loop transfer function. The below
controller design accomplishes the specification [23]:

D(z) =
KpA(z)

P(z)−KpB(z)
, with : Kp =

P(1)
B(1)

(4)

To obtain the above relation, the individual equations of a process under unity negative
feedback were rearranged, with the choice of scaling gain Kp made in a manner that ensures
the closed-loop transfer function has unit gain and the controller contains an integrator
(see [18]). Implanting the open-loop zeros of the process in the closed-loop response as
presented here has many advantages, including the ability to flexibly track changes in the
time delay without having to implement an elaborate delay-estimation to the polynomial
B(z) and robustness against inverse response (unstable zeros) in the HVAC process [23].

The exponentially weighted recursive least squares (EW-RLS) algorithm can be used
to dynamically estimate the parameters of a process model in real-time and is appropriate
for use in embedded adaptive control applications without excessive model dimension [23].
The derivation of the entire EW-RLS algorithm can be found in many previous works (see
e.g., [25,26]), and the main formulae for its implementation are:

β̂(t) = β̂(t− 1) + [K(t)× e(t)] (5)

e(t) = y(t)− [xT(t)× β̂(t− 1)] (6)

K(t) =
P(t− 1)× (x(t))

λf + [xT(t)× P(t− 1)× (x(t))]
(7)
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P(t) =
1
λf

[
P(t− 1)− (K(t)× (xT(t))× P(t− 1))

]
(8)

where β̂(t) represents the vector of the parameter estimates of the process, y(t) refers to
the current measured output of the process, x(t) is the vector of the shifted previous input
and output measurements of the process being considered, K(t) is the gain vector of the
estimator, P(t) represents the covariance matrix, while e(t) is the prior residual error, and λf
is the forgetting factor.

In this paper, a constant forgetting factor was implemented. At each cycle, the identifi-
cation step was first executed to refresh the estimates of process parameters. Then, using
Equation (3), the controller gains were determined, and the control signal was calculated
and applied. This produced an effective and easily implementable method for applying
the adaptive controller [23]. Preliminary test and validation results for the successful
application of this adaptive controller to an HVAC thermal test facility could be found
in [24].

For the purpose of setpoint optimisation, the relationship between an applied reference
setpoint (e.g., coming from the MPC optimiser) r(k) and the applied control action u(k) that
is output from the adaptive controller to the HVAC is of interest, as the energy consumed
can be estimated as a linear product of the controller output, u(k), heater power rating
Wheater. Hence, the economic cost can be determined from the representative hourly
electricity time of use cost ETOU. Figure 2 essentially simplifies the overall control scheme
shown in Figure 1. The controller output, u(k), can be determined from block-diagram
algebra to be:

U(z)
R(z)

=
D(z)

1 + D(z)G(z)
(9)

Figure 2. Basic closed loop representation of Figure 1, showing the inner loop digital adaptive
controller D(z) and the controlled process G(z), where U(z) is the controller output.

Now, as G(z) = B(z)/A(z) and the digital controller D(z) is as described in (4), then
(9) can be rewritten for the case of the adaptive control scheme as a function of the design
polynomial and process parameters, as below:

U(z)
R(z)

=
KpA(z)

P(z)
(10)

For the purpose of setpoint optimisation, the relationship between an applied reference
setpoint (e.g., coming from the MPC optimiser) r(k) and the HVAC zone temperature t(k)
is also of interest, as the thermal comfort is largely a function of the temperature, among
several other factors such as humidity [6]. The temperature t(k) can be determined from
the design principle of the controller to be a function of the design polynomial and process
parameters:

T(z)
R(z)

=
KpB(z)

P(z)
(11)
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Relationships (10) and (11) are of crucial importance to the configuration of the setpoint
optimiser and can be provided with virtually zero overhead in real-time as a by-product of
the calculations required for the controller itself, as shown in Figure 1.

2.3. MPC Objective Function

The objective function can be derived as follows. Cost of energy consumed between
the current time step k over a future horizon of m steps:

Ec =
k−m

∑
k

max{(u(k) ·Wheater · ETOU (k)), 0

}
(12)

where the max function is used to prevent negative costs (i.e., it is assumed that heat cannot
be extracted from the HVAC system and converted to electricity to be sold back to the grid).
From a thermal comfort point of view, the operative temperature SP is nominally set at
22 ◦C. This is the ASHRAE standard recommendation [24], while the thermal cost is defined
across an m-step horizon as the absolute deviation of temperature from nominal value:

Tc =
k−m

∑
k
|t(k)− 22| (13)

The higher the absolute temperature deviation value, the higher the level of thermal
discomfort felt by the occupant. Therefore, in an ideal scenario, a customer might like the
overall Tc to be as low as possible. If the local controller is configured for other HVAC
variable control, such as humidity, then a suitable deviation from setpoint criteria for such
a variable may be used instead.

Equations (10) and (11) are employed to predict the temperature and applied controls
across the prediction horizon, with the decision variables being the sequence of applied
setpoints r(k). The objective function to be minimised by the MPC optimiser can therefore be
stated as (14), where λ ∈ (0;1) is a weighting factor added to determine relative importance
between energy cost and thermal comfort.

J = ∑ ((1− λ) · Ec + λTc) (14)

Since the optimisation problem is linear in the decision variables r(k), r(k + 1), . . . ,
r(k + m), linear programming can be applied for efficiently solving the optimisation prob-
lem in real-time at each time step. Once the optimisation problem is solved for the current
time step, only the first reference output corresponding to r(k) is applied. The process is
then repeated at the next time step to generate the next reference setpoint, in the spirit of
rolling-horizon predictive control. The overall sequence of steps in the two-stage adaptive
control and setpoint optimiser can be summarised as follows: (i) update estimated of plant
parameters A(z) and B(z) using recursive least squares (RLS); (ii) calculate controller D(z)
from these estimates and the design specification P(z); use the estimates A(z) and B(z), plus
design polynomial P(z) and energy cost sequence TOU(z) to solve the setpoint optimisation
and determine setpoint r(k); finally, use r(k), t(k), and D(z) to determine the control signal
u(k) and apply to the HVAC system.

Although the focus in the current work was upon temperature control and its influence
upon thermal comfort, MPC—by its very nature—could easily be extended to multivariable
situations [27]. In the case of a more complicated thermal model, with multiple variables
under local control (e.g., temperature, humidity, airflow rate), then any general convex
combination of such variables may be used with an appropriate on-line convex optimiser,
such as a row-action method [27]. Similarly, one may consider the case when the objective
function cannot be formulated as a linear combination of two components. In such cases,
the trade-off between the various (often conflicting) objectives could be studied with the
Pareto multi-objective optimisation or multiplex network approaches, as usually done in
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biomedical models [28]. Such extensions (although relatively straightforward in the linear
case) were beyond the current scope of work but are reserved for future considerations.

2.4. Simplified Case

The adaptive control and setpoint optimiser described above are general and can be
used with any HVAC model and design polynomial. However, in the simpler case of a
first-order HVAC model and lag-type design specification, if control law (4) is applied to
the process in (3), with P(z) = 1− pz−1 to give a controllable closed-loop lag response,
then the closed loop becomes:

Gcl(z) =
T(z)
R(z)

=
(1− p)z−1

1− pz−1 (15)

Then a difference equation relating temperature to setpoint changes can be written as:

T(k) = pT(k− 1) + (1− p) · R(k− 1) (16)

If parameters of A(z) are extended and substitute P(z) = 1− pz−1 as specified earlier,
Equation (16) becomes:

U(z)
R(z)

=
Kp[1− az−1]

1− pz−1 (17)

Then a difference equation relating control signal to setpoint changes can be written as:

U(z)(1− pz−1) = R(z)Kp[1− az−1]
U(k) = pU(k− 1) + Kp[R(k)− (1− a)R(k− 1)]

(18)

3. Implementation

A simulation-based validation and assessment of the proposed algorithm were carried
out and described in this section. Figure 3 shows the implementation of the proposed
algorithm in Simulink. Parameters B(z) and A(z)—the numerator and denominator poly-
nomials of the process model G(z)—were estimated using the recursive least squares (RLS)
method. This was carried out by the block labelled parameter identification and could
be set up by importing the RLS Polynomial Model Estimator block from the Simulink
library and specifying the following options. The ARX model structure was preferred,
and the numbers of parameters A(z) and B(z) specified were 2 and 10, respectively. Outer
loop sample time was set to 15 min for setpoint optimisation, and inner loop sample time
was set to 1 min for HVAC control. The forgetting factor—a value used for exponentially
reducing the significance of past data at each step time—is set to 1. Forgetting factor is
usually set as a value between 0 and 1, and the choice of value can affect both the speed
of adaptation and the stability of the estimator [29]. Values closer to 1 produce greater
stability but slower convergence in contrast to values closer to 0, which yield faster tracking
but reduced stability.

Due to the transportation of fluids, gasses, or energy, HVAC systems normally have a
time delay. In order to provide a calibrated, realistic analysis, an HVAC process model de-
veloped from a physical test facility was employed [30]. For a constant fan and compressor
speed, an electric heater was used to control the temperature in the HVAC zone, and the
following transfer function G(s) is considered as an accurate model [30]:

G(s) =
7.2

1 + 60s
e−6s (19)

In Equation (19), the time units are reported in minutes, giving a time-constant of
one hour and a time delay of six minutes. The heater was fast-responding, and hence
there were no rate constraints associated with the control input signal; the control input
signal u(t) was amplitude constrained in the range 0–100% within the process model



Energies 2021, 14, 2078 9 of 18

G(s) block in Figure 3. Experimental analysis in previous work showed that the gain,
the time constant and, the time delay can vary in the real system, within range (72–84),
(60–80), and (5–7), respectively [30]. Earlier work by the authors has demonstrated that the
proposed inner-loop tracking controller can follow such changes and regulate the closed-
loop response [24]. Hence, the purpose of the current work and experimental design was
to test the performance of the integrated setpoint optimiser with the adaptive controller.

Figure 3. Simulink implementation of the supervisory control and optimisation scheme.

Simulation Cases

In this paper, the proposed supervisory MPC controller was tested against two other
control strategies—fixed-setpoint control and rule-based thermostatic control. The fixed-
setpoint strategy was adopted as the baseline method. In this case, a constant value of
22 ◦C was applied to the HVAC system throughout the simulation time. The aim of this
was to initially evaluate baseline costs of running the HVAC when the thermostat was
turned on and setpoint was fixed to the ideally preferred temperature.

In the second case, a rule-based thermostatic control strategy was deployed. For this,
the average price of electricity per kWh over a 24 h period was chosen as the threshold
price (Pth)—this was approximately £0.035. If the Pth was higher than the current price
of electricity (ETOU), the setpoint value of the thermostat was set to 22 ◦C. Conversely, if
ETOU was greater than Pth, the setpoint was adjusted to 0 ◦C—meaning the thermostat was
turned off. This is to reduce HVAC consumption during peak times.

The proposed supervisory MPC was implemented as the third case across five different
thermal comfort weight settings (i.e., when λ = 0, 0.25, 0.5, 0.75, and 1). If λ = 0, the optimiser
sought to maximise energy saving at the full expense of the occupant thermal comfort, and
vice versa when λ = 1. In all cases, changes to the setpoint were limited to ±3 ◦C from the
ASHRAE recommended value of 22 ◦C.

To account for electricity price variations across different seasons, the performance of
the supervisory optimiser at λ = 0.25 was also simulated and the results were analysed in
case 3. Summary of all the test cases considered in this study can be seen in Table 1 below.

Table 1. Summary of simulation cases for HVAC control.

Simulation Case Type Description Setpoint

Base Fixed setpoint control 22 ◦C
Case 1 Rule-based thermostatic control 22 ◦C or 0 ◦C, depending on ETOU

Case 2 Supervisory MPC
(at λ = 0, 0.25, 0.5, 0.75 and 1) Varied, depending on λ

Case 3 Supervisory MPC
(at λ = 0.25) for different seasons Varied, depending on λ

Sample electricity prices were obtained from Nord Pool Spot Market—a leading online
electricity-trading platform. As discussed, the prices were interpolated at a 15 min interval
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over a 24 h period to correspond with the outer loop sample time. Inner loop sample time
was set to 1 min.

Analysis carried out for base, case 1, and case 2 were carried out using 20 February
2019 electricity price data. Case 3 was completed using price data from 20 February,
17 April, 17 July, and 16 October 2019.

4. Results and Analysis

Base: Fixed Setpoint Control
Over the 24 h period considered, the base case (i.e., fixed-setpoint control), consumed

a total of 533 KWh of electrical energy at an economic cost of £21.87 and a thermal deviation
of 75 which can be considered very comfortable according to Table 2.

Table 2. Thermal deviation/comfort correlation.

Thermal Deviation Range Thermal Comfort

0–1000 Very comfortable
1000–1999 Comfortable
2000–2499 Slightly comfortable
2500–2999 Uncomfortable

3000+ Very uncomfortable

Case 1: Rule-Based Control
In case 1, applying a rule-based thermostatic control yielded an economic cost of

£13.40 and a thermal deviation of 12,467. Energy consumption over the 24 h simulated was
approximately 326 KWh. Compared to the base case, the on-off control implemented in
case 1 produced an energy cost saving of £8.47 (approximately 39% less than the base case).
On the other hand, a very high thermal deviation was incurred—meaning the occupant is
likely to feel very uncomfortable as a result of implementing this strategy.

Case 2: Model Predictive Control
For case 2, a supervisory MPC optimisation strategy was implemented with different

weight settings.

4.1. Maximum Economic Cost Saving (λ = 0)

At λ = 0, the objective of the optimiser was to minimise energy cost by producing
setpoint projections that incurred the least economic cost with little regard for occupant
comfort. This can be seen in effect in Figure 4. The room temperature was kept at 19 ◦C for
most of the 24 h period considered. Overall, this helped reduce the energy consumption by
7.5% compared to the base case whilst producing a thermal deviation value that is 5397%
higher than the baseline. With a thermal deviation value of 4123, the occupant could expect
to feel very uncomfortable using this λ setting. The average room temperature across the
24 h period was approximately 19.5 ◦C.

4.2. Higher Preference for Economic Cost Saving (λ = 0.25)

At λ = 0.25, the optimiser’s priority was to minimise energy cost as much as possible
whilst maintaining some level of thermal comfort. As can be seen in Figure 5, the optimiser
attempted to achieve this objective by keeping the setpoint close to 22 ◦C as much as
possible during off-peak periods. Energy consumption using this λ weighting was 8%
lower than in the base case, while thermal deviation increased by 3320% on the baseline
value. This setting produced a thermal deviation value of 2565 and an average room
temperature of 20.20 ◦C, which is uncomfortable (according to Table 2).
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Figure 4. Room temperature and MPC-generated setpoints over 24 h when λ is set to 0—indicating
maximum preference for energy saving.

Figure 5. Room temperature and MPC-generated setpoints over 24 h when λ is set to 0.25—indicating
higher preference for energy saving with some consideration for thermal comfort.

4.3. Equal Preference for Thermal Comfort and Energy Cost (λ = 0.50)

At λ = 0.50, the optimiser attempted to balance the user’s preference for good thermal
comfort with careful consideration for economic cost. As can be seen in Figure 6, a fair
amount of energy was consumed over the 24 h period, with the optimised setpoints kept
hovering around the 22 ◦C mark for most of the simulation time. The economic cost
incurred was £21.20—which is 3% lower than the base case. From a thermal comfort
perspective, the average room temperature was 21.30 ◦C, at a thermal deviation of 1237.
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Figure 6. Room temperature and MPC-generated setpoints over 24 h when λ is set to 0.5—indicating
balanced preference for energy saving and thermal comfort.

4.4. Higher Preference for Thermal Comfort (λ = 0.75)

When λ is set to 0.75, the optimiser’s priority was to ensure good thermal comfort, by
minimising thermal deviation as much as possible whilst maintaining some level of control
on economic cost. From Figure 7, it can be observed that the optimised setpoint showed an
insignificant deviation from the nominal value of 22 ◦C. This λ setting produced an average
room temperature of 21.70 ◦C and a 1.12% reduction in energy consumption compared to
the base case.

Figure 7. Room temperature and MPC-generated setpoints over 24 h when λ is set to 0.75—indicating
a higher preference for thermal comfort with some consideration for energy cost.
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4.5. Maximum Thermal Deviation Saving (λ = 1)

In Figure 8, λ is set to 1. In this case, the occupant’s preference was to maximise
thermal comfort at any cost possible. To achieve this, the optimiser ensured that the
setpoint was maintained at 22 ◦C for the entire 24 h period considered. Since the base case
(i.e., with a fixed setpoint) behaved in a similar way to the optimiser at this lambda setting,
no cost-saving was produced.

Figure 8. Room temperature and MPC-generated setpoints over 24 h when λ is set to 1—indicating
maximum preference for thermal comfort.

A summary of the findings illustrating the trade-offs between the choice of λ, and the
economic and thermal deviation is given in Table 3.

Table 3. Summary of results for all three simulation cases and sub-strategies.

Simulation Case Type
Energy

Consumption
(KWh)

Economic
Cost (£)

Thermal
Deviation

Average Room
Temp. (◦C) Comfortability

Base
(Fixed setpoint

control)
533 21.87 75 21.90 Very comfortable

Case 1
(RBC strategy) 326 13.40 12,467 13.50 Very uncomfortable

Case 2
(MPC strategy)

λ = 0.00 473 19.43 4123 19.50 Very uncomfortable
λ = 0.25 490 20.13 2565 20.20 Uncomfortable
λ = 0.50 516 21.20 1237 21.30 Comfortable
λ = 0.75 527 21.62 527 21.70 Very comfortable
λ = 1.00 533 21.87 75 21.90 Very comfortable

Case 3: Lambda Sensitivity vs. Seasonal Prices
For this analysis, four price data from winter to autumn were used to test the per-

formance of the proposed optimisation algorithm. Spring, summer, and autumn results
are summarised in Table 4, while winter season results have already been described in
Section 4.2 and Table 3 above.
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Table 4. Summary of results for all four seasons considered.

Season
Energy

Consumption
(KWh)

Economic Cost (£) Thermal
Deviation

Average Room
Temp. (◦C) Comfortability

Winter 490 20.13 2565 20.20 Uncomfortable

Spring 492 18.30 2494 20.24 Slightly
comfortable

Summer 492 20.86 2458 20.86 Slightly
comfortable

Autumn 497 16.90 2172 20.48 Slightly
comfortable

Simulation results for Case 3 (summarised in Table 4) have been presented graphically
in Figures 9–11. From these figures, it can be seen once again that the optimiser attempted
to minimise energy cost by only setting higher setpoints during off-peak periods.

Figure 9. Room temperature and MPC-generated setpoints over 24 h using sample spring season
price data.
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Figure 10. Room temperature and MPC-generated setpoints over 24 h using sample summer season
price data.

Figure 11. Room temperature and MPC-generated setpoints over 24 h using sample autumn season
price data.

5. Discussions and Conclusions

In this paper, an integrated two-step approach to demand response and demand
management for HVAC systems was introduced. A supervisory model predictive controller
for HVAC setpoint trajectory generation was presented. For this purpose, factors such as
thermal comfort and energy cost were incorporated into a linear objective function. This
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setpoint optimiser was then integrated with an inner loop local adaptive controller. The
performance of the supervisory MPC in conjunction with a digital adaptive controller
was then tested under simulation, by varying energy and thermal deviation weightings.
Trends observed suggested that, to maximise thermal comfort, λ should be kept as close
as possible to 1. However, it was worth noting that this approach was not the best at
saving energy costs. A sensitivity analysis illustrated that, through the choice of weighting
parameter λ, trade-offs between economic cost savings and thermal comfort could be
explored. Maximum saving was achieved when λ was set to 0. However, in order to save
energy costs, some level of thermal comfort was being compromised. The choice of λ
then lay with the end-user, bearing in mind that building occupancy can play a part in
deciding what weightings to apply. For example, a λ setting of 0 may better suit a working
professional who is likely to be out of the house from 8 am, while someone who works
from home might prefer a setting between 0.25 and 0.5.

Again, the ability of the proposed supervisory MPC optimiser to anticipate periods
of peak electricity prices and the shift heating load in order to minimise the total cost
of energy used was demonstrated. This was especially evident in the setpoint trajectory
produced when λ was set to 0.25. In Figure 8, higher setpoint values of 21.34 ◦C and
21.57 ◦C were prescribed for low price periods of 04:00 and 05:00, respectively, compared
to the 19 ◦C setpoint recommended for 19:00. This load shifting capability of the optimiser
is particularly useful in the demand response context; in that, it is possible to pre-arm the
proposed algorithm to respond to future DR events by taking actions such as preheating,
precooling, or storing heat energy for future use. A sensitivity analysis illustrated that
through a choice of the weighting parameter λ, trade-offs between economic cost savings
and thermal comfort could be explored.

From Table 3, it can be seen that although energy consumption in autumn was 7 KWh
more than in winter, it actually costs £3.23 less to run the system in autumn than in winter.
This was because of seasonal variations in energy prices. Electricity is usually costlier in
winter than in another season due to the colder temperature forcing consumers to spend
more time indoors. However, other factors such as extreme weather conditions, popular
televised events, and so on can drive up energy demand and prices. A combination of
these factors may have caused the average price of electricity sampled for summer in this
study to be higher than winter’s. Nevertheless, Figures 9–11 show, once again, that the
optimiser anticipated periods of peak prices and adjusted setpoints to minimise energy
consumption during these periods.

Although the focus of the current work was principally upon temperature control
and its influence upon thermal comfort, as outlined in several places, the method could be
generalised to other HVAC cases in a fairly straightforward fashion and to the multivariable
case with appropriate modifications. Testing of such configurations is an area of planned
work. As was also discussed previously, the proposed scheme lends itself well to a
distributed computing environment, with local HVAC adaptive controls and a cloud-
based optimisation scheme [7]. The exploitation of additional information related to the
weather forecast, building occupancy, and visualisation of a thermal comfort/energy cost
Pareto front (related to different choices of λ) is an additional area of future work. Such
areas of development and future work will also extend validation and demonstration
activities using more complex HVAC models in conjunction with field trials, for example,
with the models and the control system developed and described in [22]. It is concluded
that with appropriate future development, extensions, and commercialisation efforts, the
method proposed in this work should prove to be an effective solution providing a scalable,
adaptable, and industrially viable integrated demand response platform for a wide variety
of HVAC systems.
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