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Abstract: The exact nature of thermal processes occurring in an electric motor is often unknown.
Thus, the estimation of temperature rise using mathematical models and computational experiments
is becoming increasingly important. Thermal analysis is the key design aspect, which has become
significant in the design process for electric motors. The thermal analysis of electric motors can be
helpful in developing effective thermal monitoring methods. This analysis is crucial for a better
understanding of the overall performance and failure prevention for these electrical motors. In
this paper, laboratory investigations of thermal processes in low-voltage asynchronous motors are
described. The analysis of the results leads to the conclusion that the classic single-exponential
models do not match the dynamically changing thermal processes in electric motors especially in the
case of intermittent motor operation.

Keywords: thermal processes; asynchronous motors; motor protection; motor thermal model; induc-
tion motors

1. Introduction

The energy supplied to electric machines and drive systems constitutes a significant
part of industrial electrical power consumption. During the operation of a motor, some of
the delivered energy is converted into losses responsible for the heating of motor elements.
Excessive heating of motor parts leads to damage to the machine; and therefore, thermal
losses must be effectively minimized. Losses in smaller motors are also of relatively lower
value, but the motors are still subject to thermal issues. Therefore, close attention needs
to be paid to the thermal analysis of motor operation, which can result in significant
improvements in motor performance.

The increased awareness of the significance of thermal issues in electric motors has
led to the development of numerous electric motor thermal models. The methods used to
estimate rotor bar temperatures for line-connected induction can be categorized into two
classes: thermal-model-based ones and parameter-based ones. The thermal-model-based
methods simulate the thermal behaviors of the motor to estimate the rotor bar temper-
ature, but the thermal parameters are calculated from motor dimensions [1] or off-line
experiments [2,3]. Despite the robustness of these methods, thermal parameters are incon-
stant and need to be calculated under various operation conditions. Although the on-line
methods are accurate and can take into account alterations of cooling conditions, they are
still too sensitive to modifications of unknown machine parameters. These methods have
been successfully implemented to estimate the rotor temperature for line-connected motors
during standard conditions. It is much more difficult to estimate the temperature during
abnormal operation because of the skin effect, which impacts rotor resistance making it
slip dependent. However, the application of the algorithm to include the influence of slip
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dependency in these methods has been suggested [4]. The understanding of the thermal
effect’s impact during varying conditions is very important for the proper design of a given
motor. The basics of a motor thermal model and description of its applications in protection
relays are discussed in [5].

This paper provides mathematical interpretation of a motor thermal model for differ-
ent stages of operation. This article also focuses on the explanation of thermal model time
constants and other technical parameters that result in the biasing of the thermal model
algorithm. Thermal interactions in an asynchronous motor can be tested by measuring the
rotor temperature using a slip ring assembly in a laboratory test rig [6]. This paper presents
the detailed description of steady-state and transient temperature changes in the stator and
the rotor of an induction motor. The accurate estimation of a thermal resistance is crucial
for increasing the accuracy of analytical thermal models. It is worth emphasizing the fact
that the accuracy also increases with the number of nodes in the used equivalent thermal
circuit of a motor. The accurate mathematical model used for predicting the dynamic
reaction in response to a control input is also presented in [6]. The safe stall time of the
machine both for motor acceleration and stall states is the main objective of evaluation of
the motor maximum allowable temperature because of the difficulties with taking direct
measurements of the rotor’s temperature. The next aspect to be considered is stator insula-
tion degradation, that is, the chemical process, which accelerates as the temperature rises
and can be described by the Arrhenius equation. Thermal and electromagnetic analysis
can be performed with programs using the finite element method (FEM). The accuracy of
the no-load losses calculation in an induction motor using the FEM model is based on three
approaches: without hysteresis, skin effect influence, and with successive addition of the
phenomena. All these approaches are discussed in [7]. FEM can calculate the distribution
of the temperature and transfer of heat in a motor for steady and transient states, and such
an analysis performed in ANSYS is shown in [8]. As described in [9], stator design, rotor
design, and frame design can influence the amplitude of starting currents.

In this paper, the thermal behavior of a three-phase asynchronous machine is also
analyzed. The temperature of the machine is estimated using the thermal-model-based
estimator. The thermal characteristics of a motor are modeled using the lumped-parameter
thermal circuit. Stator design, rotor design, and frame design can influence the starting
currents. Thus, in the course of the design phase, the thermal and mechanical constraints
of the construction also have to be considered. The thermal capacitance and resistance
can be estimated using a small group of factors such as full load current (FLC), service
factor (SF), and trip class [9] when considering only motors having equal parameters.
Therefore, parameters used in lumped-parameter thermal circuits can be calculated from
(a) dimensional data and (b) test data. Even simple lumped-parameter models that include
only one source of heat and one energy storage can provide quite accurate rotor temperature
estimation. First-order thermal models are commonly used in the thermal protection
solutions of relays [10] because of their simplicity. Therefore, in [10] the method used for
the calculation of the temperature increase in asynchronous machines is discussed and
adopted in a digital relay. The ways in which the algorithms detect overload, failure of
starting, unbalance, and successive starting are also described.

The complex thermal models of electric motors usually provide more accurate results.
Faster results of temperature estimation can be achieved by reducing the number of
nodes in the equivalent thermal circuit [11]. Researchers analyzing thermal phenomena
in motors during transient and steady-state operation have typically used thermistors,
infrared cameras, temperature-sensitive paint, temperature-sensitive stickons, heat-flow
sensors, and other devices to get experimental data. It is convenient to use this kind of the
equipment when the rotor is at standstill. Therefore, the main aim is to achieve accurate and
reliable estimations of rotor temperature. However, such temperature estimations should
be done avoiding the use of thermal sensors, wiring, and other equipment connecting them
to a motor control center. Avoiding additional related costs is also of key importance in the
rotor temperature estimations [12]. In [13], the thermal limit curves are utilized together
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with supporting motor data to establish thermal protection using the thermal model of
an induction motor. In [14], the thermal model is represented by the time-discrete form
of the differential equation describing temperature rise as the result of Joule heating and
fundamental principles. In this paper, the method of modification of the thermal model
applied in overload protection relays made by different manufacturers is proposed. This
method provides good results for different motors under waveform distortion. In the
revised model, thermal constraints of the rotor and stator are assessed simultaneously to
evaluate the permissible temperature range. Machine designers frequently utilize full-order
thermal models to examine the performance of an asynchronous motor [15]. However, the
full-order thermal models can be methodically simplified through pole-zero cancelation or
using Hankel singular-values-based model reduction methods. Thus, second-order or first-
order thermal models may be effective enough to resolve the problem of rotor temperature
evaluation. At the same time, a sensorless rotor temperature estimator can also be used
for asynchronous motors [16]. The estimator only needs measurements of current and
voltage for the on-line evaluation of rotor temperature. Then, the inductances of the motor
are calculated using an equivalent circuit of the machine based on the orientation of the
rotor flux field. These parameters then become the input of the algorithm estimating rotor
resistance. The rotor temperature is related with its resistance by a linear relationship
that provides the final result. Reference [17] examines the additional possible methods to
estimate the machine temperature. Second-order or higher-order thermal-model-based
methods can also be effectively used for this purpose. In the discussed approaches, different
parts of the machine are modeled separately resulting in more accurate representation of
dynamic thermal behavior. The calculation of the model parameters is based on the machine
dimensions or the results of off-line experiments. However, the thermal parameters of the
motor are not constant and need to be recalculated under separate working conditions to
provide a more precise output. Reference [18] describes the development and testing of the
simple and reliable third-order thermal model appropriate for the thermal protection of self-
ventilated asynchronous machines operating on variable-load, variable-speed duty cycles.

One of IEEE studies estimates that motor failures caused by persistent overload consti-
tute 4.2% of all motor failures [5]. One way of reducing this problem is to set a longer reset
delay. Unfortunately, maximum setting of the parameter (typically 60 s) is the limitation
of this method. However, thermal overload relays make use of thermal memory, which
constantly measures the load and evaluates temperature. This leads to the situation where
machine circuits can work near to their thermal limits leading to the increased exploitation
of the power system. The problem can be partially overcome by using the thermal overload
protection functions embedded into modern IED (intelligent electronic device) relays that
constantly check the thermal load in real time. These functions (ANSI 49) use very ad-
vanced algorithms that map the thermal picture of the protected device accurately. These
algorithms should be set and coordinated correctly to prevent mis-operations and equip-
ment damage, to ensure proper operation of the functions. Unfortunately, the algorithms
using operate time curves for their functions are usually neglected in relay coordination
programs as a consequence of their mathematical complexity.

This article presents the laboratory standard for measuring the temperature of indi-
vidual motor components. The exact results of laboratory tests with intermittent motor
operation are also shown. On the basis of these test results, it is demonstrated that the time
constant of the individual motor elements depends on the temperature. At the same time,
it is proved that the specific heat is a function of temperature. The performed analysis
has highlighted the fact that the first-order motor thermal models do not map the thermal
processes occurring in motors precisely, especially in the case of intermittent operation.

Motor protection is needed to reduce the effects caused by abnormal operating states
of motors fitted with protection from:

• interphase short circuits,
• earth fault,
• overload,
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• voltage drop,
• improper start-up,
• falling out of synchronism, or
• asymmetry of voltage.

Protection for low-voltage motors is much simpler, yet less expensive, due to the
relatively low price of the motor. In the case of low-voltage motors, although a contactor
circuit is present, it is used as a short-circuit protection device. In addition, protection is
applied to motor overloads. Low-voltage motors, switched by contactors, do not require
undervoltage protection. The contactor electromagnet causes an immediate opening when
the voltage drops below 50% of the rated voltage.

In the case of low-voltage motors, several types of protection devices are used:

• sensors (temperature-responsive),
• protectors (responding to the current value in the winding and temperature),
• thermal overload triggers, or
• thermal overcurrent relays.

Protection from the effects of long-term overloads should be performed using a
thermal relay. In the case of long-term overload, there is a danger of overloading the motor
rotor and stator. Accurate information regarding the thermal processes occurring in the
motor is virtually impossible to obtain. The precise nature of these processes can be known
only by conducting appropriate tests.

2. Physical Tests

In order to perform an appropriate analysis of dynamically changing thermal processes
occurring in electric motors, a defined set of tests will be needed. The results of these tests
are an essential element in constructing the thermal overload relay.

For the purpose of conducting the above-mentioned tests, an appropriate laboratory
was built, containing the motor and the measuring and control apparatus. Tests were
performed using the position to control both the personal computer and the manual
switches. To carry out tests using the computer, we had to switch the position to this mode
and run the appropriate software on a computer device coupled to the measurement and
control apparatus. This device allows reading and recording the temperature and motor
load control, as well as its switching on and off. Using this device, it is possible to register
alternating currents and voltages, digital signals, and analog voltage. The device can be
controlled from a PC with the software DASYLab5.0. With this unit, it is possible to record
all measurements to the files in the form of individual samples. When selecting the manual
mode, the appropriate temperature sensor can be chosen using a manual knob, while the
load on the generator is controlled by changing the excitation current potentiometer. Eight
thermocouples were installed in the motor. They are located in different places within the
windings and motor frame as indicated in Figure 1.

Motor parameters: squirrel-cage motor; P = 2200 W; n = 2910 rpm; U = 3phase
230/400 V; In = 9.4 A/5.4 A; cos = 0.79; f = 50 Hz; insulation class B.

The motor was permanently connected in star connection.
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(L2 phase), 5—slot 0.5 of winding length (calculated from air intake) (L3 phase), 6—core 0.5 of motor body length, 
7—cooling fan, 8—under the tooth: 0.5 of winding length (under slot insulation), 1—ambient temperature sensor. 
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Figure 1. Sensor placement in the motor. Sensors were placed in the following motor elements: 2—rear end winding (end
rear (L2 phase)), 3—front end winding (end front (L3 phase)), 4—slot 0.7 of winding length (calculated from air intake) (L2
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3. Motor Thermal Model

In this paper, it was decided to present the essence of the phenomenon of thermal
processes in the engine in the simplest possible way. Therefore, physical model tests and
the empirical approach were used for comparison.

Considering the simplest case of heating up the motor stator windings, they can be
treated as a homogeneous body of thermal power, which is also equal to the power losses
in the stator windings [19]. The determination of the heat balance equation of this system
is done as follows:

RuI2dt = mcdϑ + Sϑ kp dt (1)

where
Ru—stator winding resistance (Ω),
I—current through the stator windings (A),
m—mass of the winding (kg),
c—specific heat of the stator windings (J/kg/K),
ϑ—temperature (K),
t—time (s),
kp—coefficient of heat transfer from the windings to the ambient (W/K/m2), and
S—surface area through which heat is released (m2).
Equation (1) can be transformed into the form:

dϑ

dt
+

1
T

ϑ =
1
T

ϑu (2)

where
T—the thermal time constant of the motor, ranging from several to tens of min-

utes (s), and
ϑu—temperature at which to determine the winding current flow during long-term

value of I (K).
Taking into account the initial condition ϑ = ϑp (for t = 0), we can solve Equation (2) in

order to obtain the relationship that specifies the change in temperature of the winding as
a function of time:

ϑ = ϑu

(
1− e−t/T

)
+ ϑpe−t/T (3)



Energies 2021, 14, 2056 6 of 13

When the winding temperature, ϑg, is exceeded, a thermal relay will boost the motor
off from work. In practical solutions, the thermal relay is often realized as a temperature
alarm, ϑalarm.

As calculated from Equation (3), if the temperature threshold, ϑ, is higher than the
set temperature, ϑalarm, an alarm is sent as a warning to the appropriate personnel. The
temperature alarm is set above the observed temperature during motor operation at rated
conditions and lower than the given temperature limit thatcould contribute to damage
ofthe motor stator windings.

From Equation (3), one can determine the time for the coil temperature to reach the
limit ϑg. This time dependence can be determined as follows:

t = T ln
ϑu − ϑp

ϑu − ϑg
= T ln

I2 − I2
p

I2 − I2
g

(4)

where
Ip—the pre-load current (A), also ϑp=RuIp

2/(kpS), and
Ig—current limit, which causes the flow to determine the winding temperature equal

to ϑg (A), also ϑg=RuIg
2/(kpS).

The current limit, Ig, is defined as multiples of k usually rated motor current In. The
time characteristics can be determined according to the IEC 255-8 standards adopted in
the equation:

t = T ln

(
I

kIn

)2
−
(

Ip
kIn

)2

(
I

kIn

)2
− 1

(5)

If the task on hand is to protect the thermal relay motor from overloading, its thermal
model should correspond as closely as possible to the protected element. To faithfully
reproduce the temperature change, its time–current characteristic should be determined by
Equation (4). Equation (5) is the basis of the temperature measurement algorithm (motor
warm-up process) used in the thermal design of many digital relays. The characteristics
of such a relay areshown in Figure 2. Even the simplest thermal relays are conducted in
accordance with Equation (5). In these embodiments, it is assumed that R = Ru, so that the
capacitance, C, can be determined as C = T/Ru. The voltage drop in the capacity of UC is
then directly proportional to the stator winding temperature, ϑ.
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Generally, the thermal tests of one heating and cooling cycle of the motors are known.
This paper focuses mainly on the results of tests obtained with an intermittent motor duty
cycle. The time constant is the basic parameter characterizing every thermal object. It
is not a constant quantity, but a function of the specific heat of a given material. The
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following formula describes the relationship between the time constant and the material’s
specific heat.

τ =
G · c
S · h (6)

where
G—weight (kg),
c—specific heat (J/kg/K),
S—active cooling surface (m2), and
h—body surface heat release rate (W/kg/m2).
Based on the above formula, it can be concluded that the change in the time constant is

dependent on the changes in specific heat and the body surface heat release rate associated
with the cooling conditions of the machine (when cooling, this parameter decreases).

From the physical point of view, the motor is not a homogeneous body. For the
thermal analysis of various materials, it is useful to know the Debye temperature—ϑD.
Each solid has a characteristic Debye temperature, below which a significant deviation of
molar heat dependence (heat capacity of one mole of substance) from the Dulong–Petit law
is observed, which says that, for most metals, the molar specific heat in normal conditions
is 25.1 (J/(mol·K)), [20]. Figure 3 shows the change in the body’s specific heat per volume
unit (in the Debye model) depending on the ratio of the body temperature, ϑ, to the Debye
temperature, ϑD [21].
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The Debye temperatures for the metals the motor is built withare, respectively, 343
K (70 ◦C) for copper and 467 K (194 ◦C) for iron. The difference of these values indicates
the complexity of the thermal analysis of thermal process taking place in the motor. The
high Debye’s temperature for iron confirms that there is a thermal dependence between the
motor time constant and its current thermal state. Heating and cooling of motor elements
in various operating states is taken into account during the analysis of thermal phenomena
occurring in electric machines. From the point of view of overload protection, we are most
interested in those parts of the motor that are exposed to the highest temperature values.
It should be noted, however, that limiting the analysis to heat processes only for these
elements is highly inaccurate due to the strong correlations occurring between the various
parts of the motors.

3.1. First-Order Thermal Model

The mathematical model describing the thermal processes occurring in the motor with
a single-exponential curve is determined by the following relationship:

ϑu = ϑn

(
I
In

)2[
1− e−

t
T

]
+ ϑo (7)
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where
ϑu—temperature of the stator winding (K),
ϑn—nominal temperature increase (K),
ϑo—ambient temperature (K),
I/In—ratio of the motor load current to its rated current, and
τ = Ru·Cu—time constant of the stator winding (s), shown in Figure 4.
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The following symbols were adopted:
J = (I/In)2—relative current square proportional to the square of the motor load current,
Cu—capacitor capacity corresponding to the thermal capacity of the motor winding
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Ru—resistance corresponding to the resistance of heat dissipation through the winding

to the environment (K).

3.2. Second-Order Thermal Model

A better form of modeling thermal waveforms consists in replacing the motor thermal
structure with a system of two thermally homogeneous elements, with the first heating
element havinglosses proportional to copper losses in the motor and havinga thermal
capacity corresponding to the thermal capacity of the motor winding, while the second
element is heated by the heat transmitted from the first element and its heat capacity
corresponds to the thermal capacity of the motor’s yoke [22].
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The heat emitted in the first element is partially accumulated. The rest is given back
by the thermal resistance, reflecting the intensity of motor cooling, and is transmitted to the
environment. The second-order thermal model can be described by the following equation:

ϑu = ϑn

(
I
In

)2[
1− k1e−

t
τ1 − (1− k1)e

− t
τ2

]
+ ϑo (8)

where
ϑu, ϑn, ϑo, I/In—the same symbols as for the first-order model,
τ1, τ2—time constants that are functions of all capacities and thermal resistances (s), and
k1—a coefficient that is a function of heat capacity and thermal resistance as well as

power losses.
The bi-exponential model is represented by the electrical scheme in Figure 6.
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The following symbols were adopted:
J, Cu, Ru—the same symbols as for the first-order model,
CR—capacitor capacity corresponding to the thermal capacity of the motor yoke (s/K), and
RR—resistance corresponding to the heat dissipation resistance of the yoke (K).

4. Heating Tests Results and Proposed Third-Order Model

The results of the motor heating laboratory tests are shown in Figure 7. It is found
that the description of the heating processes using one-exponential model described by
Equation (7) is not very precise. Based on the data obtained in the measurementof the
temperature curveat different points in the motor under test, calculations of the correlation
coefficients were made. The obtained results shown that that there is a strong relationship
between the following waveforms: ϑ2, ϑ3, ϑ4, and ϑ5, of which ϑ2 (temperature of front end
winding) is the highest. The temperature waveformsmeasured atthe other threepoints ofthe
motor, i.e., ϑ6, ϑ7, and ϑ8, are correlatedwith each otherbut havea weakerassociationwith
the previouslymentionedwaveforms. Basedon the results ofstatistical calculations, one
can state that better determination of temperature changes in the motor windings can be
obtained by modeling the motor as a system of interconnected heat capacity. The first one
would correspond to the thermal capacity of the second winding up the yoke. Moreover,
the protection does not include the fact that the specific heat of all materials is temperature
dependent. Thus, accurate thermal models would make the value of the thermal time
constant variable with an increase in temperature and specific heat. A third-order thermal
model can then be used in order toimprove the accuracy ofthe system analysis.
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The introduction of a third-order thermal model was dictated by the need to increase
the accuracy of mapping the dynamically variable waveforms of heat occurring in different
parts of the motor. In the proposed system, the motor is modeled based on the electrical
diagram shown in Figure 8. The way how the heat waveforms are mapped is similar to
the method used for the bi-exponential model, except that the motor winding is divided
into two parts: winding fronts and windings placed in slots. This breakdown is due to the
different thermal conditions under which the different parts of windings operate.
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Figure 8. Electric three-exponential schematic model of the motor [12].

The following mapping of the different motor parts was adopted:
JC—current forced proportional to the amount of heat produced in the winding front part,
JZ—current forced proportional to the amount of heat produced in windings placed

in the slots where JZ + JC = J = (I/In)2,
CC, RC—parameters of the winding front,
CZ, RZ—parameters of the slot windings,
CR, RR—parameters of the stator yoke, and
RCR, RZR—resistance corresponding to the reluctance of heat transfer from the motor

winding to the yoke.
The following equations can be formulated for the electrical system shown in Figure 8:

CC
dϑC

dt
+ jRC + j1 = jC (9)

CZ
dϑZ

dt
+ jRZ + j2 = jZ (10)

CR
dϑR

dt
+ jRR − j1 − j2 = 0 (11)

ϑC − ϑR − j1RCR = 0 (12)

ϑZ − ϑR − j2RZR = 0 (13)

A simulation model was built in the MATLAB/Simulink-based environment on the
above-presented relationships. The obtained thermal model of the motor was expanded by
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a correction system, thanks to which it is possible to dynamically change (map) the value
of the thermal time constant of the stator yoke.

The dynamic correction system, which contains the motor thermal model proposed
in the paper, serves as a controller, while the object to be controlled here is the thermal
capacity of the yoke—CR. The measured value applied to the input of the regulator is the
thermal state (temperature) of the stator yoke calculated by mapping the part of the motor
component using the parameters (RR, CR).

The main problem that occurred in the construction of the dynamic correction system
was to determine the correction function, f (ϑ), implementing the previously described
regulator. In order to solve this problem, data from the temperature curve registered during
motor thermal tests were used. Calculations are performed based on the assumption
that the temperature dependency of the yoke’s thermal capacity can be determinedby
multiplication of the capacity by the following factor:

f (ϑ) =
ϑo − ϑR

dϑR
dt

1
RRCR

(14)

The basic feature of the third-order model, clearly visible in Figure 8, is the introduced
time constant, which depends on the core temperature being, as previously described, the
control quantity.

Based on the results of the simulation, it can be concluded that the first-and second-
order tested models introduce low error values when the motor is heated from the cold state.
If the motor is operating in the intermittent mode, the winding temperature calculated by
the models is significantly different from the measured value, which is caused by the “stiff”
time constant value. The basic feature of the third-order model, clearly visible in Figure
9, is the correction of the time constant depending on the value of the core temperature
being as described above with the control value. A comparison of test results for models of
different orders is shown in Figure 9. The values of model parameters were as follows:

- first-order model: RU = 85 K, CU = 3.53 s/K,
- second-order model: RU = 70 K, CU = 4.29 s/K, RR = 15 K, CR = 24 s/K,
- third-order model: RC = 290 K, CC = 1.03 s/K, RR = 170 K, CR = 1.85 s/K, RZ = 60 K,

CR = 6 s/K, RZR = RCR = 70 K.
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Figure 9. The results of thermal model tests in the following intermittent motor cycle: 0 ↗ 600;
600↘ 1200; 1200↗ 1800; 1800↘ 2400; 2400↗ 2760; 2760↘ 3360 where: ↗ indicates motor heating
(at rated power);↘ indicates motor cooling (motor off), ϑc—temperature of the winding’s front
end (point 3 in Figure 1); ϑMI, ϑMII, ϑMIII—temperature calculated by thermal models (first order,
second order, third order).
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When the motor cools down, time constants of the models were quadrupled by
multiplying the resistances by four.

The research was mainly aimed at observing the operation of thermal models in
theintermittent motor regime. The reference value for which heat waveforms generated
by the tested models were compared was the temperature of the front stator wingding’s
overhang (in low-voltage motors this part of the winding heats up the most—it is the most
vulnerable spot of the motor).

5. Conclusions

The strength of the article is not in making huge complex models, as the models may
be different, but in verifying with actual measurements.

The analysis of the results, in particular, dealing with the motor’s intermittent operation,
confirms that the time constantof the various elements of the machine, which is proportional
to the specific heat, depends on temperature. Thus, the single-exponential protection models
are not a sufficiently precise representation of the actual thermal processes.

The results for the measurement of temperatures of the selected motor elements clearly
show that the thermal time constant is a function of temperature. Change (increase) in the
thermal time constant is due to the change (increase) in specific heat.

The calculations of the correlation coefficients between the courses of the temperature
at various points of the motor indicate that the structure of the thermal model to be
expressed, should be at least secondorder, and two elements have to be mapped: the stator
winding and the motor yoke.

As a result of the research and analysis of thermal models of asynchronous motor
used to implement the overload relay, it can be stated that single- and bi-exponential
classical models of motors do not provide an accurate mapping of the thermal state of the
motor operating in the intermittent operation cycle, because they do not take into account
changes in the thermal time constant as a result of temperature rise, and the only correction
introduced is a “swept” change depending on themotor operation.

The digital overload relay used for protecting motors should be equipped in a function
correcting the thermal time constant value depending on the thermal state of the motor.

The third-order (three exponential) thermal model proposed in this paper enables the
dynamic correction of the motor components’ time constant (windings and core) based on
the mapped course of the temperature in the stator yoke. The complexity of the selection
criterion and taking into account the time constant correction function requires further
research on other types of motors with different external dimensions and different ratios of
parameters such as the length and diameter of the stator.
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