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Abstract: In this article, a novelty control structure of grid-connected doubly-fed induction generator
(DFIG) based on a function link (FL)-based Wilcoxon radial basis function network (FLWRBEN)
controller is proposed. The back-propagation (BP) method is used online to train the node connect-
ing weights of the FLWRBEFN. To improve the online learning capability of FLWBEN, differential
evolution with particle swarm optimization (DEPSO) is used to tune the learning rates of FLWRBFN.
For high randomness of wave energy generation, the transmission power between generators and
electrical grids is easy to unstable and AC bus voltage and DC voltage will also lose constant under
the conditions of variable generator speed and variable load. Therefore, the proposed intelligent
controller can maintain the above power balance and voltage constant and reduce fluctuation. Finally,
PSCAD/EMTDC software is used to simulate and study various cases to confirm the robustness
and usefulness of the proposed intelligent control technology applied to an ocean wave energy
conversion system.

Keywords: function link-based Wilcoxon radial basis function network controller (FLWRBEN); wave
energy conversion system (WECS); differential evolution with particle swarm optimization (DEPSO);
doubly-fed induction generator (DFIG)

1. Introduction

As the world’s energy demand continues to grow and conventional fossil energy such
as oil, natural gas and coal are increasingly exhausted. Therefore, clean energy such as
solar, wind, tidal and biomass, etc., is becoming a necessity. Wave energy is one of the most
plentiful and common marine energy resources. The wave motion of seawater can produce
huge amounts of energy, thus captivating the attention of many countries, many of which
are working to actively develop it [1-3].

The vast marine resources provide a shallow and rich environment for the exploitation
of modern energy. In order to simplify the hypothesis, literature [4,5] defined the energy
extraction and control of the optimized ocean wave energy converter. Although wave
energy engineering has begun to develop, the energy conversion characteristics and related
researches of large WEC are rather limited. A well-designed turbine with a properly
controlled electric drive can work at low airspeed, but the average power generated is low.
Such performance is unfavorable for energy generation [6]. Hence, the power characteristics
of the wave energy conversion system (WECS) are limited, and its economy is far inferior
to other renewable energy sources. Therefore, it is urgent to improve and stabilize the
capacity element of the intelligent control system [7,8]. In addition, three-phase DFIG is
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diffusely adopted in renewable power conversions, such as wind energy generation and
small hydropower plants, and is used independently and transmitted to the electrical grid.

The most common use of WECS or wind turbine in power systems is the crowbar
protection strategy. Because the fluctuation of the grid voltage will cause the large current
of the wind turbine, to make the generator stabilize the transient process of excessive,
the resistance short-connected rotor winding is usually designed to bypass the rotor side
converter, which releases the large current of the rotor side and the excess energy of the unit,
so as to protect the grid-connected converter [9-11]. The commonly used passive crowbar
protection circuit technology cannot transmit active or reactive power to the electrical
grid during grid failure or fluctuation; thus, it cannot help the power grid to recover.
Accordingly, it cannot meet the requirements of low voltage through the production of
wind turbines connected to the electrical grid. Therefore, a novel and efficient control
strategy for grid and rotor side converter is proposed to improve the low voltage ride
through (LVRT) capability of the DFIG wind turbine in [12].

Particle Swarm Optimization (PSO) and Differential Evolutionary (DE) algorithms
are random parallel optimization methods based on the swarm optimization algorithm.
They optimize a search by heuristic swarm intelligence and are successfully applied to
many engineering problems [13,14]. Many studies have also developed some improved
PSO and DE algorithms to increase the search behavior and accuracy of original PSO and
DE. Among all kinds of optimization algorithms, DE is an efficient, parallel and heuristic
global optimization algorithm and is famous for its few parameters. In addition, PSO is a
kind of random optimization technology designed to simulate the behavior of birds, which
relies on information sharing and exchange between individuals and populations and
can validly resolve complex optimization problems. According to the advantages of each
algorithm, the combination of these algorithms can improve the search performance [15].
A mixed algorithm of DE and PSO is developed in this paper. The slow convergence in
DE can be resolved by PSO while easily trapping to the local optimum of PSO improved
by DE. Moreover, DEPSO has a high accuracy of output for searching performance and
reduces computational time [16,17].

Although in recent years, some intelligent control schemes based on fuzzy logic with
sliding mode controller, direct power and torque control (DPTC), perturb and observe
(P&O) and Grey-based Elman neural network have been proposed for the external con-
trollers of wind energy conversion. These intelligent controllers can improve control
performance, but there is still room for improvement [18-20]. The Wilcoxon neural net-
work studied in this paper is robust to the uncertainties, randomness, and parameter
changes of the WECS, and can effectively restrain the external disturbance to the system.
It is widely used in control systems to achieve better dynamic performance. In addition,
in order to further enhance the control ability of Wilcoxon radial basis function network
(WRBEN), the function-link neural network (FLNN) is used. FLNN uses the stochastic
linear combination to input signals, expands the input signal space, successfully omits the
hidden layer in multi-layer perceptron, simplifies the architecture of multi-layer perceptron,
and makes the structure of FLNN have faster convergence speed and less computational
amount than that of multi-layer perceptron. In addition, FLNN can be extended to the
higher-order part because of the input variables, which can more effectively approximate
the non-linear function [21-24]. Therefore, for the application of instant control system,
FLNN is quite suitable. Thus, the function link-based Wilcoxon radial basis function
network (FLWRBEN) controller is proposed, which can change the network structure to
achieve faster convergence.

In this paper, the simulation models of WECS variable speed operation and intelligent
control strategy are established under the software environment of PSCAD/EMTDC
and MATLAB, respectively. The main contributions are (1) a DEPSO-based FLWRBFN is
proposed and applied to the grid-connected DFIG-Wells turbine system, and (2) a Lyapunov
analysis of stability for the control scheme against WECS uncertainties and disturbances.
The performance results show that the proposed control scheme can effectively damping
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power oscillation in power system changes and short-circuit faults, and ensure the dynamic
and transient performance of WECS in a wide range of different conditions.

2. Modeling of the Studied System
The variable speed Wells turbine driving a DFIG system can be described as follows:

2.1. Structure of the System

Figure 1 is the schematic of a DFIG-based Wells turbine system. The DFIG is driven
by the Wells turbine is to obtain maximum power and send it to the grid. An AC-DC
converter is designed, which converts the AC power generated by the DFIG into DC power.
The proposed direct-drive DFIG system used both rotor-side and stator-side converter,
and a Z-source converter between the rotor slip rings. Therefore, an effective method
based on FLWRBEFN with DEPSO control system is proposed for wave period variations
of the turbine or load changes and controls the electromagnetic torque of a DFIG driven
using the variable speed Wells turbine, and the effects of different speed variation forms
are considered.

E

Grid

Wave Wells Turbine

Rotor-Side Stator-Side
Vector Vector
Control Control

FLWRBFN with
DEPSO Controller

Figure 1. Schematic of a DFIG-based Wells turbine system.

2.2. Wave Energy Characteristics

DFIG of Wells turbines includes a set of asynchronous wound generators, a PWM
converter system and a control system. Its stator winding is directly connected with the
power grid, and the electric energy from the generator is directly input into the power
grid through the stator winding. From Figure 1, the wound rotor is connected to a set
of back-to-back power converters, one of which is close to the rotor side and the other is
close to the grid side; both are bidirectional converter architectures. The two are connected
by a DC capacitor link. The detailed mathematical model of DFIG system converting
a-b-c three-axis component into a d-q two-axis component, control models, and the torque
equations can be used for reference [21,22], respectively.

The airflow generated by oscillating water column (OWC) wave energy is recipro-
cating. It is necessary to install a Wells turbine, which can rotate in the same direction
in the airflow passage under the action of two-way airflow. The incoming and outgoing
airflow will drive the Wells turbine to rotate and then drive generators to generate power,
thus greatly improving the airflow rate and thus increasing the efficiency of the system.
According to linear wave theory, based on monochromatic waves of deep water, the wave
power Py, is as follows [25]

2172
_ pg°HT
Pyave = 7327_[ [W/m] (1)
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where p, ¢ and H refer to the ocean water density, gravitational acceleration and wave
height, respectively. T is the wave period.

2.3. Wells Turbine Modeling

The produced torque (T};) obtained from wave energy, torque coefficient (C;), and the
angle of incidence of air on the turbine blade («) of the studied Wells turbine can be
calculated by combining Equations (2)—(4), respectively [26,27].

Ty = kC; (vg + VZB) )

C1a3 — Coza® + Ca — Cy
C=C 3
! 8+ Csa2 + Cen — Cy ®)
a=tan"! (‘\;2) 4)

where V5 and Vg represent the axial velocity and blade tip velocity (m/s), respectively, k is
the coefficient of the Wells turbine and C; to Cg are the power coefficients.

2.4. DFIG Modeling

In a three-phase system, the voltage and torque equations of DFIG are both non-
linear and time-varying, so its torque control is more complex. Therefore, the three-phase
instantaneous value of the original balance can be converted to the d-q reference frame
and rotates by using the synchronous rotating coordinate method [12]. The peak value
and phase angle of the three-phase sinusoidal wave can be controlled by controlling the
g-axis and the d-axis. Therefore, according to the system voltage, produced torque (T},)
and electromagnetic torque (T;) equations in [11,28], the following are obtained:

Tm = (5)

Tzizi
“= o o (6)

The mechanical dynamic equation of the DFIG is shown in the following equation
dewy

J= =Tn—Bw,~T. @)

where wy is the rotor angular frequency, w, is the electrical angular frequency, | is the total
inertia moment at the rotor of the DFIG, and B is the coefficient of friction.

3. Design of the Novel FLWRBFN with DEPSO Control System

The linear Wilcoxon regressor method is very sensitive to outliers and has strong robust-
ness, so the Wilcoxon neural network is further developed [29,30]. The proposed FLWRBFN
in this paper is shown in Figure 2 as a four-layer network structure. The FLWRBEN control
system is expanded by using FLNN to increase the accuracy of function approximation.
The FLWRBEN with DEPSO controller is used to generate control signal 7; from FLWRBFN.
FLNN extends input signals to functions that are linearly independent of each other by
function expansion. In this article, the trigonometric function is used for function expan-
sion, which is simple and easy to calculate. In addition, considering the outer product term
of input variables can enhance the approximation ability of functions, and it also provides
better performance.
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Figure 2. The structure of a FLWRBEN.

3.1. Function-Link Based Wilcoxon Radial Basis Function Network (FLWRBFN)

The input of FLWRBEFN is x%l) and xél) in the first layer, and xil) is the error between
the reference rotor speed w; and the rotor speed feedback w;. xél) is the error between
reference DC voltage V;_ and actual DC voltage V.. In the proposed FLWRBFN in this
paper, the input layer of two neurons, the functional link layer of eight outputs, the hidden
layer of 24 neurons and the output layer of 1 neuron.

First Layer: Input Layer

The main purpose of neurons in this layer is to directly transmit signals. Thus, for the
ith node of first layer, its input and output are as follows:

net) = xi(l) (N) 8)

1
ZW(N) = netV(N) i = 1,2 )

where xl.(l) is the input values, net?l) and Z l-(l) are the input and output of the ith node in
layer 1, respectively. N represents the Nth iteration

Second Layer: FL Layer

The second layer is the function expansion layer, which mainly expands the input signals
of the first layer into linear independent functions. Therefore, in this layer, the input vari-
ables [x1 x7] are extended to ¢pr = [p1,¢P2 - -+, ¢pg] = [1, x1,sin(7rxy), cos(7rx1), x2, sin(7xy),
cos(7x7), x1x2]. The second layer output 1"](.2) of the extended input variable is:

8

FON) = Y ge(x) -ag; j =1 ~3 (10)
E=1
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— 1x24 ;
wherethj = [ N1 N1p K13 -+ K81 (A8 (g3 ] € R**

Third Layer: Hidden Layer

Each neuron represents the characteristics of a membership function in this layer.
Here, the Gaussian function is used as the membership function of the neurons in this layer,
because the Gaussian function is a particular example of a radial basic function. Thus,
this layer input and output are obtained as follows:

is the connective weight vector.

n 2
netd (N) = =Y (T — cj) /oy (11)
=1
Z8(N) = exp (net,(f)(N)) k=1,...,6 (12)

where netl(f) and Z]EB) are the input and output of the kthnode in layer 3. cjx = [c1xCo - - - c]-k] T
denote the center value of the Gaussian function. vj, is the width of the Gaussian function.
Fourth Layer: Output Layer
This layer is the last layer of FLWRBEN and also the output layer. The operation of
this layer is to add all the output of the hidden layer.

net Z wZ, (N)k=1,...,6 (13)

ZWNY = et (NYk=1,...,6 (14)

where the connection weight wy, is the connective weight between the hidden and the

(4) is the control effort of the control system, i.e., Z§4)

4) —

output layer o. Z, = i}, is rotor side

converter; moreover, Z, = =i ds is stator side converter.

3.2. Learning and Training Procedures of FLWRBFN

In this study, FLWRBEN can train the weight of neurons to enhance the dynamic
property of the network. In this way, the dynamic response of the neural network can be
better than that of the general NN through the process of changing the weights. Thus,
to describe the gradient vector obtained during the online training of FLWRBEN, the output
direction of each neuron is calculated in the opposite direction. Then, a cost function E is

defined as:
Ezl(w;‘—wr)zzle?kzl,...ﬁ (15)
2 2
Then, the learning rules and update of FLWRBFN weights are described as follows.
Firstly, the weight wy, is updated from the fourth layer. The error item returned from this

layer and updated term are given by Equations (16) and (17).

s ___OE _ [ oE azg‘*)] 6)
’ anet((;l) 8Z(§4) anet((f)
Wio (N +1) = wyo (N) + LowAwy, (N) (17)

Here, Awy, = awk = 00Z; ) is the adjusted value of wy,. Ly is the learning rate for
wg,- Then, the weights ¢jx and vj in the third layer are updated by Equations (18) and (19).

Cjk(k +1) = ]k(k) + LmACjk (18)

Ujk(k +1) = U]k(k) + Lo’AUjk (19)

where Ly, is the learning rates of cj. L, is the learning rates of vjy.
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The adaptive rules for cj; and vj; are shown in the following Equations (20) and (21).

2
oE oE 8net§4) 8Z,$3) (3)2(FJ( ) 7ka>
T L . L = s zd L ()
acjk nets?) 9z 9k Ujk
4 (3) ) ?
OE 9E  omet\) 97, z(rf ‘Cf'k)
A = = T T @ B dog | Ve T T =
Ujk onet, ' 907, Cik (Ujk>

In the process of searching for solutions, if the learning rate is too large, the search
will not be carefully done and the optimization solutions may be missing, the system
may become unstable. The learning rate is too low; although the weight learning will be
more careful, it will make the search process too slow [20,31]. The value of the learning
rate is between 0 and 1. The common choice of learning rate is a trial-and-error method.
Therefore, it is very important to set the learning rates. Therefore, this paper proposes
DEPSO to adjust learning rates (L, Ly, Lys) of FLWRBEN online, which is introduced in the
following section.

3.3. DEPSO Online Adjusts Learning Rate

The DEPSO part of this algorithm combines DE into PSO by separating the logic
algorithm in the different round of work by odd and even round, but it shares the particle
for a better solution because of the time the PSO value becomes the local value [32-35]. It is
probably not the best value, so DE helps this problem and most of the time, DE computes
this over a long period of time. PSO was the best algorithm with the best speed computation,
it can help DE with that problem. Thus, DEPSO may not allow the PSO to have a long
period of computation and the result may not be stuck at the local minimum. In order to
further enhance the ability of FLWRBFN itself to process dynamic information through
online learning of its own neural network, this paper proposes the DEPSO algorithm to tune
the learning rates of Ly, L, and L, of FLWRBFN. The DEPSO combines the characteristics
of DE and PSO. The process is obtained as follows:

Step 1: Initial population.

Step 2: The DE and PSO algorithms are calculated separately, and the initial population
is assessed. That is, the fitness of each individual in the initial population is calculated,
and a better algorithm is selected to evolve. For each agent, a fitness value is evaluated.
A suitable fitness function, FIT, is selected for the following equation in order to calculate

the fitness value: 1

T 0.1+ abs(w, — w;) + abs(Vyg, — Vi)

FIT (22)
where the adds 0.1 to the denominator to keep FIT from approaching infinity.

Step 3: In the odd generation, the selected algorithm of step 2 shares the better result
to another by iteration to enhance the performance and convergence by the better result.

Step 4: In even generations, DE and PSO will calculate each other’s fitness values and
compare their advantages and disadvantages, and choose better algorithms to enter the
next generation.

Step 5: Suppose that the termination condition is not met, return to step 2.

Step 6: Repeat steps 2-5 until the optimal fitness is significantly increased or the set
count of a generation is reached. Finally, the highest-level fitness value is chosen as the
best learning rates (Ly,Ly;,Ly) of the FLWRBEN.

4. Analysis of Convergence

Choice of the value of the learning rate coefficients of the FLWRBEN has a major effect
on the network property. Thus, so as to train the FLWRBEN effectually, the varied learning
rates, which assure the convergence of the output tracking errors based on the analysis
of a discrete-type Lyapunov function [36,37]. The objective of the convergence analysis is
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to derive particular learning rates for network parameters to ensure the convergence of
the control. Considering the cost function E shown in (15) as a discrete-type Lyapunov
function, the change in the Lyapunov function can be received by:

AE(N)=E(N+1)—E(N) (23)

Then, the linearized model [33] of the error equation can be expressed by (20) and (21):
E(N+1) =E(N)+ AE(N)

= EV)+ £ [0 + 3 2 [%00ac; + 500 a0y

9

w, ]:1 = Ujk

6 (4) 3 6
= 1) - 1 [T | 1 -1 8 3 [

6 4) 570

3
1 IE(N) 97}
+3E(N) — Lajgl kgl {8254) 220 au];-k }

where wy,, cjx and v, represent the change in the weight in the fourth layer, the center
value of the Gaussian function and the width of the Gaussian function in the third layer,
respectively. If the learning rate coefficients of the FLWRBFN are devised as:

Lw = (25)

Ly = — b (26)

Ly = — - (27)

where ¢ is a positive constant. Hence, (23) can be revised as:

E(N+1) ~e(Ly+Ly+Lo)
E(N)e

@\?
9E(N) 07,
k=1 <az((,4) Worg ) e

—
IE(N) az8Y az((,3)> e (28)

w
Mo

<

In accordance with (15) and (28), the convergence of the cost function E can be
guaranteed. Thus, the tracking error of the WECS will bring the convergence to zero
as t — 0 if the learning rates of the FLWRBEN are devised as (25) to (27).
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5. Simulation Results and Case Studies

The simulation is divided into two case studies to simulate the dynamic and transient
performance of wave power generation system under different disturbances and faults.
To test the robustness of the proposed FLWRBFN with DEPSO, proportional-integration
(PI), RBEN and FLWRBFN techniques are compared through various tests. The perfor-
mance of each scheme in WECS control are shown in Figures 3-6, and the quantize values
are clearly summarized in Tables 1-4. Two cases show the effectiveness and robustness of
the FLWRBEN with DEPSO. Various parameters of WECS used in this paper are as follows:
Spric =20 MW, 3.76 A, 3000 r/min, Tr = 0.69/33 kV, ] = 0.00132 Nm s2, B = 0.00577 Nm
s/rad, V=15KV, PF = 0.976, f = 60 Hz, C4. = 0.6 pu.

The simulation cases are to analyze the effect of DFIG for rotor speed response, power
change, and bus voltage transient process when serious load disturbance and short circuit
faults suddenly occur in the electrical grid. The proposed intelligent control scheme has a
better identification effect for nonlinear dynamic systems and can be applied to DFIG-based
WECS to improve the overall dynamic performance.

5.1. Load Change

In this simulation case, the load rises rapidly from 0.5 pu to 1 pu at 4 s and then
decreases from 1 pu to 0.5 pu at 10 s. From Figure 3a, it can be observed that the rotor speed
of the DFIG with PI controller has the longest oscillation time and the largest oscillation am-
plitude, followed by RBFN controller. With the WECS of FLWRBEN with DEPSO, the rotor
speed of DFIG can quickly return to a stable state in a few cycles around 1 s. It could be
clearly seen from Figure 3b,c that when FLWRBEN with DEPSO controller is implemented
compared with the other two controllers, the proposed control scheme can minimize the os-
cillation, overshoot and instability of AC and DC link voltages of DFIG when disturbances
occur, and the time to return to stability is also the fastest. From Figure 3b,¢, it is also found
that when FLWRBEN is used, the time of the AC line and DC link voltage return to stability
is the fastest, and the bus voltage is maintained at 1 pu. The dynamic response of the real
power on the grid side is shown in Figure 3d. Similarly, the results from Figure 4d show
that when the load changes in 4 s and 10 s, the real power response of FLWRBEN with
DEPSO control has small amplitude change and the fastest convergence time. Although all
three technologies can return to the steady state, the PI control has the largest variety in
the amplitude of the real power response and the slowest convergence time, followed by
RBFN, while the proposed FLWRBEN with DEPSO has the smallest fluctuations and faster
real power recovery, returning to the stable state within about 0.9 s. Therefore, from the
results of Figure 3, we can see that the proposed FLWRBFN with DEPSO has a faster
tracking speed, more stable output power and better control effect for the variation of
real power and voltage. In addition, to verify the convergence ability of FLWRBFN with
DEPSO, it compares three other intelligent algorithms (MPSO [38], PSO and without PSO),
as shown in Figure 4, and quantifies each performance index in Table 1. Table 1 shows that
the FLWRBEFN with DEPSO for WECS has the best accuracy and faster convergence speed
compared with other methods. These results prove that FLWRBFN with DEPSO can obtain
better control of nonlinear dynamic systems than other methods.
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Figure 3. The dynamic simulation results of the studied system under load change: (a) Turbine speed; (b) AC line voltage;
(c) DC link voltage; (d) Grid side real power.
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Table 1. Quantitative comparison for several methods with load change.

Method Iterative Number CPU Run Time (107 s) Mean Square Error (10—3) Accuracy (%)
FLWRBEN + DEPSO 57 1.48 1.235 98.76
FLWRBEN + MPSO 90 2.34 5.017 94.98

FLWRBEN + PSO 54 1.40 7.581 92.42
RBFN 94 2.44 10.051 89.95

5.2. Short Circuit Fault

This case is to simulate the transient response state of WECS when a short circuit fault
seriously affects the safety and stability of the studied system. In this simulation, the three-
phase short-circuit fault is set beside the generator bus. The transient characteristics of each
parameter of the WECS, as shown in Figure 5.

Figure 5a presents the rotor speed response of DFIG. From the result, the rotor speed
using FLWRBEFN with DEPSO for DFIG returns to a stable state at about 5 s, and the
oscillation is also the minimum after fault clearing. Figure 5b illustrates the AC bus voltage
dynamic response when a short circuit fault occurs. From Figure 5b, it can be clearly
noticed that when the short circuit is added, the voltage of the AC bus drops to 0.3 pu.
After fault clearing, it can be seen that the proposed method can make the voltage return
to the stable value as soon as possible. However, in terms of the voltage response of the
three methods, the PI method can recover slowly to steady state at about 2.5 s, and the
voltage overshoot and undershoot are also the largest. The same is true for the transient
response of DC voltage. Among the three methods, PI method makes DC voltage the most
unstable, the FLWRBFN with DEPSO method has the best robustness, with RBFN having
the second-best. The transient response of the real power on the grid side is shown in
Figure 5d. The PI method has the largest real power fluctuations, and it will return to
stability in about 6.1 s, while the FLWRBFN with DEPSO method has the smallest real
power fluctuation—it only needs a few cycles to return to the stable value.

In order to confirm the convergence ability of FLWRBFN with DEPSO, the performance
comparisons with the four other algorithms are given in Figure 6, and quantifies each
performance index in Table 2. Table 2 illustrates that the FLWRBFN with DEPSO for WECS
has the best accuracy and fastest convergence speed compared with other methods. These
results prove that FLWRBEFN with DEPSO can obtain better control of nonlinear dynamic
systems than other methods. These results show the convergence property and transient
stability of various schemes, and also represent that when FLWRBEFN with DEPSO is put
into use in WECS, it can effectively reduce the oscillation of rotor speed, AC bus, DC link
voltage and real power caused by fault occurrence, and can quickly return to the steady
state, so as to achieve a better control effect.

To verify the real time online adjustment of FLWRBFN learning rates by DEPSO,
WECS can obtain the best transient and dynamic response under the condition of a load
change and short circuit. Therefore, Tables 3 and 4 compare the proposed technique with
other three intelligent algorithms, RBFN, FLWRBFN+PSO, and FLWRBEN+MPSO, in terms
of system behaviour on the grid side. From the results, it can be observed that the provided
FLWRBEN+DEPSO has a better effect on voltage regulation and voltage oscillation in terms
of load changes and short-circuit faults.
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Figure 5. The transient simulation results of the studied system under short circuit: (a) Turbine speed;
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Table 2. Quantitative comparison for several methods with short-circuits.

Methods Interative Number CPU Run Time (10?s)  Mean Square Error (10-3) Accuracy (%)
FLWRBEN + DEPSO 64 1.66 15.965 84.03
FLWRBEFN + MPSO 94 244 20.071 79.93

FLWRBEN + PSO 91 2.36 29.057 70.94
Table 3. System dynamic behavior comparison with load change [18,39].

Method FLWRBEFN + DEPSO  FLWRBEFN + MPSO FLWRBEN + PSO RBFN
Grid-Side Voltage 1.0003125 1.0005316 1.0004338 0.9976911
DC-Side Voltage 1.0012123 1.0026557 1.0013670 0.9896110
Max. Transient Over Shoot Voltage 1.0043437 1.0060341 1.0071922 1.0085975
Max. Transient Under Shoot Voltage 0.9965313 0.9954371 0.9957687 0.991125

Table 4. System dynamic behavior comparison with short-circuit fault [18,39].

Method FLWRBEN + DEPSO  FLWRBEFN + MPSO FLWRBEN + PSO RBFN
Grid-Side Voltage 1.0204878 1.0257873 1.0310922 1.0214457
DC-Side Voltage 1.006251 1.0069122 1.0052166 1.0071458
Max. Transient Over Shoot Voltage 1.0780488 1.0993411 1.1477012 1.1931707
Max. Transient Under Shoot Voltage 0.9609756 0.0922378 0.0912409 0.0902439

6. Conclusions

The simulation results demonstrate that the proposed FLWRBEFN with DEPSO method
can effectively improve the parameters of the utility grid and power operation and also
highly ensure the stability of the power control. From the case studies, the iteration of the
load disturbance case is reduced by 29.6%, and the accuracy is improved by 8.9% over
the other approaches. The same, the iteration of the load disturbance case is reduced by
39.3%, and the accuracy is improved by 15.6% over the other approaches in the fault case.
The proposed method combines DE with PSO and was applied to the proposed FLWRBFN
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algorithm based on function expansion. Through the simulation of load disturbance and
short circuit fault, the results show that in the performance of WECS, the proposed algo-
rithm can stabilize the operation of a power grid and enhance the stability of an electrical
grid when wave energy generation with high randomness is unstable. In this study, the pro-
posed scheme is also compared with earlier methods. The system dynamic behavior results
demonstrate that the proposed technique is robust and provides an excellent performance.
In the future, the proposed method can be applied to complex power systems with multiple
energy sources. The proposed method should have better damping characteristics. Under
unstable conditions, power fluctuations within the power system can effectively stabilize
the network.
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