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Abstract: Electricity supply in nonelectrified areas can be covered by distributed renewable energy 

systems. The main disadvantage of these systems is the intermittent and often unpredictable nature 

of renewable energy sources. Moreover, the temporal distribution of renewable energy may not 

match that of energy demand. Systems that combine photovoltaic modules with electrical energy 

storage (EES) can eliminate the above disadvantages. However, the adoption of such solutions is 

often financially prohibitive. Therefore, all parameters that lead to a functionally reliable and self-

sufficient power generation system should be carefully considered during the design phase of such 

systems. This study proposes a sizing method for off-grid electrification systems consisting of pho-

tovoltaics (PV), batteries, and a diesel generator set. The method is based on the optimal number of 

PV panels and battery energy capacity whilst minimizing the levelized cost of electricity (LCOE) for 

a period of 25 years. Validations against a synthesized load profile produced grid-independent sys-

tems backed by different accumulator technologies, with LCOEs ranging from 0.34 EUR/kWh to 

0.46 EUR/kWh. The applied algorithm emphasizes a parameter of useful energy as a key output 

parameter for which the solar harvest is maximized in parallel with the minimization of the LCOE. 

Keywords: photovoltaics; battery; diesel generator; sizing method; renewable energy sources; off-

grid power systems; levelized cost of electricity; distributed energy resources; electrical energy stor-

age 

 

1. Introduction 

Renewable energy sources can, in the long term, ensure a sustainable energy supply 

and reduce local and global air pollutant emissions. In addition, it is the most promising 

solution for supplying electrical load to remote and rural areas that are not served by an 

electrical grid. According to a recent study [1], the population without access to electricity 

was estimated to be 861 million in 2018. Moreover, in the same study, it was also men-

tioned that, in 2018, about 2.65 billion people were living without access to clean cooking, 

which means that they did not have access to fuels and technologies such as natural gas, 

liquefied petroleum gas (LPG), electricity, and biogas. 

Reducing the cost of photovoltaics while increasing their efficiency has made off-grid 

solar systems more economically attractive, resulting in increased use of these systems to 

meet the energy needs of the abovementioned populations. Specifically, since 2010, more 

than 180 million off-grid solar systems have been installed in these kinds of applications. 

However, only 17% of these systems were used to meet household needs, whereas the 

peak power (up to 10 W) of the other 83% was mainly used for lighting and charging 

mobiles [1]. In order to further increase the number of systems that meet household needs 

while improving the quality of these people’s lives, methods should be developed which 

lead to optimum techno-economic solutions. Some of the efforts that have been made in 

this direction are described below. 
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Several research teams dealt with optimal dimensioning of PV–battery systems using 

appropriate software tools. For example, a widely used software is the Hybrid Optimiza-

tion Model for Electric Renewables (HOMER) developed in order to determine the opti-

mal size of system components by carrying out techno-economic analysis. In El-Houari et 

al. [2], real monthly electrical demands and hourly site-specific meteorological conditions 

were used to calculate, via HOMER Pro software, the PV and battery requirements for 

rural African regions. A very comprehensive review [3] describes how this software 

works. Input data including meteorological data, load profile, equipment characteristics, 

and economic and technical data are required for simulation and optimization. Optimiza-

tion occurs by finding an optimal value for an objective function which is the present value 

of the sum of costs minus the sum of revenues. The final step concerns the sensitivity 

analysis where an evaluation of the variation in uncertain parameters (such as fuel cost, 

wind speed, solar radiation, electricity price, and component cost) on optimal sizing takes 

place. 

Other available software tools for optimal sizing of standalone PV–battery systems 

are Improved Hybrid Optimization by Genetic Algorithms (IHOGA), Transient Systems 

Simulation Program (TRNSYS), RETScreen, and PVSYST [4]. All of these programs use 

almost the same input data as those reported for HOMER in the previous paragraph. 

However, the results of each software and their application differ, as described in detail 

in [4].  

In addition to software, many research groups developed optimization tools and 

techniques to approach an optimum techno-economic solution. These attempts can be 

classified into various categories: genetic algorithms, particle swarm optimization (PSO), 

simulated annealing, and ant colony algorithm. Information on the development philos-

ophy of these methods and how to use them can be found in a previous review [5]. In their 

work, Dufo-López et al. [6] studied the multi-objective design of PV–wind–diesel config-

urations coupled with electrical energy storage (EES) in order to minimize both the lev-

elized cost of electricity (LCOE) and CO2 emissions, employing relatively fast evolution-

ary algorithms. Results showed that the best pareto fronts included a diesel generator that 

contributes to the overall economic and environmental performance. In Maleki et al. [7], 

a combinatorial optimization method based on the harmony search algorithm for sizing 

off-grid PV–battery and generator systems was presented. In this study, the proposed 

method outperformed a simulated annealing method, displaying extremely fast runtimes, 

although battery technology and various battery specifics such as depth of discharge and 

cycle life were not considered. Simulated annealing genetic algorithms were employed by 

Wei et al. [8] to optimize coal-fired boiler operation so as to reduce NOx emissions, 

thereby exhibiting accurate solutions in a low computing time. Similarly, in [9], Ghafoor 

et al. presented a deterministic and straightforward off-grid PV–battery configuration 

model for a residential case study in Pakistan accompanied by a lifecycle cost analysis 

without considering battery technology.  

In [10], Mandelli et al. proposed an off-grid PV–battery sizing method for rural areas 

of developing countries introducing the loss of load probability and the electricity unit 

cost as key aspects in the sizing process. In a case study, they displayed the effectiveness 

of their numerical method and showed that accurate results are required in order to opti-

mize the energy and economic cost of the system. Furthermore, in [11], Mandelli et al. 

investigated the impact of load profile uncertainty on PV and battery sizing and intro-

duced an algorithm for implementing stochastic load profile formulation. 

In a paper by Shank et al. [12], a dispatch-coupled sizing method based on a PSO-

enabled algorithm for batteries in systems with different penetration levels of renewables 

was introduced. Results showed that their metaheuristic modifications of the particle 

swarm optimization avoided premature convergence to local optima and was effective in 

large-scale energy systems with different penetration levels of RES. Moreover, in [13], 

Rodríguez-Gallegos et al. employed a multi-objective optimization approach, considering 
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the LCOE, CO2 emissions, and grid voltage for sizing interconnected PV–battery–diesel 

combinations. 

Recently, Li [14] studied the PV–battery optimization problem of grid-connected 

households by incorporating load demand uncertainty and time-of-use tariffs into a sizing 

genetic algorithm involving a time-series simulation, showing more realistic results com-

pared to algorithms using average data from chosen sites. Reinforcement learning and 

evolutionary algorithms have an extended scope and have also been reported to be effec-

tive in various applications such as battery-related energy management systems and elec-

trical vehicles [15,16]. 

A common feature of sizing methods is the construction of an objective function and 

the attempt to optimize it through changes in operational, technical, and economic param-

eters. The most widely used objective function is the LCOE [10,17,18]. The LCOE provides 

an indication of the cost per unit of energy throughout the operation of the sizing system. 

In general, LCOE aggregates all costs over the lifetime of an energy system and divides 

them by the total energy production over the lifetime. 

In this work, we propose a design method for non-interconnected photovoltaic sys-

tems with batteries and generator sets (PVBG). This method is based on the synthesis of 

the objective function expressed by the LCOE. Its aim is the selection of an effective com-

bination of PV panel quantity and nominal energy capacity of the battery, so that the cost 

of the system per unit of energy for a period of 25 years is minimized. The sizing method 

considers a detailed electricity demand profile; therefore, the optimized PVBG configura-

tion matches with the energy consumption more realistically, in contrast to algorithms 

using average data from specific sites. Additionally, this enumerative method not only 

produces optimal PVBG configurations but also determines the actually utilized solar en-

ergy harvest, thereby calculating a more precise LCOE. 

After this introduction, the off-grid design of a PVBG system is discussed in Section 

2. In this section, the hourly PV power output is estimated and linked to a typical house-

hold load profile. The operation and sizing algorithms of the PVBG system, as well as the 

system cost analysis based on the LCOE, are presented and described in detail. The results 

of the applied sizing method are validated and presented in Section 3, followed by a dis-

cussion in Section 4. Concluding remarks and suggestions for future work are given in the 

last section.  

2. Materials and Methods  

2.1. Off-Grid PV–Battery–Generator System  

Distributed energy resources (DERs) such as PV modules, power electronics, and 

batteries can be integrated into a unified and autonomous electrification system in several 

ways. A key consideration when planning PV–battery systems is the selection of the al-

ternating current (AC) or direct current (DC) system architecture, i.e., the preference 

among AC or DC bus utilization, which differs in power converter arrangements and con-

version steps. Along with the electrical energy generation and storage, an auxiliary power 

source in the form of a generator has to be added to the system to achieve total grid inde-

pendence. 

In this section, the sizing method for PV–battery–generator systems oriented towards 

off-grid applications is presented in detail. The key points of the method are depicted in 

Figure 1.  
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Figure 1. Flow diagram depicting the basic steps of the proposed photovoltaic (PV)–battery sizing method. Steps 7 to 10 

are iterated for a specified range of PV modules and battery energy capacities, subsequently highlighting optimal values 

for N and Bnec at minimum levelized cost of electricity (LCOE). 

2.1.1. Preference of the DC-Coupled Architecture 

In DC-coupled systems, the PV arrays are connected to the DC busbars via unidirectional 

DC/DC converters, commonly known as maximum power point tracking (MPPT) solar 

charge controllers. The battery is directly connected to the DC busbars, forming together with 

the PV output a parallel connection to the DC side of an inverter, as shown in Figure 2. 

 

Figure 2. Off-grid system architecture of direct current (DC)-coupled PV–battery–generator system. 

In this setup, the PV modules power the load on the consumption side through the 

DC/DC converter and then through a DC/AC inverter. PV power also charges the battery 

through the DC/DC converter in a single conversion step, and the discharging battery 

power also contributes to load supply via the DC/AC inverter. In off-grid systems, a 

standby power source on the AC side of the inverter can act as a backup for energy short-

ages and supply power directly to the load. Battery charging by the standby power source 

occurs through an additional AC/DC rectifier, usually, a charger incorporated into the 

inverter, as shown in Figure 2. 
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In AC-coupled systems, the typical AC bus is used as the conductive medium linking 

the power source, energy storage, and load. The PV arrays and the battery are connected to 

the AC bus via unidirectional and bidirectional DC/AC inverters, respectively. Since, in this 

setup, the load is directly connected to the AC bus, the power supply of the load is done 

from the PV modules and the discharging battery in a single conversion step. Again, in off-

grid systems, the standby power source supplies power directly to the load when needed. 

For the most part, off-grid PVBG systems on a smaller scale follow a DC-coupled 

system architecture, primarily for practical reasons, since electrochemical accumulators 

work with DC. This simple and robust setup facilitates the reliable and efficient charging 

of batteries, especially in instances where the surplus renewable energy harvest needs to 

be maximized. Another critical issue is the fact that, when batteries are too far discharged, 

a battery inverter shuts down the AC output to protect the battery from damage. In the 

case of a DC architecture, this is relatively inconsequential as solar energy eventually re-

charges the battery through the charge controller. On the contrary, when batteries are too 

far discharged in an AC architecture, special use of a backup generator is required to pro-

vide power references, such as voltage and frequency, to allow renewable solar and bat-

tery inverters to reconnect. 

Furthermore, DC-coupled setups are very cost-effective for small to medium-size off-

grid systems. Solar charge controllers are highly modular and scalable, i.e., additional PV 

arrays can be easily added to the DC bus, if required, using comparatively low-cost solar 

charge controllers. Consequently, for these reasons, a DC architecture was preferred for 

simulation in this work. 

2.1.2. Selection of the System Components 

The decisive criteria for the selection of PV panels are the degree of efficiency as a 

function of the module temperature coefficients, the product and performance module 

warranties, and the purchasing cost of PV in EUR per installed capacity. In the present 

work, only photovoltaic modules from crystalline silicon were considered since they are 

the most prevalent PV type in the PV market.  

Industrially produced crystalline silicon PV cells currently achieve efficiencies rang-

ing from 18% to 22% under standard test conditions (STCs) [19]. The industry average of 

solar panel manufacturer warranties varies from 10 to 25 years. Considering the global 

declining trend in module average selling price, the reported average crystalline silicon 

module prices in 2020 ranged from approximately 0.40 EUR/Wp to 0.25 EUR/Wp [20].  

For the simulation purposes of the present work, the module selected was SolarCall 

SCM310, a passivated emitter and rear contact (PERC) PV module made of monocrystal-

line silicon, from a European manufacturer [21]. The module’s installed capacity is 310 

Wp with a surface area of 1.627 m2, resulting in a module energy efficiency of approxi-

mately 19%, under STCs. According to the manufacturer’s datasheet, the peak power tem-

perature coefficient is −0.40%/°C. The manufacturer product and linear power warranties 

are 15 years and 30 years, respectively. More specifically, the performance warranty for 

15 years is 91.2% and that for 30 years is 80.6% of rated power. Cost of the module was 

inquired online, and offers ranging from 0.45 EUR/Wp to 0.35 EUR/Wp were collected 

from selected distributors. 

For the power electronics simulation requirements, features were taken from data 

sheets of established power electronics manufacturers. More specifically, in every simu-

lation run, the energy flows originating from a PV array block were handled by an MPPT 

solar charge controller, and its efficiency level was considered relatively stable throughout 

the whole power range (approximately 95%). Nevertheless, efficiency estimations of in-

verters are more complicated since inverter efficiency is a function of apparent power out-

put. Inverters are generally designed to achieve a high power factor when operating at 

full power. Actual conditions vary, however. Therefore, the power factor of the inverters 

used in the simulations was considered greater than 90% when the power output was 

greater than 20% of the nominal inverter power [22].  
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The solar charge controllers and the battery inverters considered for simulation in 

this work were from Victron Energy. The charge controllers exhibit a PV input voltage, 

ranging from 75 V to 150 V and a current output up to 70 A. The inverters supply up to 

5000 VA apparent power and also feature a battery charger and generator triggering. The 

battery charging current and automatic generator triggering can be programmed with a 

computer. Although manufacturer product warranties are limited to 5 years, the power 

converters are expected to last 25 years. Costs of the specific items were inquired online, 

and offers were collected from selected distributors, which were 20% lower than the offi-

cial prices published quarterly by established manufacturers [23].  

In self-sufficient power systems, the EES is heavily used to facilitate power deficits from 

RES and to operate as a short-term storage medium. In recent years, lithium-ion batteries 

have surged in popularity and overtaken lead–acid batteries as the preferred EES medium 

[24]. Nevertheless, in many instances, the lead–acid battery is still the first choice when it 

comes to EES, especially when the initial capital cost is a critical point of consideration [25]. 

Another point of consideration in the EES selection process is the end-of-life management 

of the anode and cathode material of the accumulators. In contrast to the lithium-ion battery, 

the lead–acid battery exhibits a very high recovery rate [26]. Furthermore, lithium-ion bat-

teries must operate in a strictly defined voltage and temperature window. Safe and efficient 

charging and discharging of lithium-ion accumulators is assured only through the use of a 

battery management system (BMS), which again increases cost. 

Consequently, both battery types were studied in this work and simulated as an EES 

resource. Complying with the DC-coupled architecture, the battery was directly con-

nected to the DC busbars and, therefore, defined the system voltage. Commonly, higher 

power levels require greater system voltage, since delivering more power at a given volt-

age takes more current, which in turn leads to higher power losses. Here, the considered 

nominal system voltage was 48 V for both battery types. Equally important is the nominal 

battery capacity since the product of voltage and capacity defines the nominal energy ca-

pacity of the battery used in the simulation. Furthermore, significant battery features such 

as nominal battery cycles at maximum depth of discharge (DOD) and calendar battery life 

were extracted from datasheets of renowned battery manufacturers. More specifically, in 

this study, the lead–acid battery selected was the RES SOPzV from Systems Sunlight S.A. 

[27] and the lithium-ion battery selected was the LFP-Smart from Victron Energy [28], 

both labelled as EES solutions used in conjunction with RES. Both batteries were sized at 

approximately 5 kWh energy capacity intervals, and, according to the manufacturers, the 

cycle life at 50% DOD was 2500 cycles for the lead–acid battery and 5000 cycles for the 

lithium-ion battery. Moreover, different theoretical maximum calendar lives of 5 years 

and 10 years, respectively, were included in the simulation, in line with [29] and [30]. The 

cost per kWh for each battery type was inquired online, and offers ranging from 154 

EUR/kWh to 574 EUR/kWh, for lead–acid and lithium-ion batteries, respectively, were 

collected from selected distributors. 

Generator sets are fuel power systems comprising an engine and an alternator and 

are broadly categorized into primary and standby generators. The latter are used as 

backup generators (BGs) that instantly supply power to the load when the primary power 

supply, in this work the PV–battery system, fails. Optimal sizing of diesel generator sets 

in hybrid energy systems is an essential step in planning economical off-grid electrifica-

tion systems [31], with resiliency being a key aspect to consider [32]. Currently, natural 

gas- and diesel-powered engines are the industry standard, although biomass and biogas 

are gaining ground. Nevertheless, there are several other crucial factors to consider before 

choosing a BG. These systems run, to a high degree, infrequently and remain in a cold 

state for most of their cycle life. Therefore, it is important to carefully define the required 

function and the operating time intervals of BGs in an off-grid system. The sizing proce-

dure for BGs must take into account the maximum continuous time use (CTU), the esti-

mated annual operation time (APT), and the average load value (ALV) during BG opera-

tion as a function of the rated generator power. Furthermore, the amount of electricity 
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supplied to the load by the BG depends on the quantity of fuels consumed, which in turn 

is a function of generator efficiency and operation time. The total operational lifespan of 

such systems can reach 20 years [33] as long as the generator is well maintained and CTU 

and APT are not exceeded.  

Once again generator specifications were taken from manufacturer datasheets and 

used to simulate standby BG operation on an hourly basis, corresponding to PV, battery, 

and power converter components. The considered generator in this study was the Hyun-

dai DHY6000SE diesel standby generator, capable of supplying up to 4.5 kW of power 

over a single phase, with maximum CTU and APT values limited to 5 and 500 h, respec-

tively. The standard warranty for this product is 2 years, yet the manufacturer claims that 

a total lifespan of above 10,000 h can be achieved with correct maintenance and operation 

(that is, if the average load is not lower than 30% or higher than 80% of the rated generator 

output). The capital cost for this generator set varies from 1390 EUR to 1500 EUR per item 

depending on location and shipping. Annual operation and maintenance cost estimations 

range from 235 to 260 EUR. 

2.2. Annual Electricity Generation Estimation 

A method for accurately estimating the annual energy winnings from PV systems 

was examined in previous work [25,34] in more detail. In summary, simulating the annual 

PV energy output requires the use of the PV datasheet and hourly sequenced meteorolog-

ical data for a specified position. Time series on an hourly basis of global horizontal irra-

diance (GHI), onsite atmospheric temperature (T), and horizontal windspeed (WS) are 

used for at least one calendar year to produce analogous sequences of direct normal irra-

diance (DNI) and diffuse horizontal irradiance (DHI). This was done using the DISC 

model from [35,36]. Given the PV surface and PV azimuth angles, sequences of the solar 

angle incidence (AOI) as a function of solar position with respect to latitude, longitude, 

and altitude were calculated. An acceptable albedo of 0.25 was used for all sizing simula-

tions in this study and, lastly, hourly sequences of the total solar irradiance instance (Epoa) 

hitting the PV modules were calculated. The above-simulated sequences were fed at first 

into the Sandia Cell and Module Temperature Model [37], to compute PV cell (TC) and 

PV module temperatures (TM), and subsequently into the five-parameter model [38] lead-

ing to the five corresponding outputs of the model: (i) the photocurrent (IL), (ii) the diode 

reverse saturation current (I0), (iii) the series resistance (Rs), (iv) the shunt resistance (Rsh), 

and (v) the modified diode ideality factor (nNsVth). These outputs comprise the inputs 

for the widely accepted single-diode model [39,40] for photovoltaic modules from which 

power estimations are obtained.  

Losses because of PV module reflectivity and soiling were taken into consideration. 

According to PV manufacturers, PV modules are typically guaranteed to deliver 80% of the 

rated power output at the end of their lifetime. Hence, the annual PV energy output was 

corrected further with a degradation factor of 0.9, optimizing mean power output estima-

tions over a typical 25 year period. Model implementation and data processing were done 

in Python using the PVLIB solar simulation library for PV energy systems [41–45].  

Using a typical meteorological year (TMY) [46] for a specified location (Xanthi, 

Greece) in conjunction with the above-described electricity generation estimation method, 

a total of 8760 hourly sequenced data points were generated, representing the annual elec-

trical energy output from one PV module. This referential output was then multiplied by 

the number of PV modules used in each sizing step to determine the total annual energy 

winnings from a certain PV capacity instance of the algorithm. 

2.3. Reference Load Profile 

A consumer load profile of an average four-person household was synthesized by 

approximating the electrical appliance usage over a whole year, which was then used as 

a reference for the sizing algorithm developed in this study. The load profile was scaled 

to the annual electricity consumption of approximately 5500 kWh with the winter months 
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(in the northern hemisphere) from December to February acting as the baseload months 

with a baseload of approximately 300 kWh, as one can observe in Figure 3.  

 

Figure 3. The synthesized electricity consumption of an average four-person household. The esti-

mated baseload of the lowest 3 months was approximately 300 kWh. 

A 1 h resolution was used to match the resolution of the PV production profile and 

to generate 8760 data points of inelastic electricity demand. The electricity profile exhib-

ited seasonal variations and followed the daily human activity in a household peaking 

twice in a day, i.e., once at midday and once in the evening, similar to [47]. Figure 4 shows 

the annual load profile in more detail illustrating the hourly peak loads of 2 kWh, 1.4 kWh, 

and 1.2 kWh generated in the summer, spring/autumn, and winter months, respectively.  

 

Figure 4. Hourly sequence of the annual load profile, based on the daily electrical appliance usage 

from a four-person household. 

Electricity demand for heating and transportation purposes, flexible loads, and work-

day/ weekend demand variations were not considered since this would require a more 

detailed modeling effort; this will be addressed in future work. 
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2.4. System Operation and Sizing Algorithm 

In this section, an operation and sizing algorithm (SA) for autonomous off-grid 

PVBAT systems is introduced. After the system specification (Step 1 and Step 2 of Figure 

1), the SA used time-series data from a TMY of a specified location and consistent data 

from datasheets of PV, converter, battery, and generator manufacturers to generate an-

nual time series of the power output for one PV module with a 1 h resolution. Initially, 

numbers for the required PV modules (N) and the required battery nominal energy ca-

pacity (Bnec) were set, leading to the determination of the annual PV output power of the 

entire PV array in hourly steps (Ppv) and to the initial battery state of energy (SOE) avail-

able. The Ppv at this point included converter losses. A matching load profile was synthe-

sized, as described in Section 2.3, leading to an hourly power demand (Pload) for an entire 

year. Figure 5 illustrates the system operation flow in terms of Ppv usage, Pload coverage, 

and hourly battery SOE.  

 

Figure 5. System operation flow according to the to the hourly battery state of energy and PV energy usage. 

We can distinguish the following cases of operation depending on whether excess 

energy is available or not at every hourly step.  

Case A. Surplus energy case and a fully charged battery 

In this case, available surplus energy, defined here as Esur, should either be used to 

charge the battery or be discarded. 

𝐸𝑠𝑢𝑟 =  [𝑃𝑃𝑉  −  ( 
𝑃𝑙𝑜𝑎𝑑

𝑛𝑖𝑛𝑣 
)]𝛥𝑡 ≥  0, (1) 

where ninv is the inverter efficiency and can be acquired from the inverter’s efficiency curve 

[26]. The SOEt-1 is greater than or equal to 100%, which means that the battery is fully 

charged, and the excess of PV energy remains unused; thus, potential Esur at this step is 

wasted and characterized as Ewaste. With the SOE remaining at the higher level (100%), the 

algorithm proceeds to the next hourly step with the following equations: 

𝐸𝑤𝑎𝑠𝑡𝑒 =  𝐸𝑠𝑢𝑟 , (2) 

and 

𝑆𝑂𝐸𝑡 = 𝑆𝑂𝐸𝑡−1 = 100%. (3) 

Τhe t − 1 indicator means that the calculation of the SOE was made taking into ac-

count the data obtained in the previous hourly step.  

Case B. Surplus energy case and a partially charged battery 



Energies 2021, 14, 1988 10 of 28 
 

 

If the SOEt-1 is not greater than or equal to 100%, the battery is in a partially charged 

state and keeps charging by Esur (Equation (1)). Then, SOEt which is initially scaled at 100% 

is defined as follows:  

𝑆𝑂𝐸𝑡 =  
min(𝐸𝑏𝑎𝑡𝑡 ,  𝐵𝑛𝑒𝑐)  ×  100

𝐵𝑛𝑒𝑐
. (4) 

If 𝐸𝑏𝑎𝑡𝑡 < 𝐵𝑛𝑒𝑐 with 𝐸𝑏𝑎𝑡𝑡 calculated with 

𝐸𝑏𝑎𝑡𝑡 = 𝐸𝑏𝑎𝑡𝑡−1 + 𝐸𝑠𝑢𝑟 × 𝑛𝑏𝑎𝑡 , (5) 

then the surplus energy (Esur) can be totally absorbed by the battery, where nbat is the charg-

ing efficiency of the battery.  

If for Ebatt, calculated by Equation (5), Ebatt > Bnec applies, then the amount of energy 

that cannot be absorbed is discarded. 

𝐸𝑤𝑎𝑠𝑡𝑒 = 𝐸𝑏𝑎𝑡𝑡 − 𝐵𝑛𝑒𝑐 . (6) 

Monitoring the above two cases using the algorithm ensures that the SOE is always 

≤100%. This is the reason why Equation (4) has this form. Afterward, the algorithm pro-

ceeds to the next hourly step. 

Case C. Energy shortage case 

In this case, the PV power output cannot cover the complete inelastic power demand 

and requires backing to compensate for the energy shortage, defined here as Eshort. 

𝐸𝑠ℎ𝑜𝑟𝑡 =  [𝑃𝑃𝑉  −  ( 
𝑃𝑙𝑜𝑎𝑑

𝑛𝑖𝑛𝑣
 )]Δ𝑡 <  0. (7) 

The SOEt-1 is greater than the threshold percentage (100%—DOD) which means that 

the battery is in a partially charged state and keeps discharging as it contributes to the 

load coverage. Consequently, the SOEt is defined again by Equation (4), using this time 

the remaining amount of energy Ebatt, defined by the following equations: 

𝐸𝑏𝑎𝑡𝑡 = 𝐸𝑏𝑎𝑡𝑡−1 + 𝐸𝑠ℎ𝑜𝑟𝑡 (Eshort < 0), (8) 

and 

𝐸𝑤𝑎𝑠𝑡𝑒 = 0. (9) 

Case D. Backup case 

If the SOEt-1 is less than the threshold value, which means that the battery is in a 

discharged state, the backup source needs to start charging the battery in the next hourly 

step and keep the entire load covered until the battery is fully charged again. This recur-

ring case consists of a loop in which the hourly load is primarily covered by the generator, 

for loads up to the maximum generator output (PbackupMAX). Secondarily, the battery is 

charged with the sum of the power of the remaining generator output on the DC side 

(Pbackup->battery) and the available PV power output. Hence, no energy is being discarded (Εwaste 

= 0). In this case, the accumulated Ebatt is described in Equation (13). 

𝑃𝑏𝑎𝑐𝑘𝑢𝑝 =  𝑃𝑙𝑜𝑎𝑑  +  (𝑃𝑏𝑎𝑐𝑘𝑢𝑝𝛭𝛢𝛸  −  𝑃𝑙𝑜𝑎𝑑), (10) 

𝑃𝑏𝑎𝑐𝑘𝑢𝑝→𝑏𝑎𝑡𝑡𝑒𝑟𝑦  = 𝑛𝑖𝑛𝑣 × (𝑃𝑏𝑎𝑐𝑘𝑢𝑝𝛭𝛢𝛸  −  𝑃𝑙𝑜𝑎𝑑), (11) 

and 

𝐸𝑠𝑢𝑟 =  𝑃𝑝𝑣Δ𝑡,  (12) 

𝛦𝑏𝑎𝑡𝑡 =  𝛦𝑏𝑎𝑡𝑡−1 + 𝑃𝑏𝑎𝑐𝑘𝑢𝑝→𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝑛𝑏𝑎𝑡 × 𝐸𝑠𝑢𝑟 . (13) 

The SOEt variation is kept track of by using Equation (4). Breaking out of the loop 

and returning to normal operation requires that the SOEt reaches approximately 80%, a 

safe state that prevents overcharging by an overshooting charge. More specifically, during 
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battery charging by the backup, all the energy generated by the PV system is directed to 

the battery due to the particular architecture of the system. If we charge the battery further 

than SOEt > 80% with the generator, then there is a serious possibility that the contribution 

of the PV-generated energy gets wasted. Our main concern is always to avoid situations 

where the energy produced by RES has to be rejected. 

On the other hand, energy storage technologies, such as lead–acid batteries, must be 

fully charged at regular intervals to avoid premature aging, e.g., after a certain number of 

charge/discharge cycles. This will be integrated into the algorithm in future work. 

When the end of the time series is reached, which means that the last hourly step of 

the simulation has been examined, the results of the simulation are saved. A brief descrip-

tion of the results is shown in Table A1 of Appendix B. Subsequently, a new simulation 

instance is initiated with incremental N and Bnec.  

The repetition of this process produces multiple sums of annual discarded energy 

and annual energy supplied by the generator (ΣΕwaste + ΣPbackupΔt) for every N and Bnec 

simulation instance. Therefore, a distinct minimum of ΣΕwaste + ΣPbackupΔt signifies an opti-

mal N and Bnec arrangement for which the renewable harvest is maximized. Furthermore, 

the annually utilized PV output, i.e., the useful energy Eus, is defined in Equation (14).  

𝐸𝑢𝑠 = 𝛴(𝑃𝑝𝑣𝛥𝑡) − 𝛴(𝐸𝑤𝑎𝑠𝑡𝑒). (14) 

Datapoints of the economic unit cost of useful energy are produced in each simula-

tion instance. The distinct minimum of these datapoints signifies an optimal N and Bnec 

arrangement for which the cost of every electrical kilowatt-hour generated is essentially 

minimized. 

2.5. System Cost Analysis and the Levelized Cost of Electricity (LCOE)  

The performance of different electricity generation technologies can be evaluated by 

calculating the LCOE [48]. This estimate considers all costs incurred during the lifetime of 

a power resource with reference to the power resource’s total electricity output through-

out its complete lifecycle. In this method, the capital cost, as well as the lifecycle cost, 

which includes operation, maintenance, and replacement expenditures during the power 

resource’s lifetime, are calculated considering an estimated discount factor. Thus, the 

LCOE is the ratio of the total discounted lifetime cost of a power resource divided by its 

discounted energy production, and it can be calculated in every simulation instance ac-

cording to Equation (15). 

𝐿𝐶𝑂𝐸 =  
𝐶𝑝𝑖 + 𝐶𝑏,𝑟 + ∑

𝐶𝑚 + 𝐶𝑒𝑏 + 𝐶𝑒𝑠

(1 + 𝑖)𝑛
24
𝑛=0

∑
𝐸𝑢𝑠

(1 + 𝑖)𝑛
24
𝑛=0

=
𝐶𝑝𝑖 + 𝐶𝑏,𝑟 + (𝐶𝑚 + 𝐶𝑒𝑏 + 𝐶𝑒𝑠) [

(1 + 𝑖)𝑛 − 1
𝑖 (1 + 𝑖)𝑛 ]

𝐸𝑢𝑠 [
(1 + 𝑖)𝑛 − 1

𝑖 (1 + 𝑖)𝑛 ]
. (15) 

In this work, the LCOE was calculated in EUR/kWh, where Cpi is the total expenditure 

cost, Cb,r is the discounted battery replacement cost, Cm is the annual system maintenance 

cost, Ceb is the annual backup energy cost, Ces is the cost of the discarded renewable energy, 

and Eus is the annual useful energy. Similar to the total economic costs at the numerator, 

the Eus at the denominator is also multiplied by a discount factor which is described in 

more detail in Appendix A. The annual real interest rate, here i, is estimated using the 

Fisher equation [49]. 

𝑖 =
𝑖′ − 𝑓

1 + 𝑓
, (16) 

where 𝑖′ the nominal interest rate and 𝑓 the annual inflation rate. 

2.5.1. Cost of Battery Replacement (Cb,r) 

The replacement time of batteries (TOR) varies across different accumulator technol-

ogies and depends, among other factors, on the number of charge–discharge cycles, as 
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well as on the battery calendar life [50]. Thus, an upper limit calendar life of 5 years was 

chosen as the maximum TOR for the lead–acid technology, while, for lithium-ion technol-

ogy, an upper limit calendar life of 10 years was chosen. 

Furthermore, in the context of the system’s operating cost calculation and to evaluate 

if the battery needs to be replaced before the abovementioned maximum TOR (TORmax), 

the number of charge–discharge cycles of the batteries at 100% DOD was estimated ac-

cording to the total electrical energy delivered by the battery (Pbatd) in a year, using Equa-

tion (17). 

𝑁𝐶 =
∑ 𝑃𝑏𝑎𝑡𝑑

𝐵𝑛𝑒𝑐
, (17) 

where NC is the number of cycles performed by the battery in 1 year. The time of replace-

ment of each battery, expressed in years, was determined using Equation (18). 

𝑇𝑂𝑅 =  
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒𝑠 𝑢𝑝 𝑡𝑜 𝑡ℎ𝑒 𝐸𝑛𝑑 𝑜𝑓 𝐿𝑖𝑓𝑒 𝑎𝑡 100% 𝐷𝑂𝐷

𝑁𝐶
. (18) 

The information concerning the numerator of Equation (17) can be retrieved from the 

battery manufacturer datasheet. In this work, it took the value 500 for lead–acid batteries 

and the value 2500 for lithium-ion batteries.  

When the battery needs to be replaced sooner than the maximum battery calendar 

life (TOR < TORmax), the estimated TOR is taken into account as the replacement time of 

the battery. In cases where the calculated TOR exceeds the maximum battery calendar life 

(TOR > TORmax), TORmax is considered as the battery replacement time.  

Since the guaranteed power output of the PV modules is 25 years, the entire PVBAT 

system is considered to have the same overall cycle life. Therefore, batteries are conserva-

tively expected to be replaced multiple times over this period. The total cost of battery 

replacement, at net present value, is calculated using the following equation: 

𝐶𝑏,𝑟 = 𝐶𝑏 ∑
1

(1 + 𝑖)𝑘

𝑘=𝑛×𝑇𝑂𝑅<25

𝑘=0
, (19) 

where Cb is the initial battery purchasing cost, k is the year of battery replacement which 

takes integer values from 0 up to n × TOR, with n receiving the values 1, 2, 3, … to the 

point where n × TOR < 25. As mentioned above, the product n × TOR is only used if 

TOR<TORmax. Otherwise, the product n × TORmax is used. 

2.5.2. Estimations of Annual Cm, Ceb, and Ces  

The annual PVBAT maintenance cost Cm, is the sum of the individual operation and 

maintenance costs of each system component during a year, including the cost of potential 

services (e.g., equipment insurance, monitoring services).  

The annual backup energy (Efuel), defined in Equation (20), is the required electrical 

energy to preserve load supply and to charge the batteries via the generator set. This en-

ergy is converted from chemical energy contained in diesel fuel and expressed in kWh.  

𝐸𝑓𝑢𝑒𝑙 =
∑ 𝑃𝑏𝑎𝑡

𝑛𝑔𝑒𝑛
, (20) 

where ngen is the generator efficiency. The annual backup energy cost Ceb, defined in Equa-

tion (21), is derived from the product of Efuel and the fuel cost (Fuelcost) expressed in EUR/lt, 

divided by the lower heating value (LHV) of diesel fuel, i.e., 9.85 kWh/lt.  

𝐶𝑒𝑏 =
𝐸𝑓𝑢𝑒𝑙 × 𝐹𝑢𝑒𝑙𝑐𝑜𝑠𝑡

𝐿𝐻𝑉
. (21) 

The cost of the discarded surplus energy Ces described in Equation (22) is derived 

from the product of the annual sum of Ewaste in kWh and the average LCOE of PV–battery 

systems expressed in EUR/kWh. 
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𝐶𝑒𝑠 = 𝛴𝐸𝑤𝑎𝑠𝑡𝑒 × 𝐿𝐶𝑂𝐸𝑝𝑣𝑏𝑎𝑡 . (22) 

3. Results  

3.1. Sizing Simulations  

The sizing method proposed in this work is based on the selection of the appropriate 

number of photovoltaic panels (Noptimal) and the necessary nominal energy of the energy 

storage system (Bnecoptimal), so as to satisfy, without interruptions, the energy consumption 

profile of an average household for a typical meteorological year in a specified location, 

whilst minimizing the LCOE expressed by Equation (15). 

The initial data required for two distinct and autonomous PV–battery–generator sim-

ulation examples are illustrated in Table 1. Both off-grid systems are equal except for as-

pects concerning the EES technology used. In simulation A, the load supply is facilitated 

by a lead–acid battery, and, in simulation B, it is facilitated by a lithium-ion battery. In the 

lead–acid case, the calendar life, cycle life, DOD, and charging efficiency were set to 5 

years, 500 cycles, 50%, and 85%, respectively. In the lithium-ion case, the same parameters 

were set to 10 years, 2500 cycles, 80%, and 98%, respectively. In both cases, the nominal 

energy content Bnec and the PV module number N were gradually increased in every 

simulation instance by steps of 5 kWh and two modules, respectively.  

Table 1. Input data of two off-grid PV–battery–generator sizing simulations employing different electrical energy storage 

(EES) technologies. DOD, depth of discharge; SOE, state of energy; BMS, battery management system; LCOE, levelized 

cost of electricity; LHV, lower heating value. 

 Input Parameters Sim Data A Sim Data B Units Input Type 

1 Number of PV modules, N 6 to 34 6 to 34  

Physical model 

assumptions 

3 Nominal PV module power, Pmpp 310 310 Wp 

2 Nominal energy capacity, Bnec 5 to 30 5 to 30 kWh 

4 Nominal battery cycle life 500 2500 
Cycles (100% 

DOD) 

5 Calendar battery life 5 10 Years 

6 Depth of discharge 50 80 % 

7 SOEt=0 100 100 % 

8 Inverter efficiency, ninv 95 95 % 

9 Battery charging efficiency, nbat 85 98 % 

10 Pbackup_max 4000 4000 W 

11 Number of inverters 1 1  

12 Pload_max 4000 4000 W 

13 Battery type Lead–acid Lithium-ion  

14 Generator efficiency, ngen 80 80 % 

15 Battery cost 154 574 EUR/kWh 

Economic cost as-

sumptions 

16 PV module cost 110 110 EUR 

17 Inverter cost 1600 1600 EUR 

18 Monitoring and BMS cost 250 500 EUR 

19 PV mounting system cost 50 50 EUR/mod 

20 Electrical installation cost 1000 1000 EUR 

21 Generator cost 1300 1300 EUR 

22 LCOEpvbat 0.26 0.26 EUR/kWh 

23 LHV 9.85 9.85 kWh/lt 

24 Cost of fuel 1.175 1.175 EUR/lt 

25 Real interest rate 0.06919 0.06919 % 

26 Maintenance cost, Cm 160 160 EUR/year 
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27 Project years 25 25 Years 

3.2. Performance of Systems  

The sizing model described in Section 2.4 of this work was initially validated by ex-

amining the change over time of the most important parameters of the PVBAT system for 

four designated weeks of the year, one for each season. On the basis of the component 

analysis in Section 2.1.2, the two systems were selected for the presentation of the curves 

in Figures 6 and 7. Ceteris paribus, one includes lead–acid batteries and the other includes 

lithium-ion batteries, albeit with different multiples of the nominal energy content. More-

over, both systems exhibit the same PV module type, albeit with different installed capac-

ities.  

As the operating model predicts, when the power output from the photovoltaics 

(black curve) is high and the corresponding SOE (blue curve) is capped at 100%, there is 

surplus energy that cannot be absorbed (green curve) by the system to charge the batteries 

or to meet the needs of the load (red curve). 

The range in which the SOE varies depends on the battery technology used. In the 

case of lead–acid technology, a lower limit of 50% was set. We notice that this limit was 

approached quite often in the first week of the year (winter), while, in the 26th week (sum-

mer), the SOE did not receive values less than 60%. On the contrary, since the electricity 

generation from photovoltaics in winter was lower than in summer months, in winter, the 

SOE reached its maximum only with energy coming from the backup source, while, in 

summer, the photovoltaic output alone could fully charge the battery. However, during 

weeks 13 (spring) and 39 (autumn), the SOE approached its maximum with combined 

photovoltaic and backup power. Furthermore, on day 5 of week 13 and day 7 of week 39, 

a significantly reduced PV output at periods with an elevated load causes a temporal un-

dershooting of the lower SOE limit of 50%, thereby briefly draining the battery without 

triggering the backup source.  
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Figure 6. System performance using lead-acid battery. 

A similar behavior is observed in the system where a lithium-ion battery was used, 

depicted in weeks 1 and 13 of Figure 7. Even though a lower SOE threshold of 20% was 

set, in the first week (winter), the SOE briefly received values below this threshold. Alt-

hough this situation does not particularly affect the specific technology, this fact suggests 

that, to avoid low values for SOE, the control should take place in less than 1 h. 
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Figure 7. System performance using lithium-ion battery. 

3.2.1. Maximizing the Contribution of Solar Energy 

The nominal energy content and the module quantity were gradually increased by 

steps of 5 kWh and 2 modules respectively, forming distinct PV–battery arrangements for 

every simulation instance of the sizing algorithm. 

As the number of photovoltaic panels increases, the solar energy input increases, thus 

reducing the backup energy required by the generator to cover the load and charge the 

batteries when the SOE is below the cutoff setting. Moreover, the discarded surplus en-

ergy of the system increases, i.e., the solar energy that cannot be absorbed by the system. 

As evident in Figure 8, maximizing the contribution of renewable energy is achieved 

when the sum of the backup energy and the discarded surplus energy is minimized.  

This was the case for the simulation instance where the lead–acid battery had a nom-

inal energy content of 30 kWh, where the quantity of PV panels to be used in the system 

should be 12, as illustrated in Figure 9a. Figure 9b shows the optimal lithium-ion arrange-

ment which happens to be the same as the lead–acid arrangement. The simulations were 

performed from 6–32 PV panels, the range of which was derived from the ratio of the 

annual electricity demand to the annual electricity generation, for each N, in every simu-

lation instance, as shown in Equation (23). When considering this ratio, the number of 

possible simulation instances is reduced significantly, thereby saving computing time in 

the enumeration process.  

∑ 𝐸𝑙𝑜𝑎𝑑𝑛

∑ 𝑃𝑝𝑣𝑁𝑛
= {0.4, … ,2}. (23) 

The range of Bnec was limited from 5 kWh to 30 kWh, in view of the modular char-

acteristics of the batteries and according to the daily minimum and maximum energy con-

sumption of 1 year.  
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Figure 8. Marker chart depicting 14 simulation instances with constant Bnec and varying PV mod-

ule number. The descending change of the backup energy and the ascending change of discarded 

surplus energy indicate the optimal PV panel quantity for which the solar generation is maxim-

ized. 

  

Figure 9. Each marker chart unfolds the optimal N–Bnec arrangement in terms of maximal solar energy usage (a,c) and 

LCOE minimization (b,d). Charts 9a and 9b show all the simulation instances of the lead–acid system, while charts 9c and 

9d show the results of the lithium-ion system. 
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In both cases, the same behavior was observed: a change in the minimum of each 

curve to lower values as the nominal battery energy increased. In fact, in the case of lead–

acid technology (Figure 9a), the rate of minimum reduction was greatly reduced with the 

value of 20 kWh of nominal battery energy, while, in the case of lithium-ion technology, 

this was observed after the nominal energy of 15 kWh. According to the above, the maxi-

mization of the solar harvest and, consequently, the minimization of the environmental 

footprint were achieved using 12 photovoltaic panels and 30 kWh of nominal battery en-

ergy in both cases. However, this picture changed when we took into account the financial 

data of the system for the calculation of the LCOE. 

3.2.2. Minimizing the LCOE 

The estimation of the LCOE, as defined in Equation (15), was done following the 

same procedure described previously in Section 2.4. To be more specific, the estimation of 

the LCOE was performed for two equal PV–battery–generator systems with distinct EES 

technologies for a nominal battery energy range from 5 kWh to 30 kWh and for 6–32 PV 

panels. The variation of the LCOE in relation to the quantity of photovoltaic panels is 

presented in Figures 9b,d for the systems equipped with lead–acid and lithium-ion bat-

teries, respectively.  

It is observed that the LCOE curves passed through a minimum. Regarding the sys-

tem with lead–acid battery, this minimum decreased by increasing the nominal energy of 

the battery until it reached the value of 20 kWh. After this value, an increase in the LCOE 

curve’s minimum was observed. The same behavior was also noted in the case of lithium-

ion batteries with the exception that the nominal energy of the battery, after which the 

minimum of the LCOE curve began to receive higher values, was 15 kWh. Figure 10 de-

picts how the minimum value of each curve presented in Figure 9 varied as a function of 

the nominal energy capacity of the lead–acid and lithium-ion batteries. The same graph 

includes the optimum number of photovoltaic panels derived by the model. 

 

Figure 10. In this marker chart, six simulation instances per EES technology are presented and 

their calculated LCOEs are directly compared. 

One would expect that an increase in the number of PV panels would be accompa-

nied by a corresponding increase in useful energy. This is not the case, since, after a certain 

point, solar energy cannot be absorbed anymore due to stocked storage resources and 

limited consumption. This is illustrated in Figure 11 where the annual accumulated useful 
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energy of all simulation instances, in both storage technologies, are shown in contrast to 

the theoretically optimal photovoltaic electricity generation. Here, after the 14th PV panel, 

the utilized photovoltaic electricity somewhat stabilized and significantly affected the 

LCOE of the system, considering that the discounted sum of the generated energy by the 

system is inversely proportional to the LCOE. 

 

Figure 11. Comparison of the annually utilized PV output Eus, as defined in Equation (14), of every 

lithium-ion (a) and lead–acid (b) simulation instance and the corresponding theoretically optimal 

photovoltaic output Ppv (black marks). 

The calculation of the LCOE, i.e., the unit cost of electricity, requires at first consistent 

information regarding the capital cost and the operation, maintenance, and replacement 

expenditures. Subsequently, these financial data can be used to prepare the essential cash 

flow over a period of 25 years. Table 2 shows the detailed costs for every simulation in-

stance considered in Figure 10. Value added tax was not included, and cost figures refer 

to the second part of 2020. 

Table 2. The values of the parameters used to calculate the LCOE at the point where the minimum appeared. 

Battery 

Type 

N 

(mods) 

Bnec 

(kWh) 

Component Cost 
Installation 

Cost 

(EUR) 

Maintenance Cost Operation Cost 
Eus 

(kWh/yea

r) 

LCOE 

(EUR/kW

h) 

PV 

(EUR) 

Battery 

(EUR) 

PE&M * 

(EUR) 

Generator 

(EUR) 

Cbr 

(Discounted) 

(EUR) 

Cm 

(EUR/yea

r) 

Ces 

(EUR/year

) 

Ceb 

(EUR/yea

r) 

L
ea

d
–A

ci
d

 

10 5 1100 770 2600 1300 3125 4445 100 369 503 3487.4 0.61 

12 10 1320 1540 2700 1300 3350 4405 100 389 341 4409.8 0.48 

18 15 1980 2310 3000 1300 4025 4289 100 834 215 5557.0 0.47 

14 20 1540 3080 2800 1300 3575 5719 100 247 143 6021.8 0.34 

14 25 1540 3850 2800 1300 3575 7149 100 215 126 6157.9 0.36 

14 30 1540 4620 2800 1300 3575 8579 100 199 117 6226.7 0.38 

L
it

h
iu

m
-I

o
n

 10 5 1100 2870 2600 1300 3125 4972 100 282 449 3856.2 0.57 

16 10 1760 5740 2900 1300 3800 4446 100 655 205 5306.1 0.51 

14 15 1540 8610 2800 1300 3575 6669 100 301 129 5792.4 0.46 

14 20 1540 11,480 2800 1300 3575 8892 100 265 107 5944.1 0.51 

14 25 1540 14,350 2800 1300 3575 11,115 100 241 92 6047.0 0.57 

14 30 1540 17,220 2800 1300 3575 13,338 100 227 82 6106.0 0.63 

* Power Electronics and Monitoring Equipment. 



Energies 2021, 14, 1988 20 of 28 
 

 

Each PV–battery–generator system was considered to have an overall cycle life of 25 

years. Standby generator operation was kept below 500 h per year in all instances, with 

maximal continuous operation limited to 4 h. Premium power electronics were conserva-

tively expected to be replaced every 10 years. The EES calendar life for lithium-ion batter-

ies was set to 10 years, while it was set to 5 years for lead–acid batteries. The determined 

EES replacement points, ranging from 5–10 years for lithium-ion technology and 1.6–5 

years for lead–acid technology, were incorporated in the discounted maintenance cost, 

listed in the Cbr column of Table 2. 

4. Discussion 

In this study, a sizing method for autonomous non-interconnected PV–battery sys-

tems backed by a standby power source was presented. Emphasis was placed on mono-

crystalline photovoltaics in conjunction with DC-coupled EES systems supplying electric-

ity to a typical inelastic load profile. The standby power was simulated in the form of a 

diesel generator set, taking into account the CTU, APT, and ALV thresholds. The opera-

tion and sizing algorithm described in Section 2.4 was studied and validated by examining 

the variation of important system parameters for four designated weeks of the year, one 

for each season. The algorithm calculated, among other factors, the useful energy Eus, a 

key output parameter for which the solar harvest is maximized in parallel with the mini-

mization of the LCOE. 

The results showed that the LCOE varied in different configurations with respect to 

system component selection and design principles. The results also indicated a fairly 

downward trend of the LCOE of PV–battery systems. More specifically, the LCOE was 

calculated using Eus in the denominator of Equation (15). Furthermore, for every increase 

in the nominal battery energy capacity Bnec in every simulation instance, an increase in 

useful energy output was observed (Figure 11). Hence, if one disregarded the LCOE, the 

sizing method would eventually point to a configuration which, on the one hand, would 

fully exploit the available solar energy but, on the other hand, would lead to an oversized 

battery. This is a weak point in most sizing algorithms since an oversized battery entails 

a higher carbon footprint and increased costs. However, in this study, the lowest LCOE 

was found to be 0.34 EUR/kWh for systems using lead–acid batteries, whereas, for systems 

using lithium-ion batteries, the LCOE was found to be 0.46 EUR/kWh, which are both 

considerably lower estimations than those which appeared in several other studies [25,51]. 

Another critical aspect to consider is the backup energy source to be used. In this 

study, a standby diesel generator set was selected as a backup to compensate for energy 

shortages due to intermittencies from renewables. Low battery SOE in the absence of solar 

irradiance initiates the generator set, which in turn commences the charging loop until the 

SOE is equal to or greater than 80%. The upper charging limit was set to 80% to ensure 

that the PV and the generator would not overcharge the battery and discard energy. This 

of course means that, especially in winter when the generator needs to be used more often, 

the battery may have to operate at a partial state of charge. However, this is not a deter-

rent, as pointed out in [52,53]. The total generator output supplies power to the prioritized 

load on the AC bus, and the remaining power is used to charge the battery on the DC bus. 

Thus, CTU is equal to the battery charging time. Since the nominal power output of the 

generator set was fixed, battery charging time increased in line with the increase in Bnec, 

which can be confirmed from the CTU column in Table 3. Simulation instances where 

CTU exceeded 5 h were ignored. The ALV was kept constant, disregarding battery charg-

ing profiles for simplification. Therefore, the generator was expected to operate invariably 

at high-efficiency levels constantly providing the maximum power output, as is seen in 

the ALV column of Table 3. In instances of lithium-ion batteries, elevated charging times 

were mainly attributable to the greater DOD of this accumulator technology. On the con-

trary, lead–acid batteries require more annual generator operation time than lithium-ion 

batteries, with APT ranging from 873 h to 196 h.  
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Table 3. The maximum continuous time use (CTU), the estimated annual operation time (APT), and the average load 

value (ALV) of the standby diesel genrator in diverse simulation arrangemnets. 

Battery Type 
N 

(mods) 

Bnec 

(kWh) 

CTU 

(h) 

APT 

(h/year) 

ALV 

(kW) 

L
ea

d
–A

ci
d

 

10 5 1 873 4000 

12 10 2 571 4000 

18 15 2 360 4000 

14 20 3 239 4000 

14 25 3 211 4000 

14 30 4 196 4000 

L
it

h
iu

m
-I

o
n

 10 5 1 784 4000 

16 10 3 343 4000 

14 15 4 216 4000 

14 20 5 180 4000 

14 25 5 158 4000 

14 30 6 137 4000 

Furthermore, battery aging calculated in this work provides a more realistic way to 

find battery replacement time than in the literature [7,9,13]. This is due to the fact that it 

takes into account the total energy amount removed from the battery compared to the 

manufacturer’s specifications. However, a weak point of the method is the use of SOE 

instead of state of charge (SOC). More specifically, the use of SOE does not take into ac-

count the rate at which the battery is charged and discharged as is the case with SOC 

[16,54]. This means that, at high rates of battery charging and discharging, the SOE 

method allows us to transfer power to and from the battery without any restriction except 

for the maximum and minimum limit whereas, in the case of the SOC, under the same 

conditions, the energy amounts may be smaller. Although the appearance of high currents 

in applications using renewable energy sources in non-interconnected systems is not fre-

quent, future study of this method using SOC is one of the objectives of our research team. 

5. Conclusions 

One reason for an increase in global energy demand is economic growth, which is 

strongly related to higher energy use. Power systems that take advantage of renewable 

energy sources, in conjunction with energy storage systems, are effectively addressing the 

challenge of rural and remote electrification while mitigating greenhouse gas emissions.  

This study proposes a sizing method for off-grid electrification systems consisting of 

photovoltaics, batteries, and a diesel generator set, which are based on the selection of the 

appropriate quantity of PV panels and battery energy capacity whilst minimizing the 

LCOE. An operation and sizing algorithm was presented, which used TMY time series of 

a specified location and consistent data from datasheets of PV, converter, battery, and 

generator manufacturers, to generate annual time series of the power output for one PV 

module, eventually determining the annual PV output of an entire PV array in hourly 

steps. The algorithm calculates, among other factors, the useful energy Eus, a key output 

parameter for which the solar harvest is maximized in parallel with the minimization of 

the LCOE. A load profile was synthesized and matched against the computed PV power 

output. Optimal operation is validated by examining the change over time of the most 

important parameters for different PVBAT systems utilizing lead–acid and lithium-ion 

batteries.  

Sizing was done for two single-phase DC-coupled PVBG systems differing only in 

the applied battery technology, i.e., lead–acid and lithium-ion. Both systems used one in-

verter (5000 VA) and one diesel generator (6000 VA). Test results showed that, for a given 
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annual load of approximately 5570 kWh, the optimal PV array size for both systems con-

sisted of 14 modules (310 Wp/mod). The optimal nominal energy capacity for the lead–

acid system was 20 kWh and that for the lithium-ion system was 15 kWh. The lead–acid 

system utilized 6021.8 kWh of electrical energy and wasted approximately 922.2 kWh re-

newable energy, whereas the lithium-ion system utilized 5792.4 kWh and wasted approx-

imately 1117.9 kWh. The solar harvest was maximized in both cases in a different config-

uration, i.e., using 12 photovoltaic panels and 30 kWh of battery nominal energy capacity. 

The estimated LCOE for systems using lead–acid batteries was 0.34 EUR/kWh, while it 

was 0.46 EUR/kWh for systems using lithium-ion batteries. Further consideration of tech-

nical aspects of the auxiliary generator set and EES technologies led to the determination 

of capital costs, replacement costs, operation and maintenance costs, and fuel costs. The 

tests also revealed a weak point. The sizing algorithm applied in this study constitutes an 

enumerative rule-based method and is, therefore, central processing unit (CPU)-intensive. 

This means that the total number of simulation instances (N and Bnec combinations) is a 

tradeoff between accuracy and runtime speed. Nevertheless, runtime remains relatively 

brief for small-scale applications. In large-scale applications, this can be overcome by in-

tuitively limiting the N and Bnec values. 

Applying the methodology used in the present study, a proposal for future work 

involves mapping the LCOE, using geographic information systems, while addressing the 

meteorological uncertainties of various isolated areas such as islands. Especially in areas 

without a power grid, comparing different backup energy systems and their uncertainties 

could give some additional insights into varying electricity generation costs. Another rec-

ommendation for future work includes the development of a method for generating dis-

tributions of load profiles according to consumption category, which would lead to a more 

general application of the methodology proposed in this work. 
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Nomenclature 

ALV Average load value of diesel generator 

AOI Angle of incidence 

APT Annual operation time of diesel generator 

BMS Battery management system 

Bnec The required battery energy capacity  

Cb,r Discounted battery replacement cost,  

Ceb Annual backup energy cost  

Ces Cost of the discarded renewable energy 

Cm Annual system maintenance cost  

Cpi Total capital cost  

CTU Maximum continuous time use of diesel generator 

DER Distributed energy resource 

DHI Diffuse horizontal irradiance 

DNI Direct normal irradiance  

DOD Depth of discharge 

Ebatt The remaining amount of energy that is transferred to the battery at time t  

EES Electrical energy storage 

Eshort Energy shortage when the PV output cannot cover the power demand  

Esur Surplus energy 
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Eus Annually utilized PV energy output 

Ewaste Excess solar power that remains unused 

GHI Global horizontal irradiance 

I0 Diode reverse saturation current  

IL Photocurrent 

LCOE Levelized cost of electricity 

LPG Liquefied petroleum gas 

MPPT Maximum power point tracking 

N The required PV module number  

nbat Charging efficiency of the battery 

ninv Inverter efficiency 

nNsVth Modified diode ideality factor 

Pbackup->battery The remaining generator output on the DC side charging the battery 

PbackupMAX Maximum diesel generator output 

PERC Passivated emitter and rear contact PV module 

Pload The hourly power demand for in a year. 

Ppv Hourly PV power output in a year 

PVBG Photovoltaic system with batteries and generator set 

PVLIB Solar simulation library for PV energy systems 

Rs Series resistance  

Rsh Shunt resistance  

SA Operation and sizing algorithm 

SOE Battery state of energy 

SOE Battery state of energy (SOE) available  

STC Standard test conditions 

T Atmospheric temperature  

TC PV cell temperature 

TM PV module temperature 

TMY Typical meteorological year 

WS Horizontal windspeed 

Appendix A 
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Appendix B 

Table A1. Description of simulation parameters acquired on every simulation instance. 

 Parameter Description 

p.1 Bnec 
The minimum multiple battery nominal energy capac-

ity, in Wh. 

p.2 N The PV module number in an array. 

p.3 Σ(Ppv) The sum of hourly PV power output in a year, in Wh. 

p.4 Σ(Pload) 
The sum of the hourly power demand on the consump-

tion side in a year, in Wh. 

p.5 Σ(Pbat,d) 
The annual sum of energy discharging the battery, in 

Wh. 

p.6 Σ(Pbat,ch) The annual sum of energy charging the battery, in Wh.  

p.7 Σ(Ewaste) The annual sum of unused (discarded) energy, in Wh.  

p.8 Σ(Pbackup) The annual sum of the generator output, in Wh.  

p.9 Σ(Pbackup->bat) 
The annual sum of energy flowing from the generator 

to the battery, in Wh. 

p.10 Σ(Backup_Operation) 
The sum of operational hours of the generator in a 

year. 

p.11 Σ(Pload)_Σ(Ppv)_ratio  
The ratio of the annual PV power output to the annual 

power demand. 

p.12 Battery_Cycles  

Battery_Cycles = abs(Σ(Pbat,d))/Bnec 

The total charge–discharge cycles of the battery for a 

year. 

p.13 Σ(Εwaste) + Σ(Pbackup)  
The sum of annual discarded energy and annual en-

ergy supplied by the generator, in Wh. 

p.14 Eus 
= Σ(Ppv) − Σ(Ewaste) 

Useful_Energy The utilized PV output, in Wh. 

p.15 Bat_Replac_Years  

= NBC/Battery_Cycles 

Where NBC is the nominal battery cycle life stated by 

the battery manufacturer in the datasheet. 

p.16 PV_Cost(N)  
= N × PV_Module_Cost  

The capital cost of PV panels. 

p.17 Battery_Cost_Lead  

= (Bnec/1000) × Bat_Cost_Lead–Acid,  

where Bat_Cost_Lead–Acid is the battery capital cost 

per kWh. 

p.18 Battery_Cost_Lithium  

= (Bnec/1000) × Bat_Cost_LiFePO4, 

where Bat_Cost_LiFePO4 is the battery capital cost per 

kWh.  

p.19 Power_Electr_Cost(N)  

= Inverter_Cost + Monitoring_Cost + N × 50, in EUR. 

The capital cost for power electronics depends on the 

number of PV panels installed. The above function is 

an approximation and can usually be derived by the 

power electronics distributor pricelist.  

p.20 Mounting_Cost(N)  = N × 1_Panel_Roof_Mounting_Cost.  
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The capital cost for PV mounting systems can vary sig-

nificantly depending on site-specific individualities. 

Although, in this work, a simple dependency on the 

amount of PV panels was acceptable, a more precise 

cost estimation must be considered in demanding in-

stallation sites. 

p.21 
Installation_Ser-

vice_Cost(Ν)  

= Electrical_Install_Cost + Mounting_Cost(N),  

where Electrical_Install_Cost is the service cost for the 

indoor electrical construction, i.e., the power electron-

ics–battery–wiring setup. Installation_Service_Cost(Ν) 

is also dependent on the amount of installed PV panels 

since more modules generally mean more converters, 

batteries, cabling, and mounting stands to install. This 

is an empirically determined quantity and scaled to the 

size of the total PV installation. 

p.22 
Electr&Install_Materi-

als(N)  

= N × 12.5 + Electrical_Install_Cost, in Euro. The material 

purchasing and installation cost for the electrical wiring, 

and construction, consisting mainly of low voltage 

protection and control equipment (Miniature circuit 

breakers (MCBs), wires, enclosure, switchboards, etc.). 

This is also an empirically determined quantity, scaled 

to the number of PV panels and dependent on the 

service cost for the indoor electrical construction.  

p.23 Σ_COST_(PV&Lead-Acid) 

= [PV_Cost(N) + Battery_Cost_Lead +  

Power_Electr_Cost(N) + Mounting_Cost(N) +  

Installation_Service_Cost + Electr&Install_Materials] 

p.24 Σ_COST_(PV&LiFePO4)  

= [PV_Cost(N) + Battery_Cost_Lithium +  

Power_Electr_Cost(N) + Mounting_Cost(N) + Installa-

tion_Service_Cost + Electr&Install_Materials] 

p.25 Σ_Bat_Repl_Cost_Lead 
Accumulation of net present value battery replacement 

cost for lead–acid batteries.  

p.26 Σ_Bat_Repl_Cost_Lithium 
Accumulation of net present value battery replacement 

cost for LiFePO4 batteries. 

p.27 Efuel  

= Σ(Pbackup)/ngen 

The fuel energy required by the generator to cover the 

load and battery demand, in kWh per year. 

p.28 Ces  

= Σ(Εwaste) × LCOEPVBAT/1000 

The unit cost of the discarded energy, based on the es-

timated LCOE of a typical PV-Battery setup, approxi-

mately 0.26 EUR/kWh. 

p.29 Ceb  

= Efuel × Cost_of_Fuel/Fuel_energy_vol 

Cost_of_Fuel = 1.175 EUR/L and Fuel_energy_vol = 

9850  

p.30 Cost_of_Energy  

= [(Ces + Ceb) × ((1 + Real_Interest) ^ (Project_Years + 1) 

− 1)/(Real_Interest × (1 + Real_Interest) ^ Pro-

ject_Years)] 

p.31 Total_Cost 
= T + Generator_Cost + Σ_Bat_Repl_Cost + Cost_of_En-

ergy, 
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where T = [Σ_COST_(PV&Lead–Acid) or 

Σ_COST_(PV&LiFePO4)] 

p.32 TC_UE_ratio  = Total_Cost/ΣUseful_Energy (EUR/kWh) 
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