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Abstract: The intelligent use of green and renewable energies requires reliable and preferably
anticipated information regarding their availability and the behavior of meteorological variables
in a scenario of natural intermittency. Examples of this are the smart grids, which can incorporate,
among others, a charging system for electric vehicles and modern and predictive management
techniques. However, some issues associated with such procedures are data captured by sensors and
transducers with noise in their signals and low information repeatability under the same reading
conditions. To tackle such problems, numerous filtering and data fitting techniques and various
prediction methods have been developed, but an appropriate selection can be cumbersome. Also,
some filtering techniques, such as RANdom SAmple Consensus (RANSAC) appear not to have been
used in prediction scenarios for smart grids, to the authors’ knowledge. In this regard, this paper aims
to present a comparison in terms of average error, determination coefficient, and cross validation that
can be expected under prediction schemes as Multiple Linear Regression, Vector Support Machines
and a Multilayer Perceptron Regression Neural Network (MLPRNN), with filtering/scaling methods
such as Maximum and Minimum, L2 Norm, Standard Scale, and RANSAC. Cross validation allows
to flag problems like overfitting or selection bias, and this comparison is another novelty for smart
grid scenarios, to the authors’ knowledge. Although many combinations were analyzed, RANSAC,
with L2 Norm filtering and an MLPRNN for prediction, generate the best results. RANSAC algorithm
with L2 Norm is a novelty for filtering and predicting in smart grids, and through an MLPRNN,
the R2 error can be reduced to 0.8843, the MSE to 0.8960, and the cross validation accuracy can be
increased to 0.44 (±0.2).

Keywords: weather forecast; smart grid; RANSAC; vector support machines; multilayer perceptron
neural network; multiple linear regression; cross validation

1. Introduction

At present, society has benefited from clean and renewable energies—for instance,
solar energy, which is transformed by solar panels, water heaters, among other devices.
Wind energy is used by wind turbines, as another example. In this way, the contribution to
reducing consumer costs is notable. However, these energy sources provide an intermittent
supply that directly depends on the variation of the weather [1,2]. Thus, the knowledge of
the meteorological conditions in advance, also known as weather forecasting, will improve
the strategies of energy generation from renewable energies, leading to the creation of
intelligent automatic schemes [3].

The integration of different power generators for their simultaneous and intelligent
operation within the electrical grid requires large amounts of information and novel
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control/management schemes. Furthermore, the recent insertion of electric vehicles and
other charges to the electricity grid represents additional challenges due to the enormous
additional demand.

Due to the above, various private and public groups have created smart grids as
a concept that integrates the electrical infrastructure, energy generation processes, and
different smart devices in a common scenario. This scenario also involves the electrical
companies for efficient and cooperative distribution and consumption [4]. Furthermore, the
demand for renewable energies is beginning to be exceeded by the supply. It is necessary
to improve their management to reduce losses in future smart grids [5].

There are numerous studies related to the analysis of certain meteorological conditions
and the generation of energy in a smart grid. In [6], a review of solar energy and photo-
voltaic power’s prediction methodologies has been presented. In [7], authors performed
prediction strategies for the interruption in the distribution of power in a smart grid; such
technique is based on meteorological conditions and energy demand, demonstrating that
it increases over the years. In [8], the authors implemented learning models for energy
consumption prediction for smart energy meters.

From these studies, there is no doubt that there is a strong relationship between
filtering strategies, prediction of meteorological conditions, and the smart grid in scenarios
that include electric vehicles and other electrical charges. For this reason, it is essential
to work in efficient prediction schemes of meteorological conditions and the behavior of
electrical loads for the optimal management of the available energy in terms of storage
and distribution.

An accurate prediction of weather conditions also has other uses; for instance, in
smart sensors for smart cities [9], agriculture to anticipate and adapt to any meteorological
phenomenon [10], prediction of cyclones [11], rain forecast [12], pests control [13], among
others. Similarly, the prediction of energy demand allows intelligent storage of green
energy from the weather forecast. This energy can then be injected into the electricity grid
(in peak hours, for example) to combat harmonics and integrate uninterruptible power
supplies.

Weather forecasting has been studied for many years using complex mathematical
models and, more recently, modern techniques such as Neural Networks solved with the aid
of computers [14,15]. In this regard, in [16], authors studied the combination of meteorolog-
ical stations for climate forecasting to obtain the weather estimate of a larger geographical
area. Some of the techniques used to predict variables such as temperature and other
climatological variables are linear regression models [17–19], support machines [20,21],
and neural networks [22,23]. These techniques have been widely accepted in this field.

However, the simultaneous prediction of meteorological and smart grid variables has
been barely studied. This prediction could impact the amount of energy obtained, the state
of charge of batteries, and the estimation of a building’s energy consumption.

Even more, a reliable prediction made from sensor and transducer data is not a trivial
task. It should be considered that the signals obtained from these devices contain noise and
variations in the measurements (repeatability problem) [24] and that a filtering technique
may not be the best for a particular scheme or prediction technique.

For example, in [25], aerial biomass prediction based on laser transducers and hy-
perspectral images from Brazilian amazon is analyzed under linear regression schemes
and vector support machines, but only correlation filtering is used. In [26], the authors
develop an approach based on the hidden Markov model to forecast daily solar energy
and use two filters known as post-processing to remove the peaks and smooth the results.
The proposed method’s performance is tested with real data from the National Renewable
Energy Laboratory (NREL) and a feedback neural network. The authors in [27] use a
methodology to generate comprehensive resolution typical weather year data using gap-fill
methods and simple averaging filtering. In [28], a method to predict a solar irradiation
curve is presented under extreme meteorological phenomena. The procedure is based
on an artificial neural network trained with simple filtering data of the environmental
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variables that characterize the mentioned phenomena. The aim in [28] is to evaluate the
two bias correction methods named multiplicative ratio correction and Kalman filter (KF)
in support of mesoscale operational forecasts.

To the best of our knowledge, quantitative studies of the data filtering techniques
used in the different forecasting schemes are needed to dimension the meteorological and
energy variables involved in a smart grid to achieve efficient energy management. In
this scenario, there are a considerable number of variables susceptible to prediction and
filtering methods. Therefore, it is pertinent and of priority to carry out comparative studies
that allow the identification of some combination of primary methodologies that yield
acceptable results to design predictive energy management strategies in smart grids.

In this regard, this document aims to present a reliable comparison about the filtering
and prediction techniques that together turn out to be better for a future scenario of
smart grids with optimal consumption, where green energy (which depends on weather
conditions) is stored and distributed.

Specifically, in this paper, we use the RANSAC algorithm with L2 Norm filtering
to demonstrate better prediction results by an MLPRNN. We compare RANSAC with
the filtering/scaling techniques maximum and minimum, L2 Norm, standard scale, and
polynomial to show the above mentioned. Besides the R2 and MSE, comparison of cross
validations allows to flag problems like overfitting or selection bias. Additionally, Multi-
ple Linear Regression (MLR), Support Vector Machines (SVM), and the combinations of
filtering/scaling techniques discussed above are compared with the MLPRNN. The test
prediction variables, maximum temperature, and energy demand are established without
loss of generality.

2. Materials and Methods
2.1. Data Processing

A database of the Center for Scientific Research and Higher Education of Ensenada,
Mexico, was used [29]. This database includes, in a range of dates from 1922 to 2016, the
evaporation, heat, precipitation, and maximum temperature under a daily sampling in the
central region of Mexico, whose location is illustrated in Figure 1.

Figure 1. Location of the weather station in Celaya, Guanajuato, Mexico.

The data were processed as a Data-Frame in Python using the Pandas library. The
obtained Data-Frames presented some inconsistencies in the amount of data, as shown in
Table 1. Table 2 shows descriptive statistics information for these data; descriptive statistics
include those that summarize the central tendency, dispersion, and shape of the dataset’s
distribution, excluding missing values. To overcome this difficulty was performed a data
processing using NumPy, pandas, and Scikit-learn libraries.
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Table 1. Data amount.

Evaporation Heat Maximum Temperature

Count 17,043 33,366 33,374

Table 2. Statistical information of the data.

Value Evaporation (mm) Heat (◦D [29]) Maximum Temperature (◦C)

mean 5.6782 9.771292 27.917457

std 2.02045 3.066121 4.172621

min 0.03 0 5.5

25% 4.2 7.5 25.5

50% 5.6 10 28

75% 7 12.17 30.6

max 17 17.64 41.5

It is worth mentioning that the correlation between the variables was determined to
know which of them is suitable for prediction. Table 3 shows a summary of correlations,
and it can be seen that only the variable “Heat” has a positive relationship of 0.8 concerning
the maximum temperature variable (Max Temp).

Table 3. Correlation matrix of the data with respect to maximum temperature.

Variable Month Day Year Evaporation
(mm)

Heat (◦D
[29])

Precipitation
(mm)

Max Temp
(◦C)

Month 1 0.01052 −0.006825 −0.047733 0.033247 0.071304 −0.027083

Day 0.01052 1 −6.00 × 10−0.6 0.002199 0.006425 0.000221 0.005417

Year −0.006825 −6.00 × 10−0.6 1 0.743474 0.012017 0.00366 0.050503

Evaporation −0.047733 0.002199 0.743474 1 0.193724 0.010533 0.209749

Heat 0.033247 0.006425 0.012017 0.193724 1 0.121701 0.868202

Precipitation 0.071304 0.000221 0.00366 0.010533 0.121701 1 0.032883

Max Temp −0.027083 0.005417 0.050503 0.209749 0.868202 0.032883 1

The database was divided by the “Year”, in which the values of the variables were
taken. For training, the range of years from 1922 to 2015 was used. The rest of the database
(2016) was used for testing the models without loss of generality (the cross validation
shown later corroborates the performance for other periods). A statistic of persistence and
meteorology models was generated to compare the improvement in the proposed models,
which is summarized in Table 4.

Table 4. Results of coefficient of determination and mean square error of the persistence and
weathering models.

Model Coefficient of Determination
(
R2) Mean Square Error (MSE)

Persistence (from 2015 to 2016) −0.4672 13.8483

Meteorology (average from 2010
to 2016, compared to 2016). −18.5945 1.6548

2.2. Linear Regression Models

For model training, the maximum temperature was used as the dependent variable,
taking the rest of the data such as evaporation, heat, and precipitation as independent
variables.
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For the linear regression calculations, given the number of variables considered and
based on [30], a simple model for weather forecasting was developed. Multiple regres-
sion, quadratic and polynomial linear regression, described by the following expressions,
were used:

Simple linear regression Y = α + βX (1)

Multiple linear regression Y = α +
k

∑
i=1

βiXi (2)

Quadratic regression Y = β0 + β1x + β2x2 (3)

Polynomial regression Y = β0 + β1x + β2x2 + β3x3 + · · ·+ βnxn (4)

where Y is the prediction of the dependent variable, X the value of the independent variable
and α, β are parameters of the equation (weights and biases).

2.3. Support Vector Machine (SVM) Model

For SVM prediction, different kernels were considered, such as linear, radial, and
polynomial, and the parameter for model fitting was a penalty parameter of the error
term (C):

• Linear Kernel, offers the possibility of solving problems with the approximation to a
linear function.

K
(
x, x′

)
= x · x′ (5)

• Kernel Polynomial, offers the possibility to solve problems with a polynomial kernel
with different degrees d and coefficients R.

Kd
(

x, x′
)
=
(
x · x′ + R

)d (6)

• Radial kernel, offers the possibility to solve problems with a Gaussian kernel with
different values of γ.

K
(
x, x′

)
= exp

(
−γ‖x− x′‖2

)
(7)

• Sigmoidal kernel, offers the possibility to solve problems with a sigmoidal kernel with
different γ and R values.

K
(
x, x′

)
= tanh

(
γ
(
x · x′

)
+ R

)
(8)

In the above expressions, x represents the value of the line and x′ the projection on
the hyperplane, while γ, R and d are parameters of the equations. z · w represents the
scalar product of z and w, and ‖z‖ represents the Euclidian norm of z.

2.4. Neural Network Models

For the third prediction model, a multilayer perceptron regression neural network
(MLPR), commonly used for weather forecasting (e.g., in [22]), was used. Data processing
and tests with different fitting parameters are performed to reach an optimal prediction.
The following are the best activation functions:

Linear function : f (x) = x (9)

Sigmoid function : f (x) =
1

(1 + e−x)
(10)

Hyperbolic tan gent function : f (x) = tanh(x) (11)

Rectified Linear Unit (ReLU) function : f (x) = max(0, x) (12)
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2.5. Data Scaling/Filtering

For these models, data processing was performed with minimum and maximum
scaling Equation (13), L2 or Euclidean Normalization Equation (14) and standard scaling
Equation (15), to perform training and verify if an improvement in the prediction of each
model has been obtained:

Xminmax =
(X− Xmin)

(Xmax − Xmin)
(13)

x2 =

√√√√ n

∑́
l

X2
i (14)

Z =
X−U

S
(15)

where i is an iteration index, n is the number of samples, X is the data, U is the mean and S
its standard deviation.

For data processing/preparation, preliminary tests were performed using the filtering
of the Data-Frame using the RANSAC algorithm to eliminate outliers and to be able to
make better predictions. It should be noted that this algorithm has been widely used
mainly in the adjustment for image processing (RANSAC performs a data consensus, and
the set where the maximum data consensus exists are considered valid since these data
are free of outliers [31,32]). It is also considered an alternative for regression, helping to
eliminate noise in signals [33,34], which will help us analyze data from the smart grid’s
different sensors.

From the original 34,608 records, 25,916 were left when filtered by RANSAC, as shown
in Table 5.

Table 5. Statistics of the data filtered with RANSAC.

Value Evaporation Heat Max Temp

count 25,916 25,916 25,916

mean 3.069529 10.000068 28.282077

std 3.228479 2.842567 3.508896

min 0 0 12

25% 0 7.78 26

50% 2.9 10.25 28.3

75% 5.9 12.25 30.8

max 17 17.29 39.3

2.6. Selection Criteria

A first criterion is used to evaluate the prediction accuracy of each model called the
coefficient of determination [35]:

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (16)

where y ⊂ x are the test data, ŷ is the estimation of y, y = 1
n ∑n

i=1 yi, is the arithmetic mean
of the data, and n is the number of samples.

The mean square error result is also considered to find the best model [36]. It is
worth mentioning that, contrary to the R2, the zero approximation improves the model’s
prediction:

MSE(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (17)
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Finally, cross validation was performed to evaluate the prediction’s accuracy and have
an advanced criterion to indicate which combination of filtering and prognosis is the best
combination to predict the data.

The cross validation method consists of dividing into several data sets, one of which
will be taken as the test set and the others as the training set. When performing the
prediction iterations, the test set will be permuted according to the number of iterations
selected to have parameters that estimate how accurate the prediction is finally.

3. Results

In this section, filtering and prediction best results, including comparative graphs,
are presented.

3.1. Prediction of Maximum Temperature by Regression

Table 6 shows the best prediction parameters for the regression models with the
different filtering methods, and prediction without filtering is added for comparison
purposes. The results with the minimum MSE value are those considered to be the best
prediction. The first column shows the data treatment used. The second column shows
the type of parametrization used; it should be noted that only the most relevant results are
presented due to a large number of possible combinations.

Table 6. Training results and data testing with linear and polynomial regression predictive models.

Filtering/Scaling Parametrization
R2 MSE

Training Testing Training Testing

Fit_intercept 0.7638 0.4644 10.3486 5.7705

Maximum and
Minimum Fit_intercept 0.7445 0.2606 11.20 7.9659

L2 Norm Fit_intercept 0.8097 0.6765 8.3371 3.4853

Poly = 2 Fit_intercept
(Grade = 2) 0.9075 0.6564 4.0508 3.7021

Poly = 7 Fit_intercept
(Grade = 7) 0.9443 0.8187 2.4370 1.9526

Standard scale Fit_intercept 0.7638 0.4644 10.3486 5.7705

RANSAC Fit_intercept 0.8518 0.7878 1.8269 1.6438

RANSAC & Maximum
and Minimum Fit_intercept 0.8518 0.4921 1.8269 3.9343

RANSAC & L2 Norm Fit_intercept 0.9277 0.8843 0.8916 0.8960

RANSAC & Poly = 7 Fit_intercept 0.8883 0.8039 1.3767 1.5190

RANSAC & standard
scale Fit_intercept 0.8518 0.7878 1.8269 1.6438

The tests performed for linear and polynomial regression without RANSAC filtering
of the data gave as best prediction results the L2 normalization and polynomial degree 7
models, the latter being the best with errors of 3.4853 and 1.9526, respectively (from the
first five rows of Table 5). Figure 2a shows a comparative plot of the maximum temperature
prediction results obtained from predicting without RANSAC filtering.
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Figure 2. Plot of testing and prediction data with the best linear and polynomial regression models:
(a) Norm L2 and polynomial; (b) RANSAC with Norm L2 and RANSAC with polynomial.

With the RANSAC data filtering, the predictions made show a better result since the
L2 normalization reached an MSE of 0.8960, which, compared to the polynomial 7-degree
model, only reached 1.5190. In Figure 2b, the plot of these results concerning the original
data is shown.

3.2. Maximum Temperature Prediction by Support Vector Machines

For the SVMs, the tests were also performed with different kernels to establish which
one provides the best results. Table 7 shows the values of the prediction results for
each model.
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Table 7. Results of training and testing data with the SVM predictive models.

Filtering/Scaling Parametrization
R2 MSE

Training Testing Training Testing

Kernel = linear, C = 1,
gamma = 0.1 −3.5084 −34.1601 197.5425 378.8428

Kernel = poly, C = 1,
degree = 1 0.7323 0.2150 11.7257 8.4573

Kernel = rbf, C = 1,
gamma = 0.1 0.8874 0.3772 4.9328 6.7100

Kernel = sigmoid,
C = 1, gamma = 0.1 −0.0229 0.2712 44.8203 13.6970

Kernel = rbf, C = 1000,
gamma = 0.01 0.9643 0.6319 1.5638 3.9656

Maximum and
Minimum

Kernel = poly, C = 1,
degree = 1 0.7055 0.6088 12.9033 4.2149

Maximum and
Minimum

Kernel = rbf, C = 1,
gamma = 0.1 0.8055 0.6315 4.9328 3.9704

L2 Norm Kernel = poly, C = 1,
degree = 1 −0.0195 −0.2638 44.6710 13.6179

L2 Norm Kernel = rbf, C = 1,
gamma = 0.1 −0.0188 −0.2624 44.6412 13.6022

Standard scale Kernel = rbf, C = 1000,
gamma = 0.1 0.9476 0.8483 2.2919 1.6344

RANSAC Kernel = poly, C = 1,
degree = 1 0.8166 0.6809 2.2619 2.4719

RANSAC Kernel = rbf, C = 1,
gamma = 0.1 0.8930 0.4424 1.3194 4.3198

RANSAC Kernel = rbf, C = 1000,
gamma = 0.01 0.9258 0.6164 0.9144 2.9720

RANSAC &
Maximum and

Minimum

Kernel = rbf, C = 1,
gamma = 0.1 0.8664 −0.1981 1.6478 4.6336

RANSAC &
L2 Norm

Kernel = rbf, C = 1,
gamma = 0.1 0.0051 −0.2725 12.2721 9.8592

RANSAC &
standard scale

Kernel = rbf, C = 1000,
gamma = 0.1 0.9024 0.7026 1.2038 1.1508

It can be observed that the two best predictions in descending order without RANSAC
filtering are obtained with the rbf and gamma kernels, 0.01 and 0.1, respectively. In
Figure 3a, the two best prediction results concerning the original data are illustrated. On
the other hand, with RANSAC filtering again, considerable improvements in MSE are
obtained. With standard scale, kernel = rbf, C = 1000, gamma = 0.1 we obtain an 1.1508 MSE.
Figure 3b shows the two best results obtained from the prediction with the RANSAC filtered
data compared to the original test data.
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Figure 3. Plot of the prediction of the original data with respect to the prediction with SVM models:
(a) Kernel rbf SF and Kernel rbf; (b) RANSAC polynomial and rbf.

3.3. Maximum Temperature Prediction by Neural Networks

For the MLPR model, Table 8 shows the results obtained from the prediction with
different parameterizations. In this case, the best MSE without RANSAC filtering is
obtained with standard scaling, while the best work is again with RANSAC filtering
and standard scaling. In Figure 4a, the two best results without RANSAC filtering are
illustrated, and in Figure 4b, the two best results with RANSAC filtering are shown.
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Table 8. Results of training and testing data with the neural network predictive models.

Filtering/Scaling Parametrization
R2 MSE

Training Testing Training Testing

Activation = ‘identity’
random_state = 4 0.7635 0.4784 10.3621 5.6195

Activation = ‘logistic’
random_state = 4 −0.0002 −0.6276 43.8286 17.5373

Activation n = ‘tanh’
random_state = 4 −2.1122 −0.6670 43.8173 17.9626

Activation = ‘ReLU’
random_state = 50 0.9049 0.6454 4.1657 3.8201

Maximum and
Minimum

Activation = ‘identity’
random_state = 4 0.7637 0.1098 10.3526 9.5912

L2 Norm Activation = ‘identity’
random_state = 4 0.7633 0.5179 10.3712 5.1936

Maximum and
Minimum

Activation = ‘ReLU’
random_state = 50 0.9402 −0.6558 2.6180 17.6260

L2 Norm Activation = ‘ReLU’
random_state = 50 0.7649 0.5331 10.2998 5.0298

Standard scale Activation = ‘ReLU’
Random_satate = 320 0.9486 0.8528 2.2511 1.5852

RANSAC Activation = ‘identity’
random_state = 4 0.8397 0.7106 1.9770 2.2417

RANSAC Activation = ‘ReLU’
random_state = 50 0.8270 0.7721 2.1336 1.7654

RANSAC &
Maximum and

Minimum

Activation = ‘identity’
random_state = 4 0.8515 0.4815 1.8317 4.0166

RANSAC &
Maximum and

Minimum

Activation = ‘ReLU’
random_state = 50 0.8874 −1.8747 1.3889 22.2727

RANSAC & L2
Norm

Activation = ‘identity’
random_state = 4 0.8520 0.7854 1.8252 1.6624

RANSAC & L2
Norm

Activation = ‘ReLU’
random_state = 50 0.8525 0.7853 1.8189 1.6627

RANSAC &
standard scale

Activation = ‘tanh’
Random_state = 4225 0.8955 0.8627 1.2886 1.0633
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Figure 4. Plot of the prediction of the original data with respect to the prediction with MLPR models:
(a) tanh and ReLU activations; (b) Norm L2 and polynomial.

3.4. Cross Validation

From the statistics shown in Section 3.1 to Section 3.3, it can be observed that better
results for MSE and R2 are obtained by using the RANSAC filtering, and considerable
improvement in the prediction can be reached.

A cross validation of the results was performed to get a reliable final decision and
shown in Figure 5. The best model is undoubtedly predicting using RANSAC filtering and
standard scale, which surpasses the previous models obtaining a higher accuracy in the
confidence interval. It should be noted that a parameterization of K-fold = 10 was used,
and a random error of ±0.05 was obtained in the best case.
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Figure 5. Cross validation for: (a) the prediction of unfiltered and unscaled data; (b) RANSAC-
filtering.

3.5. Prediction of Energy Conditions

To strengthen this study, we added the Watts per hour that were consumed in a
household. The additional data for this prediction were obtained from [37] (house-
hold_power_consumption.zip), from which the date and consumed Watts per hour were ex-
tracted to match (in time and geographic zone) the data in the previously treated database.

Figure 6 compares the predictions with the three models, highlighting that the neural
networks, although they give a prognosis similar to the linear regression, improve the error
rate. It should be noted that the amount of training data was much smaller, and even so,
the results obtained in previous sections are confirmed.

Figure 6. Cross validation of energy data prediction with RANSAC filtering.

4. Discussion

One of the main tasks to achieve an adequate prediction of the relevant variables for
an energy management strategy in a smart grid is treating the data. In this paper, it can be
seen that the results change significantly depending on the type of data filtering/scaling,
and the results show that such treatment is essential. Standard scaling (in Python Standar
Scaler) provided the best results for support vector machines and neural networks.

The result of the coefficient of determination R2 was better in support machines and
neural networks as opposed to polynomial regression. Although the lowest MSE was
obtained by the latter method, it could be supported that the networks improve the model
by cross validation, in which a clear prediction improvement is distinguished for neural
networks as opposed to the other models.
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It is worth mentioning that this paper did not present the results of each combination
of filtering and prediction but only the best ones and that each combination can take hours
or even days to yield results.

Although linear regression models are simple models, they generate good results in
prediction only if the appropriate data treatment is performed.

On the other hand, the measurement of variables includes noise and even erroneous
sampling by exogenous conditions, such as human errors and accidental modification of
the sensing environment.

Commonly, predictive energy management strategies for smart grids need accurate
data predictions. Indeed, it is rarely studied an appropriate signal-filtering for predicting
the dynamic behavior of the grid’s variables as temperature, power consumption, voltage,
and many others, by neural networks.

Remarkably, the RANSAC algorithm with L2 Norm for filtering the measured vari-
ables is a novelty. Even more, the prediction by combining an MLPRNN provides better
forecasts. From the proven combinations of neural networks, filtering, and scaling, this
was the combination that best results that provided in R2, MSE, and cross validation terms.
Unlike other studies that compare data prediction accuracy for a smart grid, this paper in-
cludes a cross validation to indicate whether there are overfitting or selection bias problems,
not to mention that it does not include comparative analysis of filtering techniques.

5. Conclusions

From the results obtained in the predictive models and filtering techniques presented,
first of all, the advantage of processing the data to improve the prediction considerably
should be highlighted. The RANSAC outlier filtering reduces the error and yields predic-
tion values that are better adjusted to the real values. Thus, it can be deduced that it is
possible to predict meteorological variables and energy behaviors associated with the smart
grid acceptably. Using RANSAC filtering and standard scale, the multilayer perceptron
regression neural network is the best combination of those tested in this study.

It should be taken into account that others can substitute the database and the predic-
tion variables. In this study, the temperature was used as a case study, in addition to the
electric power demand for prediction.

As future work, deep learning neural networks for prediction should be considered
since they have become popular for their improvement in the adjustment of nonlinear data,
such as the data set analyzed in this work. Besides, databases appropriate to the variable
of interest to be predicted should be proposed.
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