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Abstract: Demand response (DR) services have the potential to enable large penetration of renewable
energy by adjusting load consumption, thus providing balancing support to the grid. The success of
such load flexibility provided by industry, communities, or prosumers and its integration in electricity
markets, will depend on a redesign and adaptation of the current interactions between participants.
New challenges are, however, bound to appear with the large scale contribution of smaller assets
to flexibility, including, among others, the dispatch coordination, the validation of delivery of the
DR provision, and the corresponding settlement of contracts, while assuring secured data access
among interested parties. In this study we applied distributed ledger (DLT)/blockchain technology
to securely track DR provision, focusing on the validation aspect, assuring data integrity, origin,
fast registry, and sharing within a permissioned system, between all relevant parties (including
transmission system operators (TSOs), aggregators, distribution system operators (DSOs), balance
responsible parties (BRP), and prosumers). We propose a framework for DR registry and implemented
it as a proof of concept on Hyperledger Fabric, using real assets in a laboratory environment, in order
to study its feasibility and performance. The lab set up includes a 450 kW energy storage system,
scheduled to provide DR services, upon a system operator request and the corresponding validations
and verifications are done, followed by the publication on a blockchain. Results show the end to
end execution time remained below 1 s, when below 32 requests/sec. The smart contract memory
utilization did not surpass 1% for both active and passive nodes and the peer CPU utilization,
remained below 5% in all cases simulated (3, 10, and 28 nodes). Smart Contract CPU utilization
remained stable, below 1% in all cases. The performance of the implementation showed scalable
results, which enables real world adoption of DLT in supporting the development of flexibility
markets, with the advantages of blockchain technology.

Keywords: demand response; flexibility provision; blockchain; distributed ledger technology;
hyperledger; data sharing coordination

1. Introduction
Landscape and State of the Art

The Clean energy for all Europeans Package (CEP), published in 2019 [1] by the
European Union (EU), and the Green Deal strategy document [2], set the energy and climate
ambitions for the 2030 horizon, and the regulatory framework to achieve these ambitions.
The digitalization of the energy sector, citizen’s engagement and new technologies such as
blockchain are paving the way to new business models and the way energy is perceived
and traded.

The prompt growth in the deployment of distributed energy resources and prosumers
in the smart grid has led to management problems, which become increasingly challenging
to be efficiently addressed using centralized approaches. These distributed resources or
assets, dispersed by nature, have led to a growing consensus towards decentralized man-
agement and control approaches and architectures [3,4]. Distributed ledger technologies
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(DLT), have hence gained attention in different applications in the energy sector, as shown
in the literature [5,6], but with particular interest in energy trading and markets. In this
regard, a wide covered topic is peer to peer trading through micro grid energy markets.
Microgrid energy markets provide small-scale prosumers and consumers, with a market
platform to trade locally generated energy within their community. Hence, they promote
the consumption of energy close to its generation and, therefore, foster sustainability and
the efficient use of local resources.

A permissioned blockchain that uses Hyperledger Fabric to provide a peer-to-peer
energy transacting network, has been proposed in the literature [7]. The authors use a
model, consisting of three entities, which are energy nodes, energy aggregator, and smart
energy meters. The energy nodes can be smart buildings or offices. These nodes play
a role as either seller or buyer depending on the energy state. The energy aggregator,
manages all trading related events, and has computing storage abilities. The smart energy
meter in every node records and calculates energy trades in real time. A similar approach
was presented in [8], proposing a conceptual framework that enables households to au-
tonomously exchange energy with neighbors, based on blockchain techniques, aimed to
locally balance renewable energy production through what the authors call the “mutually
surplus” supply-demand matching. Results show that this approach allows for efficiency
and promotes local consumption of renewable energy, ensuring safe, reliable, distributed
storage of renewable energy transaction data and automatic settlement of transaction
results.

Another study [9] presents a laboratory implementation focused on solar energy
generation tracking. The authors present an implementation of a blockchain network
for exchange of solar electricity among participants using the Hyperledger framework.
Participants, assets, and transactions necessary to establish the blockchain-based network
for keeping track of solar photovoltaic PV output exchanges are described together with the
smart contract, use cases, and their implementation. Even though very focused, the study
seems to suggest an electricity generation origin tracking, similar to certificates of origin,
which in fact is one of the fields DLTs can potentially be applied to.

Authors in [10] derive seven components/steps for the efficient operation of blockchain-
based micro-grid energy markets, which are: microgrid setup, grid connection, information
system, market mechanism, pricing mechanism, energy management trading system,
and regulation. The legislative barriers are identified in the article, focused on a case study
for Brooklyn in the USA. The authors argue that microgrid energy markets could reduce
the need for expensive and inefficient energy transportation with substantial losses by
satisfying demand from local energy resources. Furthermore, they defend that the latency
for managing congestion and distribution faults can be decreased. Security is highlighted
as a crucial aspect to be studied. In this regard, DLT has motivated studies related to
cyber security of the smart grids. Authors in [11] suggest a security plan by applying Rain-
bowchain to the smart grid and energy exchange. They argue this approach may lead to
superior performance and security functions by using Rainbowchain, which contains seven
authentication techniques among existing Blockchain technologies, and propose the ecosys-
tem and architecture necessary for its application. On the same topic, another study [12]
introduces a blockchain based energy transaction framework and evaluates the level of
security for different energy transactions. This is done by calculating the overall probability
of successful attacks to the system, which can lead to the system collapse. The numerical
results demonstrate that the blockchain based energy transaction framework is the most
reliable system against cyberattacks, compared with traditional centralized and modified
decentralized energy transaction frameworks.

The application in energy communities has also been a pertinent topic for DLT.
Authors in [13] address self-consumption and local energy communities introducing a
blockchain-based solution designed to serve energy communities sharing solar energy.
This solution has been defined and developed to manage the energy exchanges according
to the rules set by the energy community. It harnesses the available smart metering in-
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frastructure, installed by the distribution system operators (DSO), as the trusted party for
energy data, to the energy stakeholders, to stay focused on the governance of the energy
community. On the same topic, other authors [14] focus on collective self-consumption,
while addressing the concerns of verification, validation of measured data, and energy
transactions and security. They argue that besides local energy markets, there is huge
potential for demand side management (DSM) or demand response (DR) services, given
the secure, verifiable, trustless, and scalable nature of DLT solutions.

Authors in [15] tackle demand response programs validation to activate the appro-
priate financial settlement for the flexibility providers. The authors use a prototype im-
plemented in an Ethereum platform, using energy consumption and production traces of
several buildings. Their results show that the blockchain used can be used for matching
energy demand and production, at smart grid level, and that the demand response signal is
followed with high accuracy, while the amount of energy flexibility needed for convergence
is reduced. Still regarding flexibility asset management, authors in [16] provide a perspec-
tive from the renewable generation side, in order to provide services to the grid. The article
presents the concept of the Electricity Consumption and Supply Management System
(ECSM) with the application of blockchain technology. The ECSM provides functionalities
to monitor and continuously record information about inbound and outbound energy
to/from the power grid.

Given the importance and impact of demand response services and flexibility as a
whole, it is important to demonstrate the application of DR services provision in a way
that can be scalable, with data sharing in a trustless environment, and ensure it is tamper
proof. In this study we propose a framework that enables such features, in which flexibility
is provided to a system operator (SO) through an aggregator, in which the asset data is
anonymized and published through a double validation process, and by aggregating the
power delivered. This is achieved by using the “AND” policy in Hyperledger Fabric smart
contracts. The next sections present a literature review, highlighting recent applications of
DLT, and the need for DSO/transmission system operator (TSO) coordination, relying on
data sharing. We then present a real laboratory implementation followed by performance
analysis and discussion.

2. Stakeholder Coordination and Data Sharing of Flexibility Services

As the CEP states, using system flexibility services will require extensive cooperation
and clear boundaries between TSOs and DSOs. This aims to ensure an efficient data
exchange on the activated flexibility resources and to avoid a double activation from
a DSO and a TSO of the same flexibility source. According to the article 32(1) of the
EU Directive EU-944 [17], “distribution system operators shall exchange all necessary
information and coordinate with transmission system operators in order to ensure the
optimal utilization of resources, ensure the secure and efficient operation of the system and
facilitate market development.” In addition, for the access of flexibility resources, article
53(2) of the E-Regulation [18] states that “transmission and distribution system operators
shall cooperate in order to achieve coordinated access to resources such as distributed
generation, energy storage or demand response that may support particular needs of
both the distribution system and the transmission system.” In addition, aggregators and
authorized organizations can make use of such information to promote new services,
business cases, increase efficiency, and add value to such energy interactions.

The EU-directive is clear when it states that information regarding the flexibility
services should be shared between several parties (TSO, DSO, aggregators, consumers,
and others). A registry has already been proposed by SOs in a joint report [19], calling
it a “flexibility resources register”, which would contain structural information on the
location of connection points that can provide flexibility services to SOs and registration of
connections, and could be used for settlement of flexibility services. precisely ensure data
integrity, scalability, data sharing, settlement, and operation of DR services, blockchains
or distributed ledger technologies (DLT) can play an important role by allowing an un-
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tampered record of transactions, ownership decentralization, and cost effective solution.
Within this context, we present a framing business scenario and a use case implementation
in a laboratory environment, using real assets, scheduling, and communication, allowing a
replication of real life conditions.

For the sake of the present study, the business case for the use of blockchain-based
smart contracts for automated flexibility is driven by some generic business objectives,
such as:

• Increase customer base and adoption rates by providing a secure platform. Security
concerns amongst DR end-users are a significant barrier for adoption of such services.
Providing a secure way to communicate and deploy control strategies to assets as well
as audit transactions should give adoption rates a boost.

• Decrease the cost of DR delivery for aggregators and end users, by reducing transac-
tional cost and duration for the settlement process. Smart contracts will automatically
audit the energy delivered for each event, and will trigger payment from beneficiaries
in near real time, reducing the time and cost for providing the service to the system
operator or other market participants.

• Increase the efficiency of the aggregation service by enabling autonomous, computer to
computer contracting. As the DR services and market become more dynamic, there is
an increased need for automation of decision making for allocation of flexibility
services to the best paying markets.

DLT for Demand Response

A wide dissemination of demand response service providers and the promotion of
aggregators, especially independent ones, raise different challenges. Among others is
how can system operators (SOs) confirm that a DR was actually delivered, especially
when dealing with independent aggregators and assure data integrity and confidentiality
(making sure data is true and original and without individual data being tampered with).

In this study we propose that the DR service providers (DRSP) send data to the
aggregator and then to the SO, to be validated by both. When the data is transferred
through the aggregator, the SO verifies the certificate of origin from the DR service provider,
and confirms that the added power corresponds to the sum of individual components.
The added power and other aggregated data (voltage, time stamp) are the elements being
published on the ledger.

In this study the laboratory implementation considers only one asset (a battery storage
system), one DR provider and one aggregator. In the use case implemented, the DRSP
sends the transaction data directly to the ledger with both verifications (aggregator and
SO) with the aggregated data corresponding to the individual data of the asset (the energy
storage system in this case). In this way we fulfill the requirements of non-discriminatory
and transparent rules and procedures, for the exchange of data between market participants
engaged in aggregation, and other electricity undertakings, protecting commercially sensi-
tive information and customers’ personal data. This can be achieved if the data published
on the blockchain is aggregated, as is the approach of this study. It is worth mentioning
that the flexibility provider may participate directly in a program without going through an
aggregator. Moreover an aggregator may also sell its flexibility through another aggregator,
which is the case where an aggregator acquires flexibility in order not to incur potential
imbalances.

3. Methodology
3.1. Use Case Description

The path of communications and steps between actors may change according to
market arrangements or coordination schemes, which is not the focus of the study. In this
study the interactions are generic, but tend to be closer to an integrated market model
where TSO, DSO, and balance responsible parties (BRP) may buy from one common market.
The use case was implemented in the Smart Grid and Interoperability Laboratory (SGILAB)
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of the Joint Research Centre (JRC), and it represents the following events illustrated in
Figure 1:

1. Flexibility needs are published by a system operator (SO), with a specific amplitude
and duration, in a market platform or bilateral contract;

2. An aggregator rechecks the availability of demand response (DR) flexibility of its
assets (from clients) and presents an offer which is accepted by the SO;

3. The service provision occurs by setting the loads/assets to a desired/allowed level;
4. After the event takes place the aggregator/service provider sends a publishing order,

which is conditional to the SO verification. This structure is represented in the
picture by the TSO, which verifies the origin of the data, and that the sum of power
corresponds to the individual contributions of assets. This is done through an AND
policy;

5. All SO are able to confirm (by consulting the ledger), that the variation/DR event was
actually performed in order to find the corresponding imbalance price/compensation.
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3.2. Implementation

The physical set up of the use case is shown in Figure 2 and consists of a storage
system with 225 kW and 450 kWh of capacity, connected to the lab busbar, which allows
a bi-flow of power from and towards the grid. This means that a battery can charge or
discharge from/to the grid.

The triggering of the DR event is done by an online platform (called Leaf), dedicated to
the Energy Storage System, which interacts with battery local Supervisory Control and Data
Acquisition system SCADA, such as the one from an aggregator, scheduling the battery to
charge or discharge at a given time according to the flexibility request. The battery system
is equipped with a 4G communication interface, which allows a wireless communication
with a computer in the lab control room. The communication with the asset is therefore a
bi-flow, exchanging data and signals. Such signals/data are part of the smart contract.
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Figure 2. Laboratory equipment set up for use case implementation.

The data from the storage system is registered in a local PC, where a log file is stored
when an event takes place. This file is obtained through a FTP connection and transmitted
in a log file (CSV format) after the DR event is over. The FTP retrieving script and the
application used to trigger the even are further explained in the Supplementary Materials of
the article. An interval of readings before and after (±15 min) of the event is also required
and will be provided in order to perform a baseline, offering the possibility to confirm that
during the request time there was actually the requested change in power. The variables
collected from the log file are the very minimum for the simplicity of the experiment,
but others, depending on the product specification requirements, such as current, location
of connection point, or type of activation, could be used as well. The variables defined to
be exchanged are:

To be transmitted from the prosumer to the aggregator:

• Active Power,
• Prosumer ID,
• Time stamp,

The aggregator will share some of the data with the SO, and recorded on the Ledger
are:

• aggregated active power (if more than 1 asset is involved),
• simple and compound voltage,
• time stamp,
• aggregator ID,

The power is stated in kW and the time step of the time stamp in minutes. The ID
is a string or an object variable, unique for each aggregator or prosumer. We assume a
prosumer can only be a service provider through one aggregator.

Without loss of generality, every service built on top of the Hyperledger Fabric [20]
infrastructure relies on a standard transaction flow for recording a transaction in the
blockchain, which consists of the following steps visible in Figure 3:
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1. A client creates a blockchain transaction proposal and commits it to the corresponding
node (such as an aggregator). This proposal is digitally signed by the client so the
node is able to validate the client’s identity.

2. The node validates the correctness of the transaction and triggers the execution
of the smart contract, and sends back a digital signed response message called as
endorsement to the client.

3. Afterwards, the client sends the transaction proposal to the ordering service, as well
as the endorsement. The ordering service sorts all of the received transactions, creates
the appropriate blocks, and populates them to all the blockchain network participants.

4. As soon as the block is received from the network participants it is verified whether
the deployed policy has been fulfilled and the block is written onto the ledger.

5. Finally, the client is informed by the corresponding node that the transaction has been
completed.
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3.3. Blockchain Architecture

As mentioned before, the flexibility use case is implemented over a Hyperledger
Fabric infrastructure, which consists of: (a) the ordering service; and the (b) core blockchain
network components. In particular, one side is the:

• Ordering Service which as its name implies is responsible to sort the transaction
between the participants that builds upon: (a) Zookeeper (3 instances); (b) Kafka
(4 instances); and (c) Orderer (3 instances) services. In fact this is the minimum
number of instances to enable a fundamental fail-over at the ordering service side.

On the other side, the core blockchain network components are the nodes that share
the ledger. In the context of the Hyperledger Fabric, each node hosts a:

• database that retains all blockchain’s valid transactions, named as world state;
• peer service that stores the ledger itself and validates the transactions according to the

defined policies;
• certificate authority (CA) which is in charge of managing digital identities to the

participants (i.e., aggregators) on the blockchain network;
• smart contract that implements the demand response flexibility use case and enables

users to submit their transaction to the blockchain network;
• application interface implemented as a representational state transfer (REST) service

that acts on behalf of the user for transaction commitments in the blockchain.
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Figure 4 provides an overview of the components used to deploy the DR use case over
the Hyperledger Fabric, where the core blockchain network consists of the main actors, i.e.,
aggregators, DSOs, and TSO or BRP, in order to distribute the corresponding information
and sharing common business logic and rules. All aggregators and SO can share ‘public’
information through a common channel. All the underlying communications are protected
by transport layer security (TLS).

Energies 2021, 14, x FOR PEER REVIEW 8 of 18 
 

 

• peer service that stores the ledger itself and validates the transactions according to 
the defined policies; 

• certificate authority (CA) which is in charge of managing digital identities to the par-
ticipants (i.e., aggregators) on the blockchain network; 

• smart contract that implements the demand response flexibility use case and enables 
users to submit their transaction to the blockchain network; 

• application interface implemented as a representational state transfer (REST) service 
that acts on behalf of the user for transaction commitments in the blockchain. 
Figure 4 provides an overview of the components used to deploy the DR use case 

over the Hyperledger Fabric, where the core blockchain network consists of the main ac-
tors, i.e., aggregators, DSOs, and TSO or BRP, in order to distribute the corresponding 
information and sharing common business logic and rules. All aggregators and SO can 
share ‘public’ information through a common channel. All the underlying communica-
tions are protected by transport layer security (TLS) 

 
Figure 4. Flexibility blockchain system implementation, on the Hyperledger Fabric framework. 

The Active System Management report [19] provides several options for flexibility in 
market operation. In this study, however, we present a generic interaction without neces-
sarily choosing one. Figure 5 shows the sequence of actions put in place to provide flexi-
bility through a market to a DSO, TSO, or a BRP through an aggregator. It starts with the 
system operator publishing its flexibility needs (signalling an event need) in an interface. 
Upon this information a service provider (aggregator) requests availability to the end user 
of the asset. In step three, the user either manually confirms the flexibility availability, or 
sets it to automatic verification and sends the response to the aggregator in step 4. The 
aggregator then publishes in step 5, the offer of the power flexibility in the SO interface. 
If the offer is accepted by the SO, it sends an activation signal to the aggregator in step 6, 
which is forwarded to the end user to act accordingly, or acts directly over the load/asset 
(steps 7 and 8). The last step is the metering part, which will allow the registry on a block-
chain, the focus of this study. 

Figure 4. Flexibility blockchain system implementation, on the Hyperledger Fabric framework.

The Active System Management report [19] provides several options for flexibility
in market operation. In this study, however, we present a generic interaction without
necessarily choosing one. Figure 5 shows the sequence of actions put in place to provide
flexibility through a market to a DSO, TSO, or a BRP through an aggregator. It starts
with the system operator publishing its flexibility needs (signalling an event need) in an
interface. Upon this information a service provider (aggregator) requests availability to
the end user of the asset. In step three, the user either manually confirms the flexibility
availability, or sets it to automatic verification and sends the response to the aggregator in
step 4. The aggregator then publishes in step 5, the offer of the power flexibility in the SO
interface. If the offer is accepted by the SO, it sends an activation signal to the aggregator
in step 6, which is forwarded to the end user to act accordingly, or acts directly over the
load/asset (steps 7 and 8). The last step is the metering part, which will allow the registry
on a blockchain, the focus of this study.

3.4. Smart Contract Deployment

We have deployed the smart contract on Go language [21], as is supported by Hyper-
ledger Fabric, a type-safe language, that generates a compiled code enabling fast execution,
in comparison to other interpreted languages. In fact, the smart contract enables the users
or the corresponding entities of the system to:

1. Insert new transactions for recording demand response requests, and
2. Validate the correctness of the aggregators’ claims recorded as transactions in the

blockchain.
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Figure 5. UML sequence diagram for the “Automated demand response (DR) services via block chain enabled smart
contracts” use case.

The data required for this use case was modelled in a data structure called EnergyFlex,
which consists of the following fields:

1. Energy: models a unique identifier for the transaction that will be submitted to the
blockchain

2. Time: defines a timestamp linked to the time in which the energy measurements were
taken

3. Voltage1: The RMS value of the line to line voltage (V) in the corresponding time step
4. Voltage2: The RMS value of the line to earth voltage (V) in the corresponding time

step
5. Power: The running Power (+ if charging from the grid or—if injecting into the grid)

of the asset activated in kW in the corresponding time step.

The EnergyFlex data structure definition is shown in the pseudo-code below:

type EnergyFlex struct
{Energy string ‘json:"Energy"‘
Time int ‘json:"Time"‘
Voltage1 int ‘json:"Voltage1"‘
Voltage2 int ‘json:"Voltage2"‘
Power int ‘json:"Power"‘}

The transactions submitted to the blockchain system are sent by users in the form
of a POST request with the following format: http://10.120.50.110:8000/Trasnsaction
-H content-type: application/json‘-d’{“Timestamp”: “1”, “Voltage1”: 2, “Voltage2”: 5,
“Power”: 2}.

The smart contract parses JavaScript Object (JSON’s) message arguments, and makes
the corresponding controls to determine if the message complies with the rules of the
system, and whether the values are in the expected ranges. If both controls are success-
ful, the execution of the smart contract continues and writes the data to the blockchain.
Otherwise, the transaction is recorded as a failed one in the ledger. This functionality is
illustrated in the following pseudo-code example. Note that the blockchain allows transac-

http://10.120.50.110:8000/Trasnsaction
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tions to be submitted only by entities that hold the corresponding certificate that has been
issued by the corresponding certificate authority.

Create main function to add JSON info

func (cc *EnerChaincode) addEnergyJSON(stub shim.ChaincodeStubInterface, args [[]byte) sc.Response
{
if len(args) == 0
{fmt.Println("json string validatiton...")
return shim.Error("Empty argument")}

validate against json-schema

jsonString: = string(args[:])
fmt.Println("jsonstring")
fmt.Println(jsonString)
if len(jsonString) == 0
{return shim.Error("Empty argument")}

extract info

energy, time, voltage1, voltage2, power := extractInfo(stub, args)
if time > current_time
{return shim.Error("timestamp value error")}
if voltage1 > threshold1 || voltage1 < threshold2
{return shim.Error("voltage values errors")}
if voltage2 > threshold1 || voltage2 < threshold2
{return shim.Error("voltage values errors") }
if power > threshold_p1 || power < threshold_p2
{ return shim.Error("power values errors") }

write the data on the blockchain

err1 := stub.PutState(energy, args)
if err1 != nil
{fmt.Println("error!!!! Failed to put to world state") }
return shim.Success(nil) }

It should be noted that all of the interactions with the blockchain system are accom-
plished through the restful service, which acts on behalf of the user. As soon as a transaction
is accomplished, a corresponding entity (i.e., the SO) is able to check the validity of the
transaction(s) and create a new block in the chain, illustrating the validation procedure
according to the specifications of the system. The validating entity, through a POST re-
quest, sends a message to the smart contract to validate the correctness of the aggregators
‘submissions’. To do so, it is assumed that the end-users also submit their values in the
block chain, so that the SO can retrieve them and confirm that the aggregator fulfilled the
corresponding demand response request.

4. Results and Discussion

Figure 6 shows the active power of the battery storage system during the demand
response event ±15 min. This is the logfile actually recorded in the local PC retrieved
through a FTP connection. The event lasted for 255 min (4.25 h). One can observe there was
a ramp up and down, which is the time the asset takes to reach the set power. The ramp
up/down was foreseen and allowed by the market, but it has limits. This is one of the char-
acteristics that distinguish asset quality in the participation of DR events. The battery was
already operational, discharging at a 1 kW rate. The amplitude of the requested demand
response was −74 kW, which in this case corresponds to injecting power into/supplying
the grid.
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Figure 6. Load profile of the asset during the flexibility provision event.

Shown in red is the baseline, which continued stable as the asset switched from a
steady state of −1 kW to −74 kW. The total energy supplied in the DR event was hence
(74 − 1) × 4.25 h = 310.25 kWh. The event was then registered on the explorer of the
Hyperledger Fabric, which can be seen with the following format with 54 characters:

Transaction ID:
“f5d0efd26c6361a74db3aa9ffa719ed2212df495795f58b0fc40578a137605a3”
Finally the data format stored in the ledger is the following:
{“Energy”: “energyvalueAsset-1-18”, “Time”: 1581894000, “Voltage1”: 398, “Volt-

age2”: 229, “Power”: −1}
Each entry in the ledger corresponds to a given second or minute depending on the

time step chosen. The format shown above contains the first second of the DR event of
the addressed use case. The CSV file retrieved from the asset (storage unit) meter contains
more attributes, however only the time, two voltages, and power were chosen for the
simplicity of the use case. With such information, it can be confirmed by the SO that the
DR was in fact implemented. The block details are provided by the explorer in a simple
manner, as shown in an example in Figure 7.
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Figure 7. Explorer block details from the published DR event.

To evaluate the effectiveness of flexibility use, we deployed it in a network that
consisted of different number of participants. We studied how such a use case will scale
considering different: (a) number of participants; and (b) number of transactions submitted
in the system per second (TPS). In the current setup, we assume that all the participants
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are connected to the network over a network that supports 1 Gbps, with a latency of 3 ms.
Table 1 shows the executed scenarios for the evaluation of the flexibility use case.

Table 1. Overview of executed tests cases for flexibility use case.

No. of Participants in
Blockchain Network Number of Requests

3
1/2/4/8/16/32/36/40/48/50/52/54/64/128/256/512

transactions per sec. sent to the ordering service
10

28

To assess the system performance, we used the following indicators:

• Request round-trip time, that is, the time elapsed from the moment in which a user
submits an operation request (i.e., write) and the moment in which he/she receives
a service response. The monitoring procedure was accomplished by integrating a
recording service both in the user and REST service sides.

• System resources utilisation, in which we monitor the utilisation of CPU and memory
for all the related services. To keep track of the utilisation of system resources, we relied
on the docker’s built-in monitoring services.

In fact, these indicators demonstrate how the system performs in terms of required
resources (system resource utilization), and whether the end user’s experience is affected
(request round-trip time), considering the different number of nodes in the blockchain
network, as well as number of transactions per second.

In the following sections, we overview the results considering different numbers
of participants in the network, and transactions per second submitted to the system.
The performance metrics used are in line with the ones found in similar studies [22].

4.1. Request Round-Trip Time

The end to end execution time considers different sizes of blockchain network, i.e.,
3, 10, and 28 participants, while a different number of requests per second are submitted
to the network. Results indicate that below the 32 requests per seconds level, the end
to end execution time is less than 1 s (independent of the network size), without having
any impact on end user’s experience. However, as the number of transactions increases
the total execution time grows exponentially. This is because the system cannot properly
handle the increased number of requests. Indeed, the more network participants, the longer
the transaction end to end execution takes to complete, especially in rates greater than
32 transactions per second, which can be seen in Figure 8a. This trend is also confirmed by
the number of errors that occur during the different scenarios (in Figure 8b). Note that the
number of failures for higher than 48, 52, and 54 TPS for 28, 10, and 3 nodes respectively
is more than 20% of the total transactions, which indicates that the system cannot handle
such traffic and consequently its behavior is unpredicted.
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Moreover, for a network size with 3 nodes, up to 51 transactions per second (TPS),
the total execution transaction time does not exceed 2 s, which can be considered as an
acceptable response time for end users, also taking into account the number of errors.
If the system is more reluctant in that sense, in 54 TPS the end to end delay reaches up
to 10 s without losing its stability, as the number of errors remain low. Evidently, as we
increase the number of nodes, the end to end delay increases faster. For instance, in a
network that consists of 28 members, under 32 TPS the end to end delay approximates
2 s, while for 3 nodes it is less than 1 s. Note that we do not illustrate outcomes for TPS
greater than 128, as the system becomes completely unstable with the high percentage of
submitted transactions failing. Figure 8a shows the end to end execution time and Figure
8b correspond to the number of errors. Figure 9 indicates an example of end to end delay
for a specific time window for 8 TPS for all of the cases. It should be noted that it is not
expected that all the configurations would have exactly the same behavior, i.e., in a network
with 28 nodes, the end to end delay time has high variability, which is an indication that
the system is already under stress.
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scenario of 8 transactions per second (TPS).

4.2. System Resource Utilization—Memory of Smart Contract

The nodes analyzed can be active or passive. The first correspond to nodes respon-
sible for issuing a transaction, where the second ones are just present in the network as
participants. Smart contract for both active and passive nodes have a similar trend with
the corresponding clients, as Figure 10a,b illustrate. In fact, the smart contract memory
utilization increased as the number of requests grew. However, in no case did it exceed the
threshold of 1%.
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4.3. System Resource Utilization—CPU/Peer

Peer service CPU utilization ranges between 3% to 6% for an active node, as can be
observed in Figure 11a, while for a passive node, it varies between 2% and 4.5%, as seen in
Figure 11b. For both types of nodes, the CPU utilization does not depend on the number of
the participants, however, the CPU utilization grows as the number of requests increases.
For instance, CPU utilization for 2 requests per second is approximately 2.5%, whereas for
8 TPS, reached up to 5% in the case of an active node, seen in Figure 11a. The same trend is
followed in the case of a passive node (Figure 11b).
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4.4. System Resource Utilization—CPU—Smart Contract

Last but not least, smart contract CPU utilisation is negligible without being affected
by either the number of nodes nor by the number of transactions, as Figure 12 illustrates.
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This can be seen by the low utilization in both active and passive nodes, not surpassing
the 1% level, except for one case at 52 requests per second (with 3 nodes), shortly breaking
this level in the active node chart (Figure 12a).

The analysis carried out shows a robust and straightforward implementation of the
blockchain solution for DR provision verification. The simulations demonstrate that the
solution is scalable to account for numerous assets. This can be assumed, as the simulations
were performed on a per second basis, while in practice demand response events would
typically take place over several minutes, in fact, with a minimum duration of a settlement
period (typically 15 min) until its occurrence is published. This procedure facilitates the
financial settlement and reduces its overall time when compared to what is done presently.
It will also allow for a communication of data between the TSO and DSO/BRP, which is
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incentivized in the CEP. The adoption of smart contracts and facilitation of DR event
verification will enable the large-scale service provision, including medium and large
assets, paving the way to citizen engagement and involvement in the energy market.

Regarding the experimental approach, when compared to other studies, some refer-
ences can be found, both used in building DR activation and renewable generation track-
ing [15,16]. In both studies, authors publish data directly from the data source, whereas our
study acknowledges the crucial role of aggregators in providing DR and publishing the
data through them. In this scenario, where metered data is directly sent for publication,
the only step of verification is performed by the SO requesting the service. It thus assumes
that the data is reliable, since it comes from the source (trusted party). In our study the SO
not only confirmed the data origin (through certificate), but also that the power which the
aggregator is claiming to provide (which can be from multiple assets) has actually been
delivered for the DR event requested. This is made possible by the use of the AND policy
made available by the Hyperledger Fabric, in which the data is published if the aggregator
and the SO approve it. The added value of our study is hence the demonstration of the DR
provision through an Aggregator, in which other participants, having access to the ledger,
do not rely merely on the aggregator’s claim, but also on the SO validation of events.

Regarding the performance levels obtained in the experiment, when compared to the
literature, authors in [22] use a similar architecture, however only simulating 28 nodes
and varying from 2.5 to 13.3 TPS towards the ordering service. The authors obtained a
smart contract memory utilization of below 1%, similar to the results of the current study.
As far as memory utilization, for the peer and the REST service, are concerned, it can be as
low as 4.5%, when compared to the present study, which varies between 3.5% and 5.0%
seen in Figure 11a. In terms of execution time, authors in [23] developed an analysis of
performance between Hyperledger Fabric and a private deployment of Ethereum. Their
results show that Hyperledger Fabric outperforms Ethereum. This can be explained by the
fact that Fabric relies on an ordering service for consensus, whereas Ethereum uses proof
of work. In a simulated worst case scenario, the authors submitted 10,000 transactions
parallel to both blockchain deployments, and the latency of the Ethereum deployment was
found to be around 8 min, in contrast to 35 s for Hyperledger Fabric. In our study we
have obtained an end to end execution time of approximately 12 s, with 28 nodes and 64
requests per second, which is in line with the literature.

5. Conclusions

In this work, we studied the efficacy of DR on a permissioned blockchain system. To
do so, we deployed a DR scenario on a lab set up using Hyperledger Fabric architecture
and considered different traffic conditions and number of participants on the blockchain
network. Results indicate that, in general, CPU utilization is not significantly influenced
by the number of nodes participating on the network. However, the number of submitted
transactions per second can mainly affect the CPU utilization of the peer service, which,
when under stress, can reach up to over 4–5%. Moreover, the end to end execution time,
considering different sizes of blockchain network, i.e., 3, 10, and 28 participants, remained
below 1 s, up to 32 requests per seconds. In particular, for a network size with 3 participants
up to 51 TPS, the total execution transaction time did not exceed 2 s. This is an acceptable
response time for end users, also taking into account the number of errors. If the system
is more reluctant, in the end to end delay, for 54 TPS it reached up to 10 s without losing
its stability, as the number of errors remain low. Given that the DR event settlement
period is typically 900 s (15 min), and the seldom-expected frequency of requests of such
events, the systems would allow numerous transactions and assets to be considered. These
conditions suggest that the use of DLT is a promising feature to be integrated into future
flexibility markets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14071881/s1, Figure S1: Application used to activate the Battery Storage Unit (remote access
to the local SCADA).
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