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Abstract: Permanent magnet machines with segmented stator cores are affected by additional
harmonic components of the cogging torque which cannot be minimized by conventional methods
adopted for one-piece stator machines. In this study, a novel approach is proposed to minimize the
cogging torque of such machines. This approach is based on the design of multiple independent
shapes of the tooth tips through a topological optimization. Theoretical studies define a design
formula that allows to choose the number of independent shapes to be designed, based on the
number of stator core segments. Moreover, a computationally-efficient heuristic approach based
on genetic algorithms and artificial neural network-based surrogate models solves the topological
optimization and finds the optimal tooth tips shapes. Simulation studies with the finite element
method validates the design formula and the effectiveness of the proposed method in suppressing the
additional harmonic components. Moreover, a comparison with a conventional heuristic approach
based on a genetic algorithm directly coupled to finite element analysis assesses the superiority of
the proposed approach. Finally, a sensitivity analysis on assembling and manufacturing tolerances
proves the robustness of the proposed design method.

Keywords: artificial neural networks; cogging torque; finite element analysis; genetic algorithm;
manufacturing tolerance; modular stator; permanent magnet machines; segmented stator; software
design; surrogate models; tolerance analysis; topological optimization

1. Introduction

Permanent magnet machines (PMMs) are mainly manufactured with one-piece stator
cores. Among these machines, fractional-slot concentrating winding topologies ensure low
cogging torque, low copper losses and high torque density [1–3]. Recently, segmented stator
core (SSC) structures have attracted increasing interest since, compared to one-piece stator
machines, they allow an easier manufacturing process and reduced material wastage, espe-
cially when large machines are considered such as wind and tidal power generators [4–9].
However, a SSC structure introduces additional harmonic components (AHCs) of the
cogging torque due to the presence of additional airgaps in the flux-path. The cogging
torque is an undesired torque pulsation which degrades the PMMs performances because
of the induced speed pulsations, mechanical vibrations, and acoustic noise, especially at
low speed and inertia [10–13].

The cogging torque of PMMs with a one-piece stator core can be suppressed by
using rotor skewing techniques [10], “dummy” stator slots or notches [14–16], different
slot openings [17], or by choosing different stator slots and teeth widths pairing [18,19].
While rotor skewing approaches are ineffective in case of SSC machines due to the
additional lower order harmonics introduced by stator core segmentations and stator

Energies 2021, 14, 1880. https://doi.org/10.3390/en14071880 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-3179-4427
https://orcid.org/0000-0002-9965-2433
https://orcid.org/0000-0003-1471-9799
https://doi.org/10.3390/en14071880
https://doi.org/10.3390/en14071880
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14071880
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/7/1880?type=check_update&version=2


Energies 2021, 14, 1880 2 of 26

asymmetries [10–13,20–22], the effectiveness of the other techniques has not been proved
in the presence of SSCs.

The recent literature provides few design solutions for the mitigation of the AHCs in
SSC machines. In [11], the cogging torque of PMMs with SSCs is related to the number
of uniform segments, to the combination of different non-uniform segments, and to the
different shape of the connecting tongue. In case of uniform stator core segments, the
AHCs are minimized when the segments number maximizes the least common multiple
(LCM) between the number of poles and the number of segments. Instead, in case of
non-uniform stator core segments, the AHCs are minimized if the distance between the
additional airgaps is 90◦ and 120◦ or 240◦ electrical degrees when two or three non-uniform
stator core segments are considered, respectively. Finally, it is shown how the shapes of
the connecting tongues have a negligible impact on the AHCs. However, even when the
optimal number of segments and the optimal distance between the additional airgaps is
adopted, a non-negligible cogging torque remains. In [8], a semi-analytical method based
on the slot openings’ shifting is proposed for the mitigation of the AHCs, providing 85%
cogging torque reduction. However, such method is limited only to stator core segments
with two slots, and, for some specific topologies it shows a limited effectiveness. Moreover,
in some cases, the optimal shift angle can exceed the maximum available shift range.
In [23], the cogging torque of an annular PMM (APMM) with a SSC has been minimized
by designing multiple, periodically reproduced, independent shapes of the tooth tips.
The optimal shapes have been achieved through a topological optimization (TO) solved
with a genetic algorithm (GA) coupled with 2-D finite element analysis (FEA). Despite its
good results, such as cogging torque reduction of 94%, torque ripple reduction of 70.2%,
and negligible influence on the other machine performances such as average torque and
back-EMF THD; this technique requires long computational sessions, i.e., about 24 h.

The aim of this paper is to fill the existing gap in the literature, improving the method
proposed in [23]. A novel design formula for the choice of the independent tooth tip shapes’
numbers is proposed for the design variables reduction. The computational effort of the TO
is mitigated through feed-forward (FF) artificial neural network (ANN) surrogate models.
ANN-based surrogate models constitute a promising approach recently investigated for
the reduction of computational requirements in electrical machines’ optimizations. This
approach allows to couple optimization algorithms with computationally efficient models,
avoiding time-consuming FEA iterations, whose computational times are in the order of
minutes. In [24], a topological binary particle swarm optimization (BPSO) coupled to a
surrogate model based on a convolutional neural network (CNN) together with full and
reduced order FEA maximized the torque of a Synchronous reluctance motor (SynRM). By
performing 80% of the BPSO iterations using the CNN, results comparable to a full order
FEA optimization are achieved. The computational times are reduced of almost 20 times,
providing a solution in 24 h. In [25], a multi-objective GA has been successfully used with
two Bayesian regularization backpropagation neural networks which approximate the
relationship between three design variables and the average torque and the torque ripple
of a SynRM. The objective function is computed by means of multiple magnetostatic 2-D
FEA, and no comparison with the standard FEA-based approach is provided. Moreover,
in [25], a single training instance is performed after the data acquisition while the achieved
solution is affected by the approximation error of the employed surrogate model.

Alternatively, in this paper, FF ANNs are trained by means of multiple steps transient-
with-motion (TWM) FEA to approximate the relationship between multiple binary design
variables, one real design variable, and the cogging torque waveform. The proposed
approach is not limited to stator segments with only two stator slots as in [8], but it handles
arbitrary topologies with uniform stator segments. Furthermore, the surrogate models are
iteratively trained and refined during the heuristic process by means of FEA evaluations of
the partial solutions. Finally, the optimal solution is chosen among the FEA data samples
and is not affected by the surrogate models’ approximation error as in [25].
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Compared to [23], novelties and improvements of this work can be summarized
as follows:

• A more efficient heuristic approach that combines ANN-based surrogate models and
FEA;

• An improved design formula which allows to reduce the number of design variables;
• A more detailed theoretical study supports the proposed method;
• The proposed method is validated through an extended analysis to three different

segmented stator cores.

The paper is organized as follows: Section 2 presents and analyzes the case study,
the novel design formula and the proposed TO is presented in Section 3, in Section 4 the
proposed heuristic approach based on the use of ANN-based surrogate models is described,
the results are reported in Section 5 and concluding remarks are drawn in the last section.

2. Annular Permanent Magnet Machine with a Segmented Stator Core

For the validation of the proposed method, we choose as a case study an APMM
for low power urban wind applications with a large diameter and high number of poles.
The main design aspects are reported in [26], where the authors tackled the design of
electric generators fully embedded in a ducted horizontal axis wind turbine (DHAWT).
Figure 1 shows a sketch of the APMM integrated within the DHAWT. The stator of the
APMM is integrated within the diffuser of the DHAWT, while the rotor is constituted by a
ring directly connected to the blade tips. This solution avoids gearboxes, increasing the
global reliability and efficiency while reducing maintenance costs. Moreover, the diffuser
improves the fluid dynamic performances of the wind generator increasing the power
capability [26,27]. Similar topologies are also adopted in tidal turbines [9]. Due to the
significant size of the machine, a modular structure simplifies the manufacturing and
assembling process. Moreover, in [26], the use of printed circuit boards for the stator
windings is proposed. This technology allows to reduce production costs as well as the
additional copper losses induced by phenomena related to the high electrical frequency
operation, such as the proximity effect. The optimization procedure aimed at minimizing
the permanent magnets and copper volumes of the APMM is also reported in [26], while
the control scheme of the considered APMM integrated in the DHAWT is detailed in [27].
Figure 2 depicts one of the ten modules of the considered APMM with 20, 30 and 60 uniform
stator core segments. Machine parameters and materials are summarized in Table 1. Note
that the airgap length is fixed according to mechanical constraint related to the DHAWT.

Figure 1. 3D sketch of the APMM integrated within the DHAWT [27].
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Figure 2. Modules of the APMM: (a) Two stator segments per module; (b) Three stator segments per module; (c) Six stator
segments per module.

Table 1. Main parameters and materials of the APMM.

Parameter Value

Rated Torque 12 Nm
Rated Speed 941 rpm

Rated Current 1.55 A
No. of modules 10

No. of poles 100
No. of stator slots 120

Stator back-iron thickness 4 mm
Rotor back-iron thickness 4 mm

PM thickness 3.5 mm
Axial length 10 mm

Airgap length 10 mm
Stator external radius 583 mm
Rotor external radius 545 mm

Tooth tips width 20.3 mm
Tooth tips height 2 mm
Copper fill factor 0.08

Element Material

Magnets NdFeB 40/23
Stator core 10JNEX900

Rotor back-iron 10JNEX900
Windings Copper 100% IACS
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Following the formulation suggested in [23], the cogging torque of an PMM with an
SSC can expressed as:

Tcog(ϑr) = TNHC(ϑr) + TAHC(ϑr), (1)

where ϑr is the rotor angular position, TNHC represents the native harmonic components
(NHCs) caused by the stator slots, and TAHC is the AHCs caused by the stator segments.
The NHCs frequency is an integer multiple of the LCM between the number of poles (2p)
and the number of stator slots (Ns) [23]. Instead, the AHCs frequency is an integer multiple
of the LCM between 2p and the number of stator core segments (m):

TNHC =
∞

∑
i

TNHCisin(LCM(2p, Ns)iϑr + ϕNHCi), i ∈ N (2)

TAHC =
∞

∑
i

TAHCisin(LCM(2p, m)iϑr + ϕAHCi), i ∈ N (3)

where TNHCi, TAHCi, and ϕNHCi, ϕAHCi are the amplitudes and the phase shift of the i-th
harmonic component, respectively.

Considering (3), the following harmonic orders of the AHCs are expected in an
electrical period for the APMMs with 20, 30 and 60 stator segments, respectively:

LCM(2p, m)

p
=

LCM(100, 20)
50

i = 2i, i ∈ N (4)

LCM(2p, m)

p
=

LCM(100, 30)
50

i = 6i, i ∈ N (5)

LCM(2p, m)

p
=

LCM(100, 60)
50

i = 6i, i ∈ N (6)

For the APMM with 20 stator segments, a higher amplitude of the first AHC is expected
with respect to the others APMMs. In fact, in Equation (4), since LCM(100, 20) = 100, the
first AHC is produced by the fundamental component of the rotor magneto-motive force
(MMF). In (5) and (6), the first AHC is produced by the third harmonic component of
the MMF which has a smaller amplitude if compared with the fundamental component.
Moreover, the APMM with 60 stator segments is expected to have larger AHCs than the
one with 30 stator segments. In fact, when additional airgaps are introduced, the reluctance
of the back-iron increases. This introduces more flux linkage across slot openings and tooth
tips, increasing the tangential flux density, which adversely affects the cogging torque [11].
Considering (2), instead, the following harmonic orders of the NHCs are expected for the
three APMMs:

LCM(2p, Ns)

p
=

LCM(100, 120)
50

i = 12i, i ∈ N (7)

In Equation (7), since LCM(100, 120) = 600, the first NHC is produced by the 6th
component of the rotor MMF. Hence, the amplitudes of the NHCs are negligible if compared
to the amplitudes of the AHCs.

To analyze the cogging torque of the APMMs, TWM 2D FEA have been performed
using the MagNet software. The TWM solver provides accurate solutions by considering
the motion effect as well as the induced eddy currents. A 450 steps TWM FEA has
been performed to analyze the cogging torque over an electric period. In Figure 3 the
cogging torque waveforms and harmonic spectra of the APMMs with 20, 30 and 60 stator
core segments are reported. The harmonic spectrum of the APMM with 20 stator core
segments has a wide 2nd harmonic and a 4th and 6th harmonics with amplitudes of
0.165 and 0.069 Nm, respectively. The APMMs with 30 and 60 stator core segments have
similar spectra in which the dominant cogging torque harmonic is the 6th. The peak-
to-peak values of the cogging torque are 9.125, 0.226 and 0.298 Nm, i.e., 76.0%, 1.9%
and 2.5% of the rated torque, respectively. In all the cases, the NHCs are negligible if
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compared to the AHCs. Finally, note that in the last two harmonic spectra, unexpected
weak harmonic components occur. These harmonics can be caused by slightly asymmetries
in the model [21]. Nevertheless, the obtained results are overall in good agreement with
the expectations.

Figure 3. Cogging torque waveforms and harmonic spectra of the APMMs: (a,b) APMM with 20 stator segments; (c,d)
APMM with 30 stator segments; (e,f) APMM with 60 stator segments.
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3. Tooth Tips Design
3.1. Theoretical Study and Design Formula

The method proposed for the suppression of the AHCs is based on the design of
multiple, periodically reproduced, independent shapes of the tooth tips of the machine,
called independent tooth tips. In [23], a simple design formula was developed to determine
the number of the independent shapes. This formula has been derived by expressing the
airgap flux density as the product of the rotor MMF and a flux-path permeance function.
Three separate permeance functions took into account the stator slotting effects of both
the modified tooth-tip shapes and the segmented stator core. Therefore, the approach
proposed in [23] aims at reciprocally suppress the harmonics of the permeance functions
associated to the tooth tips shape and to the segmented stator core with a proper design
of the tooth tips. According to this strategy, the developed design formula provides the
number of independent tooth tips as the ratio between the number of stator slots and
stator segments.

In this paper, a novel strategy to reduce to the number of the independent tooth tips is
proposed. Therefore, the number of design variables is reduced, providing a less complex
optimization problem. Considering the modified shapes of the tooth tips, the cogging
torque of the APMM can be expressed as:

Tcog(ϑr) = TNHC(ϑr) + TAHC(ϑr) + TIHC(ϑr), (8)

where TIHC describes the components of the cogging torque caused by the shape of the
tooth tips, called introduced harmonic components (IHCs). The novel strategy aims at
directly suppress the AHCs by means of the IHCs. For this purpose, the IHCs should
have the same frequency of the AHCs. To find a relationship between the frequency of
the IHCs and the number of the independent tooth tips, we conduct a theoretical study.
In [9], the superposition principle is employed to study the cogging torque of PMMs with a
SSC. According to this principle, the contributions of the slotted stator structure and of the
stator segmentations are independent and can be added together. In particular, the cogging
torque contribution due to the slotted stator structure can be studied by considering a
non-segmented slotted machine. Commonly made assumptions to study the cogging
torque of these machines are as follows [9,19,28,29]:

• The magnetic energy is stored only in the airgap and PMs volume;
• The PMs and air permeability are equal to the vacuum permeability;
• The permeability of the iron is assumed to be infinite;
• The airgap flux density is constant along the radial direction.

The cogging torque of a rotating PMM can be studied with the well-known energy
method, which defines the cogging torque as:

Tcog(ϑr) = −
∂W
∂ϑr

, (9)

where W is the stored magnetic energy. According to the above assumptions, W can be
expressed as in [19]:

W =
1

2µ0

∫
Vg

B2dV, (10)

where Vg is the volume of airgap and PMs, µ0 is the vacuum permeability, and B is the
no-load airgap flux density expressed as:

B(α, ϑr) = Λ(α) Fm(α, ϑr), (11)
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where Λ is the airgap permeance function, Fm is the rotor MMF, and α is the angular
displacement along stator circumference. Considering Equation (11), Equation (10) can be
expressed as:

W = 1
2µ0

∫
Vg

Λ2(α)Fm
2(α, ϑr)dV = 1

2µ0

Lstk∫
0

R2∫
R1

2π∫
0

Λ2(α)Fm
2(α, ϑr)dαdrdz

= Lstk
2µ0

(R2
2−R2

1)
2

2π∫
0

Λ2(α)Fm
2(α, ϑr)dα,

(12)

where Lstk, R1 and R2 are the stack length, the outer radius of rotor, and inner radius of the
stator, respectively. Following the approach adopted in [30,31], Λ can be expressed as:

Λ(α) =
µ0

g′(α)
, (13)

with:
g′(α) = g + lss(α) + ltts(α), (14)

where g is the difference between R2 and R1, lss is the additional length of the airgap
flux-path due to the presence of the stator slots and ltts is the additional length of the airgap
flux-path due to the modified shape of the tooth tips. Assuming lss(α), ltts(α)� g, (14) can
be approximated by the first-order Taylor’s expansion:

Λ(α) ≈ µ0
g −

µ0
g2 (g′(α)− g) = µ0

g −
µ0
g2 (lss(α) + ltts(α))

= µ0
g + Λss(α) + Λtts(α),

(15)

where Λss and Λtts are the permeance functions associated to the stator slotting effect
and to the modified shape of the tooth tips, respectively. Considering (15), (12) can be
expressed as:

W = Lstk
2µ0

(R2
2−R2

1)
2

2π∫
0

(
µ0
g + Λss(α) + Λtts(α)

)2
Fm

2(α, ϑr)dα

= Lstk
2µ0

(R2
2−R2

1)
2

2π∫
0

(
µ0

2

g2 + Λ′ss(α) + Λ′tts(α)
)

Fm
2(α, ϑr)dα,

(16)

where Λ′ss = 2Λssµ0/g + Λss
2, Λ′tts = 2Λttsµ0/g + Λtts

2 + 2ΛssΛtts. Compared to the
basic machine, the one with the modified shape of the tooth tips has an additional compo-
nent of the squared permeance function, i.e., Λ′tts. Therefore, the IHCs are caused by the
interaction between this component and the rotor MMF:

TIHC(ϑr) = −
Lstk
2µ0

(
R2

2 − R2
1
)

2
∂

∂ϑr

2π∫
0

Λ′tts(α)Fm
2(α, ϑr)dα. (17)

If Ni independent shapes of the tooth tips are periodically reproduced for all the tooth
tips of the machine, the frequency ftts of the function ltts(α) is:

ftts =
Ns

2πNi
. (18)

This frequency coincide with the frequency of Λ′tts(α). This can be easily verified by
means of the Werner formula, considering Equation (15), the definition of Λ′tts, and that
the frequency of Λss is equal to Ns/2π, i.e., an integer multiple of ftts. Considering the
orthogonality property of trigonometric functions, in (17) only the harmonic components
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of Λ′tts(α) and Fm
2(α, ϑr) with the same frequency contribute to the energy, and, thus, to

the cogging torque. Therefore, the frequency of TIHC is expressed by:

f IHC =
LCM

(
2p, Ns

Ni

)
i

2π
, i ∈ N. (19)

Finally, the following expression for the TIHC holds true:

TIHC(ϑr) =
∞

∑
i

TIHCisin
(

LCM
(

2p,
Ns

Ni

)
iϑr + ϕIHCi

)
, (20)

where TIHCi and ϕIHCi are the amplitude and the phase shift of the i-th harmonic compo-
nent, respectively.

Equations (19) and (20) are a key result of the presented analytical study. These
formulas state that the frequencies of the IHCs of a PMM designed with Ni independent
tooth tips are multiple of the LCM between the number of poles and the ratio of the number
of slots and the number of independent tooth tips. Considering (3) and (20), to obtain IHCs
with the same frequency of the AHCs, the following equation should be satisfied:

LCM
(

2p,
Ns

Ni

)
= LCM(2p, m). (21)

Therefore, the minimum number of independent tooth tips to suppress the AHCs is
the following:

Ni = min
{

n ∈ N| LCM
(

2p,
Ns

n

)
= LCM(2p, m)

}
. (22)

Equation (22) is the design formula that allows the designer to choose the number
of independent tooth tips. By applying (22) to the APMMs with 20, 30 and 60 stator core
segments, the values of Ni obtained are 6, 2, and 2, respectively. Instead, by applying the
design formula of [23], the values of Ni obtained are 6, 3 and 2. Therefore, in this case, the
developed design formula allows to reduce the number of independent tooth tips when
the APMM with 30 stator core segments are considered.

3.2. Tooth Tips Shape Design through Topolgical Optimization (TO)

Equation (22) ensures that the IHCs include components with the same frequency of
the AHCs. However, to suppress the AHCs, it is still necessary to properly set the amplitude
and the phase shift of the IHCs through the design of the shape of the independent tooth
tips. To face this issue, an effective approach proposed in [23] is based on the definition of a
TO problem. Each independent tooth tip is discretized with a variable depth layer of Nsub
sub-regions, called sub-teeth. To define the sub-region materials, a binary variable (Sij) is
assigned to each ith sub-tooth of the jth independent tooth tip. Sij = 0 denotes air while
1 denotes iron. Moreover, considering the depth of the sub-teeth layer as an additional
variable, the design variables of the TO problem can be expressed as follows:

x =
[
S1,1 . . . SNsub ,1 . . . SNsub ,Ni Depth

]
, (23)

where Si,j ∈ {0, 1}, with i = 1, . . . , Nsub, j = 1, . . . , Ni, and Depth ∈ [0 dMAX ], with dMAX
as the depth limit for the sub-teeth layers. Therefore, Nsub·Ni binary design variables
and a real bounded design variable are defined. Two independent tooth tips discretized
with layers of 5 sub-teeth are shown in Figure 4, while an APMM module designed with
the above independent tooth tips is depicted in Figure 5. As shown in the figure, the
shapes of the independent tooth tips are periodically reproduced for all the tooth tips of
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the APMM. The objective function, fTO(x), of the TO is defined as the peak-to-peak value
of the cogging torque:

fTO(x) = max
(
Tcog(x, ϑr)

)
−min

(
Tcog(x, ϑr)

)
, (24)

where Tcog(x, ϑr) is the cogging torque waveform of the APMM designed in agreement
with the current values of the design variables x. The maximum value of Nsub is limited
by the tooth tips width and the manufacturing tolerances, while the maximum value for
dMAX is limited by the tooth tip height. The choice of Nsub should be a trade-off between
the achievable performances and the computational effort. In fact, the number of the
sub-teeth is related to the quantity of the design variables affecting the complexity of the
optimization problem and consequently the computational effort required by the heuristic
solution. Similar considerations are done about the choice of dMAX .

Figure 4. Example of two independent tooth tips discretized with a layer of 5 sub-teeth: Ni = 2,
Nsub = 5, x = [1 0 0 1 0 1 0 0 0 1 0.6].

Figure 5. Single module of the APMM designed with: Ni = 2, Nsub = 5, x = [1 0 0 1 0 1 0 0 0 1 0.6].

4. Heuristic Solution Based on GA and ANN Surrogate Models

In [23], a GA directly coupled to TWM FEA has been proposed to solve the TO
problem defined by (23) and (24). In particular, the TWM FEA has been used to compute
the Tcog(x, ϑr) waveform while the objective function has been computed through (24).
Even if this approach is effective, it is time consuming since each TWM FEA requires
minutes to be performed. In this work, in order to reduce the amount of computational
time required to solve the TO, the use of surrogate models is proposed for the computation
of the Tcog(x, ϑr) waveform.

Figure 6 describes the proposed heuristic procedure. It begins with the choice of the
main design parameters: Ni, Nsub and dMAX . Then, Nstart sample data sets are generated
through the TWM FEA of the APMM considering random samples of the design variables in
the design space. The sample data consists of a set of inputs X constituting the actual values
of the design variables x and a set of outputs Y constituting the values of Tcog_FEA(x, ϑr)
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computed by the TWM FEA. Specifically, Tcog_FEA(x, ϑr) is a vector of Nstep + 1 values of
the torque in an electrical period, where Nstep is the number of steps of the TWM FEA.
Then, by making use of the sample data, a multi-training phase is performed. Five FF
ANNs are chosen as surrogate models. Details about the choice of the FF ANNs will be
presented subsequently.

Figure 6. Flow chart of the proposed heuristic procedure.
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These FF ANNs are employed by the GA for the objective function evaluation:

fTO(x) = max
(
Tcog_ANN(x, ϑr)

)
−min

(
Tcog_ANN(x, ϑr)

)
, (25)

where Tcog_ANN(x, ϑr) is a vector of Nstep + 1 values of the torque in an electrical period,
computed by the FF ANN. The best three solutions of each trial of the GA are used to per-
form a TWM FEA and compute Tcog_FEA(x, ϑr). Thus, the new couples (x, Tcog_FEA(x, ϑr))
are introduced as additional data for the next heuristic iteration. The process stops when
NMAX sample data are obtained. The achieved solution (xopt) is selected as the best sample
among the input data set, i.e., the minimizer of the following function:

fTO_FEA(x) = max
(
Tcog_FEA(x, ϑr)

)
−min

(
Tcog_FEA(x, ϑr)

)
, x ∈ X. (26)

The main idea is to implement a step-by-step incremental accuracy of the surrogate
models in the proximity of the minimum of fTO(x). The authors suggest employing five FF
ANNs to mitigate the randomness of the data sample splitting in training and validation
data, which affects the surrogate models’ accuracy near the solution of the TO. The best
three solutions of each GA are chosen for the next step to cope with the estimation errors
of the surrogate models. The main steps of the proposed procedure are detailed in the
following subsections.

4.1. Computationally-Efficient TWM FEA

Each one of the 450 steps TWM FEA performed to obtain the cogging torque waveform
requires about 55 min on a HP Z440 workstation. Since the proposed procedure requires
hundreds of TWM FEA, the authors suggest moderating the number of steps of the TWM
FEA according to process time. To ensure that the TWM FEA catches the dominant cogging
torque harmonics to minimize, the number of steps should be greater than the double of
the maximum harmonic order of the cogging torque harmonics to be minimized, according
to the Nyquist criterion. Considering that the maximum order of the cogging torque
harmonics of the analyzed APMMs is 6, 36 steps has been chosen for the TWM FEA
performed during the proposed heuristic procedure. Therefore, Tcog_FEA(x, ϑr) consists
of 37 values of the torque in an electrical period. Note that 36 steps ensure an acceptable
accuracy as will be shown later.

4.2. FF ANNs Surrogate Models Design

The designed FF ANN is depicted in Figure 7. The inputs and outputs are the design
variables x and the Tcog_ANN(x, ϑr) waveform, respectively. The architecture consists of
an input layer of NsubNi + 1 neurons, of NHL hidden layers, each one with NHN neurons,
and an output layer of 37 linear neurons. The hidden neurons’ activating function is the
hyperbolic tangent sigmoid (tansig).

To obtain the five FF ANNs employed by the GA for the objective function evaluation,
the following training procedure is proposed. First, the Nsample sample data are randomly
split in training (80%) and validation (20%) data. Then, the number of hidden layers and
the number of neurons for each hidden layer are chosen among the following sets of values:

NHL ∈ [1, 2]NHN ∈ [2, 4, 6, 8]. (27)
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Figure 7. Architecture of the FF ANN used as surrogate model.

The Levenberg-Marquardt algorithm, i.e., one of the fastest among ANNs training
methods [32], is applied to the training data set to determine the weights and biases of the
FF ANN. Moreover, to avoid the ANN over fitting on the training data, a stop criterion
based on the maximum validation failures is adopted. This criterion stops the Levenberg-
Marquardt training algorithm if the estimation error on the validation data (generalization
error) fails to improve for ten epochs in a row. This step is repeated for all the possible
combinations of NHL and NHN , hence, 8 FF ANNs are trained according to (27). Finally, the
trained FF ANN with the lowest validation error is chosen as surrogate model. Preliminary
analysis have shown that, compared to Equation (27), higher numbers of neurons and
hidden layers don’t ensure better validation errors considering a number of data samples
lower than 300. As shown in Figure 6, this training procedure is repeated five times to
obtain five ANN-based surrogate models. Note that the five FF ANNs could have different
structures, i.e., different values of NHL and NHN . Moreover, these structures could vary
with each iteration of the heuristic procedure. In fact, it is expected that the optimal number
of hidden layers and neurons increases when the number of sample data increases.

4.3. GA Design

The main parameters and settings of the designed GA are summarized in Table 2. As
the computation of the objective function using the surrogate models is very fast, the GA
can operate with large individuals and generations to increase its performances. In this
work, the initial population is made by the best 50 samples of the input data set X, and
350 samples obtained through a uniform sampling in the design space.

Table 2. GA parameters and settings.

Parameter Value

Population Size 400
Maximum Generations Number 100

Crossover rate 80%
Mutation rate 20%

Number of Elite Individuals 0.05·Population Size
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5. Results
5.1. Results of the Proposed Heuristic Procedure

The design parameters used to perform the proposed heuristic procedure are reported
in Table 3. According to (22), Ni is 6, 2 and 2, respectively. Moreover, we set NMAX = 265
in order to perform the proposed optimization in about 24 h, as can be deduced by Table 4,
where the computational times of the main steps of the proposed heuristic procedure are
reported. The training phase is related to the five FF ANNs surrogate models. Table 5
shows the results of the proposed heuristic procedure obtained on the APMMs with 20,
30 and 60 stator segments. Since the proposed method includes stochastic processes, i.e.,
the surrogate models training phase and the GA heuristics, it has been applied five times
to properly evaluate its performances. As it can be seen, the method ensures outstanding
performances: in all the cases a reduction of the cogging torque higher than 85% is achieved.
Particularly noteworthy are the results achieved on the APMM with 20 stator segments.
In fact, in this case, a cogging torque lower than that of the basic APMMs with 30 and 60
stator segments has been achieved.

Table 3. Actual values of the main design parameters.

Parameter Value

Independent tooth tips (Ni) 6, 2, 2
Number of subteeth (Nsub) 9

Depth limit (dMAX) 0.8 mm
Number of initial samples (Nstart) 100

Maximum samples number (NMAX) 265

Table 4. Computational times of the heuristic procedure on a Workstation Hp Z440.

Operation Computational Time

TWM FEA (36 steps) 5 min
Training phase (x5) 3 min
GA heuristic (x5) 6 min

Table 5. Results of the optimizations with the proposed heuristic procedure.

20 Stator Core Segments 30 Stator Core Segments 60 Stator Core Segments

fTO_FEA

(
xopt

)
[Nm]

Cogging
Torque

Reduction
[%]

Average
Cogging
Torque

Reduction
[%]

fTO_FEA

(
xopt

)
[Nm]

Cogging
Torque

Reduction
[%]

Average
Cogging
Torque

Reduction
[%]

fTO_FEA

(
xopt

)
[Nm]

Cogging
Torque

Reduction
[%]

Average
Cogging
Torque

Reduction
[%]

1 0.216 97.6 0.031 86.3 0.034 88.6
2 1.210 86.7 0.030 86.7 0.032 89.3
3 0.282 96.9 94.4 0.038 83.2 84.9 0.037 87.6 87.7
4 0.241 97.4 0.040 82.3 0.040 86.6
5 0.592 93.5 0.032 85.8 0.040 86.6

Figure 8 shows the cogging torque peak-to-peak values computed using the TWM
FEA during the best optimizations, i.e., optimization no. 1, 2 and 2 for the APMMs with
20, 30 and 60 stator segments, respectively. As it can be seen, a reduction of the cogging
torque is already achieved with the first GA solutions, then, as the number of data samples
increases, the accuracy of the surrogate models improves and better solutions are achieved
by the GA heuristics. Moreover, in the case of APMMs with 30 and 60 stator segments,
the best solutions are achieved from the early iterations. In fact, in these two cases, fewer
design variables are used. Consequently, the FF ANNs surrogate models ensure good
approximation performances of the objective function even with few data samples. This
stresses the importance of reducing the design variables through a proper choice of the
number of independent tooth tips to save computational time.
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Figure 9 shows the cogging torque waveforms and harmonic spectra obtained with
36 and 450 steps TWM FEA of the best APMMs achieved by the optimizations. The peak-
to-peak values of cogging torque computed with the 450 steps TWM FEA are 0.224, 0.042
and 0.0362 Nm for the optimized APMMs with 20, 30 and 60 stator segments, respectively.
Therefore, a good agreement between the 36 and 450 steps TWM FEA is verified. Note
that in all the cases a remarkable reduction of the dominant AHC is achieved. Moreover,
the optimized APMM with two stator segments also shows an improvement of the 4th
and 6th harmonics over 50%. These results demonstrate the effectiveness of the proposed
method in the minimization of the AHCs of the cogging torque. The no-load flux density
distribution of the best APMMs achieved by the optimizations are shown in Figure 10. This
figure also shows the optimized shapes of the tooth tips, while the solutions achieved (xopt)
have been reported in the figure caption. A low value of the flux density can be noted. This
corresponds to a design choice of the APMM selected as a case study. In fact, this choice
allows to reduce the iron losses while meeting the torque requirements without increasing
the copper losses, i.e., the main source of the losses of the considered machine.

To fully demonstrate the validity of the design Formula (22), an analysis of the results
achieved with values of Ni in disagreement with the design formula is required. Figure 11
shows the results achieved through the optimizations on the APMM with 20 stator segments
with Ni = 3, 4, in disagreement with Equation (22). As expected, a weak reduction of the
cogging torque is achieved. Figure 12 shows the cogging torque waveforms and harmonic
spectra of the best achieved solutions, obtained with a 450 steps TWM FEA. The cogging
torque peak-to-peak values of the optimized machines are 6.927 and 6.805 Nm respectively.
Note that the APMMs with Ni = 3 has an higher 4th harmonic compared to the basic one
(greater by 42.8%) while there is a weak influence on the 2nd (lower by 24.7%) and 6th
(lower by 17.7%) harmonic. Moreover, the APMM with Ni = 4 has an higher 6th harmonic
compared to the basic one (greater by 55.9%) while there is a weak influence on the 2nd
(lower by 18.8%) and 4th harmonic (lower by 3.7%). These results agree with the theoretical
study since in an electrical period, from (20), the harmonic orders of the IHCs expected
for Ni = 3, 4 are 6i and 4i, respectively, with i ∈ N. These results demonstrate the validity
of the developed design formula (22). Note that the solution x of the TO might be also
constituted by the same shape for all the stator tooth tips. This implies that the design of
a single tooth tip shape does not affect the AHCs of the cogging torque. Consequently,
traditional methods based on dummy slots or notches equally placed in all the tooth tips
cannot be adopted for the minimization of the AHCs.

5.2. Results of the Direct Approach

To demonstrate the computational efficiency of the proposed heuristic procedure, the
results are compared with those achieved with the conventional direct approach on the
APMM with 20 stator segments. In this case, a unique GA heuristic is performed, and the
objective function has been directly computed by a 36 steps TWM FEA:

fTO(x) = max
(
Tcog_FEA(x, ϑr)

)
−min

(
Tcog_FEA(x, ϑr)

)
. (28)

Same design parameters (i.e., Ni, Nsub and dMAX) are employed. The GA population
size (PS) and maximum generations number (MGN) are chosen so that the two methods
have same execution times. Since the best combination of the PS and MGN is not known
a priori, we chose three different combinations for these two parameters, as reported in
Table 6 together with the number of TWM FEA iterated by the GA, i.e., PS·MGN + PS
since the GA initial population is considered as well. The other settings of the GA used for
the direct approach are equal to those listed in Table 2. The initial population is obtained
through a uniform sampling in the design space. To properly compare the two approaches,
five optimizations for each GA combination have been performed. Each TWM FEA requires
5 min to be performed, thus, each GA heuristic requires more than 25 h. Therefore, a slightly
advantage of time has been granted to the direct approach. Nevertheless, as shown in
Table 7, none of the three GA combinations ensure the same performances obtained by
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using surrogate models. In fact, the average and maximum cogging torque reduction are
lower than those reported in Table 5 for the APMM with 20 stator segments. Finally, Figure
13 shows the evolution of the best individuals among the GA generations obtained during
the best optimizations performed: optimization no. 1, 3, and 5 for the 17 × 17, 24 × 12,
and 30 × 9 GA combinations, respectively. This figure clearly shows the limit of the direct
approach compared to the proposed one: to achieve good results through the GA, high
values of the PS and of MGN are needed. This condition is satisfied by the proposed
method by using computationally-efficient surrogate models.

Figure 9. Cogging torque waveforms and harmonic spectra of the optimized APMMs. (a,b) APMM
with 20 stator segments. (c,d) APMM with 30 stator segments. (e,f) APMM with 60 stator segments.
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Figure 10. No-load flux density distribution of the optimized machines. (a) APMM with 20 stator segments, xopt =
[0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0.8 mm]. (b) APMM
with 30 stator segments, xopt = [0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0.48 mm]. (c) APMM with 60 stator segments, xopt =
[1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0.62 mm].

Figure 11. Objective function values computed using the TWM FEA performed during the heuristic
procedure on the APMM with 20 stator segments and Ni = 3, 4.
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Figure 12. Comparison between the basic and optimized APMMs with 20 stator segments and Ni = 3, 4. (a) Cogging
torque waveforms. (b) Cogging torque harmonic spectra.

Table 6. GA population size and maximum generations number set for the direct approach.

GA 1st Combination GA 2nd Combination GA 3rd Combination

PS ×MGN No. of TWM FEA PS ×MGN No. of TWM FEA PS ×MGN No. of TWM FEA

17 × 17 306 24 × 12 312 30 × 9 300

Table 7. Results obtained with the direct approach on the APMM with 20 stator segments.

17 × 17 24 × 12 30 × 9

fTO_FEA

(
xopt

)
[Nm]

Cogging
Torque

Reduction
[%]

Average
Cogging
Torque

Reduction
[%]

fTO_FEA

(
xopt

)
[Nm]

Cogging
Torque

Reduction
[%]

Average
Cogging
Torque

Reduction
[%]

fTO_FEA

(
xopt

)
[Nm]

Cogging
Torque

Reduction
[%]

Average
Cogging
Torque

Reduction
[%]

1 1.850 79.7 1.997 78.1 3.003 67.1
2 2.302 74.8 1.086 88.1 1.904 79.1
3 2.289 74.9 73.9 1.080 88.2 82.4 2.477 72.6 77.3
4 1.864 79.6 1.184 87.0 1.496 83.6
5 3.601 60.5 2.699 70.4 1.445 84.2

Figure 13. Best individuals evolution among GA generations obtained with the direct approach.
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5.3. Comparison with the Basic Machine

In [23], a comparison of the performances of the basic and optimized APMMs with
60 stator segments showed how the average torque of the optimized machine has been
reduced by 1.5%, the torque ripple has been reduced by 70.2% while the iron losses are not
appreciably affected. In this subsection, a comparison between the basic and optimized
machine with 20 stator segments is reported. The optimized machine is the one shown in
Figure 10a.

Figure 14 shows the torque waveforms and harmonic spectra at rated current of the
basic and optimized APMMs with 20 stator segments, obtained with a 450 steps TWM FEA.
Note that the cogging torque of the basic machine largely affects the torque ripple under
load operations. In fact, the 2nd harmonic of the cogging torque appears unaltered in the
torque waveform. Instead the torque of the optimized machine benefits from the proposed
method and the torque ripple is significantly reduced.

Figure 14. Comparison between the basic and optimized APMMs with 20 stator segments at rated current. (a) Torque
waveforms. (b) Torque harmonic spectra.

In Figure 15, the permanent magnet flux-linkage for the three phases of the basic and
optimized APMM is shown. The basic machine has an asymmetry of the flux-linkage with
a phase B amplitude slightly larger than phases A and C. Instead, analysis performed
on the basic machine with 30 and 60 stator segments, not reported in this paper, show a
flux-linkage symmetric for the three phases. The optimized machine keeps the asymmetry
of the basic machine but the amplitudes of the fundamental components and of the other
harmonic components are slightly reduced.

Details about the THD of the permanent magnet flux-linkage, torque ripple, average
torque and losses at rated speed and current of the basic and optimized APMM are provided
in Table 8. The average torque of the optimized machine has been reduced by 3.1%, the
torque ripple has been reduced by 66.7% while there are no appreciable alterations of
the losses and permanent magnet flux-linkage THD. Due to the high value of the copper
losses, the efficiency of the optimized and basic machine is about 90%. However, since
the considered fill factor is very low (see Table 1), the efficiency of the machine can be
improved by increasing the copper volume.
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Figure 15. Waveforms and harmonic spectra of the permanent magnet flux-linkage for the three
phases of the basic and optimized APMM.

Table 8. Comparison between the basic and optimized APMM with 20 stator segments.

Parameter Basic APMM Opt. APMM

Average torque 13.05 Nm 12.64 Nm
Torque ripple (peak-to-peak to

average torque ratio) 70.6% 3.9%

Phase A permanent magnet
flux-linkage THD 0.37% 0.34%

Phase B permanent magnet
flux-linkage THD 0.57% 0.61%

Phase C permanent magnet
flux-linkage THD 0.58% 0.56%

Copper losses 91.8 W 91.8 W
Magnet losses 23.6 W 23.3 W

Iron losses 16.4 W 15.7 W
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5.4. Sensitivity Analysis with Manufacturing and Assembling Tolerances

To evaluate the robustness of the proposed method, a sensitivity analysis has been
performed considering manufacturing and assembling tolerances on the optimized APMM
with 20 stator core segments, i.e., the machine shown in Figure 10a. The considered
manufacturing and assembling uncertainties are shown in Figure 16 and are as follows:

• Tolerance of stator tooth width, ∆wt;
• Tolerance of stator segments position, ∆θt;
• Tolerance of subteeth width, ∆wst;
• Tolerance of magnets position, ∆θPM.

Figure 16. Manufacturing and assembling tolerances considered in the sensitivity analysis.

Note that all the considered uncertainties affect the cogging torque of the APMM.
Typical values of tolerance are considered, as reported in Table 9 [28]. As in [33], a normal
distribution is assumed for the manufacturing and assembling uncertainties with a standard
deviation σ = (UL− LL)/6, where UL and LL are the upper and lower limits of the
tolerance ranges, respectively.

Table 9. Manufacturing and assembling tolerances.

∆wt ∆θt ∆wst ∆θPM

±0.05 mm ±0.05◦ ±0.05 mm ±0.05◦

Two methods can be adopted to handle such tolerances. The first method is the uni-
form uncertainties method (UUM), which assumes that the uncertainty on each component
is the same, e.g., all the tooths have the same width. Although its ease of implementation,
the effects of the manufacturing tolerances may be underestimated with this method. The
second approach is the non-uniform uncertainties method (non-UUM), which assumes
that each component has its own uncertainty. This method ensures more realistic analysis
but requires an higher computational effort since the motor periodicity is lost [28].

In this subsection, we employed the non-UUM while considering equal APMM
modules. That is, each PM, tooth and stator segment of a module has its own uncertainty.
This choice represents a fair trade-off between accuracy and computational effort. Thus, to
evaluate the cogging torque under this assumption, a TWM FEA in a mechanical period
of 36◦ should be performed, which is the angular span of a single APMM module. In
fact, due to the loss of the rotor periodicity caused by the tolerance of magnets’ position,
the TWM FEA cannot be performed in an electrical period. The number of steps of the
TWM FEA has been fixed to 180, which is the product between 36 (i.e., the number of
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steps used to perform the optimization) and the number of pole pairs of a module of the
APMM. A 180 steps TWM FEA requires about 23 min. If the non-UUM were applied to
each module of the APMM, a TWM FEA in a mechanical period of 360◦ would have been
necessary. Therefore, a 1800 steps TWM FEA requiring about 230 min would have been
performed. Note that such a high computational time limits the number of TWM FEA
iterations, reducing the analysis accuracy.

Figure 17 shows the peak-to-peak cogging torque values obtained by means of TWM
FEA performed on several designs of the optimized APMM subject to the considered toler-
ances. The average value of the peak-to-peak cogging torque of the optimized machines
under manufacturing and assembling tolerances is shown in the figure. This value is
equal to 0,69 Nm, which corresponds to a reduction of 92.4% if compared to the basic ma-
chine. Moreover, the minimum and maximum values of the peak-to-peak cogging torque
among the analyzed machines are equal to 0,39 and 1.17 Nm, respectively. These results
clearly show how a significantly reduction of the cogging torque is achieved even under
manufacturing and assembling tolerances, proving the robustness of the proposed method.

Figure 17. Peak-to-peak cogging torque of the optimized APMM with 20 stator segments under
manufacturing and assembling uncertainties.

6. Conclusions

This paper presents a novel method for the minimization of the cogging torque of
PMMs with an SSC. To suppress the AHCs of the cogging torque, an approach based on
the design of multiple independent shapes of tooth tips has been proposed. By means of
theoretical studies, a design formula has been developed, providing the number of the
independent shapes to design based on the number of stator core segments. Moreover,
the optimal shapes of the tooth tips have been achieved through a TO solved with an
original and computationally-efficient heuristic procedure. This approach is based on a GA
coupled with ANN-based surrogate models employed for the objective function evaluation.
Substantial cogging torque reduction (90%) are obtained with the proposed approach. The
results demonstrate the validity of the developed design formula as well as the superiority
of the proposed heuristic procedure over conventional approaches based on GAs directly
coupled with FEA. A detailed comparison between the basic and optimized machines
shows how the proposed method slightly reduces the average torque and the flux-linkage
while there are no appreciable alterations in the flux-linkage THD and efficiency. Finally,
a sensitivity analysis has been performed by considering manufacturing and assembling
tolerances with the non-UUM proving the robustness of the proposed approach.
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Nomenclature

Symbols
B No-load airgap flux density
Depth Depth of the subteeth layer
dMAX Depth limit for the subteeth layer
Fm Rotor magneto-motive force
g Difference between rotor external radius and stator internal radius
lss Additional airgap flux-path due to the presence of stator slots
ltts Additional airgap flux-path due to the tooth tips shape
m Number of stator core segments
NHL Number of hidden layers
NHN Number of neurons in the hidden layers
Ni Number of independent tooth tips
NMAX Maximum number of sample data
Ns Number of stator slots
Nstart Number of sample data randomly generated
Nstep Number of steps of the transient-with-motion finite element analysis
Nsub Number of subteeth for each tooth tip
p Number of pole pairs
Si,j Binary variable related to ith subtooth of the jth tooth tip
Tcog Cogging torque
Tcog_ANN Cogging torque computed by means of the artificial neural networks
Tcog_FEA Cogging torque computed by means of the finite element analysis
TAHC Additional cogging torque harmonics
TIHC Introduced cogging torque harmonics
TNHC Native cogging torque harmonics
W Stored magnetic energy
x Vector of the design variables
α Angular displacement along stator circumference
ϑr Rotor angular position
Λ Airgap permeance function
µ0 Vacuum magnetic permeability
Acronyms
AHC Additional Harmonic Component
ANN Artificial Neural Networks
APMM Annular Permanent Magnet Machine
FEA Finite Element Analysis
FF Feed Forward
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GA Genetic Algorithm
IHC Introduced Harmonic Component
LCM Least Common Multiple
NHC Native Harmonic Component
MMF Magneto-Motive Force
PMM Permanent Magnet Machine
SSC Segmented Stator Core
TO Topological Optimization
TWM Transient-with-Motion
UUM Uniform Uncertainties Method
non-UUM Non-Uniform Uncertainties Method
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22. Gašparin, L.; Černigoj, A.; Fišer, R. Phenomena of additional cogging torque components influenced by stator lamination stacking
methods in PM motors. Compel. Int. J. Comput. Math. Electr. Electron. Eng. 2009, 28, 682–690. [CrossRef]

23. Brescia, E.; Palmieri, M.; Cascella, G.L.; Cupertino, F. Optimal Tooth Tips Design for Cogging Torque Suppression of Permanent
Magnet Machines with a Segmented Stator Core. In Proceedings of the 2020 International Conference on Electrical Machines
(ICEM), Gothenburg, Sweden, 23–26 August 2020.

24. Barmada, S.; Fontana, N.; Sani, L.; Thomopulos, D.; Tucci, M. Deep Learning and Reduced Models for Fast Optimization in
Electromagnetics. IEEE Trans. Magn. 2020, 56, 1–4. [CrossRef]

25. Mohammadi, M.H.; Rahman, T.; Silva, R.; Li, M.; Lowther, D.A. A Computationally Efficient Algorithm for Rotor Design
Optimization of Synchronous Reluctance Machines. IEEE Trans. Magn. 2016, 52, 1–4. [CrossRef]

26. Palmieri, M.; Bozzella, S.; Cascella, G.L.; Bronzini, M.; Torresi, M.; Cupertino, F. Wind Micro-Turbine Networks for Urban Areas:
Optimal Design and Power Scalability of Permanent Magnet Generators. Energies 2018, 11, 2759. [CrossRef]

27. Calabrese, D.; Tricarico, G.; Brescia, E.; Cascella, G.L.; Monopoli, V.G.; Cupertino, F. Variable Structure Control of a Small Ducted
Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer. Energies 2020, 13, 4647. [CrossRef]

28. Yang, Y.; Bianchi, N.; Zhang, C.; Zhu, X.; Liu, H.; Zhang, S. A Method for Evaluating the Worst-Case Cogging Torque under
Manufacturing Uncertainties. IEEE Trans. Energy Convers. 2020, 35, 1837–1848. [CrossRef]

29. Yang, Y.; Wang, X.; Zhang, R.; Ding, T.; Tang, R. The optimization of pole arc coefficient to reduce cogging torque in surface-
mounted permanent magnet motors. IEEE Trans. Magn. 2006, 42, 1135–1138. [CrossRef]

30. Zhu, Z.Q.; Howe, D. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. III. Effect of stator
slotting. IEEE Trans. Magn. 1993, 29, 143–151. [CrossRef]

31. Ackermann, B.; Janssen, J.H.H.; Sottek, R.; van Steen, R.I. New technique for reducing cogging torque in a class of brushless DC
motors. IEEE Proc. B Electr. Power Appl. 1992, 139, 315–320. [CrossRef]

32. Wilamowski, B.M.; Yu, H. Improved Computation for Levenberg–Marquardt Training. IEEE Trans. Neural Netw. 2010, 21, 930–937.
[CrossRef]

33. Kim, Y.; Hong, J.; Hur, J. Torque characteristic analysis considering the manufacturing tolerance for electric machine by stochastic
response surface method. IEEE Trans. Ind. Appl. 2003, 39, 713–719.

http://doi.org/10.1108/03321640910940936
http://doi.org/10.1109/TMAG.2019.2957197
http://doi.org/10.1109/TMAG.2015.2491306
http://doi.org/10.3390/en11102759
http://doi.org/10.3390/en13184647
http://doi.org/10.1109/TEC.2020.2996098
http://doi.org/10.1109/TMAG.2006.871452
http://doi.org/10.1109/20.195559
http://doi.org/10.1049/ip-b.1992.0038
http://doi.org/10.1109/TNN.2010.2045657

	Introduction 
	Annular Permanent Magnet Machine with a Segmented Stator Core 
	Tooth Tips Design 
	Theoretical Study and Design Formula 
	Tooth Tips Shape Design through Topolgical Optimization (TO) 

	Heuristic Solution Based on GA and ANN Surrogate Models 
	Computationally-Efficient TWM FEA 
	FF ANNs Surrogate Models Design 
	GA Design 

	Results 
	Results of the Proposed Heuristic Procedure 
	Results of the Direct Approach 
	Comparison with the Basic Machine 
	Sensitivity Analysis with Manufacturing and Assembling Tolerances 

	Conclusions 
	References

