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Abstract: Wind power has been increasingly deployed in the last decade to decarbonize the electricity
sector. Wind power output changes intermittently depending on weather conditions. In electrical
power systems with high shares of variable renewable energy sources, such as wind power, system
operators aim to respond flexibly to fluctuations in output. Here, we investigated very short-term
fluctuations, short-term fluctuations (STFs), and long-term fluctuations (LTFs) in wind power output
by analyzing historical output data for two northern and one southern balancing areas in Japan. We
found a relationship between STFs and the average LTFs. The percentiles of the STFs in each month
are approximated by linear functions of the monthly average LTFs. Furthermore, the absolute value
of the slope of this function decreases with wind power capacity in the balancing area. The LTFs
reflect the trend in wind power output. The results indicate that the flexibility required for power
systems can be estimated based on wind power predictions. This finding could facilitate the design
of the balancing market in Japan.

Keywords: wind power; short-term fluctuations (STFs); long-term fluctuations (LTFs); flexibility;
renewable energy; energy system integration

1. Introduction

For improved environmental sustainability, renewable energy generators have been
widely deployed all over the world. At the 21st session of the Conference of the Parties,
participating countries agreed to find a balance between sources and sinks of greenhouse
gases in the second half of this century. These countries are required to meet aggressive
targets to reduce greenhouse gas emissions [1].

Renewable energy generation is effective for reducing greenhouse gas emissions in
the electricity sector. The International Energy Agency and the International Renewable
Energy Agency reported that the share of renewable energy needs to increase from about
15% of the primary energy supply in 2015 to 65% in 2050 to accomplish the stated goals [2].
Wind and solar power provide a large proportion of variable renewable energy (VRE) [3].
In Japan, the installed capacity of wind power was 2.3 GW in 2010 and 3.9 GW in 2019 [4].
According to the Long-term Energy Supply and Demand Outlook report published by the
Ministry of Economy, Trade and Industry, Japan, the target for wind power installation by
2030 is 10 GW [5]; according to a report by the Japan Wind Power Association, the target
for 2050 is 75 GW [6].

VRE power output changes intermittently, depending on the weather conditions.
Fluctuations in VRE power outputs can negatively impact the operation of a power sys-
tem [7–12]. A power system operator requires flexibility to compensate for these fluctua-
tions. Traditionally, the system operator controls power outputs from conventional power
plants to maintain the balance between supply and demand, which is a source of flexibility.
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Growth of the share of VRE in the power supply increases the impact of fluctuations in VRE
output on system operation. Mitigation of these fluctuations and provision of flexibility
are urgent issues that must be addressed to accelerate the use of VRE resources. The issue
of power system flexibility has been discussed by committees within the Organization for
Cross-regional Coordination of Transmission Operators, Japan (OCCTO) [13]. Recently,
OCCTO has been studying the design of a new balancing market to ensure flexibility [14].

Understanding fluctuations in VRE outputs helps system operators to efficiently
respond to them. From the perspective of system operation, fluctuations in demand and
VRE outputs can be considered according to a few timescales. According to the European
Network of Transmission System Operators and OCCTO, fluctuations are compensated by
primary, secondary, and tertiary reserves [14,15]. In this paper, we focus on fluctuations in
wind power output and distinguish among historical data on very short-term fluctuations
(VSTFs), short-term fluctuations (STFs), and long-term fluctuations (LTFs). VSTFs and STFs
have timescales of less than 1 min and several tens of minutes, respectively. LTFs indicate
the trend of wind power output.

Fluctuations in wind power outputs have been defined and analyzed by several
methods [7–9,16–27]. The fluctuations depend on the season and balancing area (BA). In
several BAs, the fluctuations tend to increase in winter [26]. A geographical spread of
wind power plants (WPPs) mitigates these fluctuations [8,16,18–32], which is called the
smoothing effect. In addition, the smoothing effect in a single WPP was also investigated
and facilitated smoothing the fluctuations in wind power output in BAs [33–36]. While
the smoothing effect in a WPP amplifies with the number of wind turbines [33], a large
WPP with many wind turbines can induce rapid decreases of wind power output by
storms, especially in countries and regions where multiple typhoons approach every year.
It is difficult to generalize the characteristics of the fluctuations in wind power output.
However, generalized characteristics of system operation could be improved.

In Japan, there are 10 BAs. The northern BAs have a different pattern of fluctuations in
wind power output than the southern ones. We analyzed fluctuations in three Japanese BAs,
i.e., those of Hokkaido, Tohoku, and Kyushu, as shown in Figure 1. While the Hokkaido
and Tohoku areas have many windy days in winter, the seasonal pattern is different in
Kyushu. The STFs in the Hokkaido area have larger amplitudes than those in the other two
BAs. The Tohoku area has smaller-amplitude STFs than the other two BAs. Although the
seasonality and fluctuations differ among these three BAs, we found that they were similar
with respect to the relationship between STFs and LTFs. The relationship is approximately
a linear function, in which the STFs increase with the monthly average of the LTFs. In
addition, the absolute value of the slope of each linear function decreases with the wind
power capacity of the BA.

The relationship between the STFs and LTSs was revealed through this study and
could influence the smoothing effect [8,16,18–36]. Thus, the large LTFs, which increase the
STFs, could reduce the smoothing effect in the STFs. However, if the monthly wind power
output is estimated using historical output and weather data, a system operator could
more accurately estimate the reserves that are necessary to procure against the STFs in the
wind power output of each BA. The secondary reserves respond to the STFs in wind power
output and consist mostly of rapidly starting gas turbine power plants, hydro storage
plants, and load shedding [37], while the hydro storage plants and power system planning
cater to the LTFs. Information about STFs in wind power output could facilitate the design
of a new balancing market that ensures the required reserves [14,38].
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Figure 1. Locations of the three balancing areas considered: Hokkaido, Tohoku, and Kyushu.

This paper is organized as follows. Sections 2 and 3 describe the historical data on
wind power output used for our analysis of fluctuations and the methodology used to
distinguish among the different sorts of fluctuations, respectively. Section 4 presents the
results, and Section 5 is devoted to discussion and conclusions.

2. Historical Data of Wind Power Outputs

Historical data on the total wind power output in three BAs were used: Hokkaido,
Tohoku, and Kyushu. These three BAs are considered to have high potential for wind
power resources [39]. The wind power capacities of these BAs are listed in Table 1. The
capacity of the Hokkaido area was smallest, being less than half that of Tohoku, which
has the largest capacity and highest number of WPPs. Kyushu is intermediate in terms of
capacity and number of WPPs.

Table 1. Historical wind power output data for the Hokkaido, Tohoku, and Kyushu areas.

Balancing Area Fiscal Year Time Resolution (s) Capacity (kW) Number of Wind Power Plants

Hokkaido 2012 3 195,300 13
Tohoku 2010 10 427,740 19
Tohoku 2011 10 442,300 20
Tohoku 2012 10 442,300 20
Kyushu 2012 2.5 306,700 16

The time periods of the data are 1 fiscal year (FY), FY2012, in the Hokkaido and Kyushu
areas, and 3 years, FY2010–FY2012, in the Tohoku area. A FY in Japan is from 1 April to 31
March. The data have small time resolutions, less than 10 s, allowing analysis of the VSTFs
and STFs, whose periods are less than 1 min and several tens of minutes, respectively.

Some of the raw data for the wind power outputs were missing. When the period of
missing data was less than 3 h, the missing data were linearly interpolated. Missing data
with longer periods were removed from the time series, as listed in Appendix A.

The data were analyzed in terms of per unit (p.u.) values, which indicate the ratio of
wind power output to capacity. While the ideal maximum output corresponds to 1 p.u., the
actual total output never reaches this level because of the smoothing effect. Figure 2 shows
the duration curves of the wind power output in the Hokkaido, Tohoku, and Kyushu areas
in FY2012. The maximum output was approximately 0.9 p.u. The Kyushu area had smaller
outputs than Hokkaido and Tohoku.
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Figure 2. Duration curves of wind power output in the Hokkaido, Tohoku, and Kyushu areas in the
2012 fiscal year.

3. Methods

Traditionally, in Japanese electrical power systems, STFs in electricity demand have
been defined within 20-min windows. STFs in wind power output have been analyzed in
terms of standard deviation (SD), differences among several timeframes, power spectra,
and wavelets; their static features have also been discussed [16,19,26,32,40–43]. While
analysis methods based on SDs and differences in timeframes are computationally cheap,
they cannot separate time series of wind power outputs into time series of different sorts
of fluctuations. Methods based on power spectra and wavelets can provide detailed
information about fluctuations; however, the computational costs of these methods are too
large for applications in real-time system operation.

In this paper, we focus on STFs in wind power output to promote the use of wind
power in power systems, while avoiding any negative impact of this power source on
system operation. The methods used to distinguish STFs in wind power outputs must be
computationally cheap and provide detailed information. A method with centered moving
averages (CMAs) is adopted, which is described later [26].

Regardless of the differences in the methods mentioned above, some common charac-
teristics of STFs have been reported: smoothing effects mitigate STFs [16,32] and STFs have
non-Gaussian distributions with heavy tails [26,43].

3.1. Separation Method for LTFs, STFs, and VSTFs in Wind Power Outputs

The method using CMAs is summarized in Figure 3. The time series of wind power
output is separated into VSTFs, STFs, and LTFs by this method. The timescale of VSTFs
is determined by a parameter, X; the time resolution of the wind power output must be
shorter than this timescale. Likewise, the timescales of STFs and LTFs are determined by X
and Y. X has only positive values and must be sufficiently smaller than Y.!"#$%&$'"$&% ($')%*+,'-.-$'#%/012-13-",4&%5(*!/&6!.#"4%789& ".#"4%789& #$%&'(')&*+,-./'.0'1%23+4#5,36:,4;.-$'#%/012-13-",4&%5:!/&6
Figure 3. Procedure for separating very short-, short-, and long-term fluctuations from a time series
using centered moving averages (CMAs). X and Y are parameters.
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The X and Y CMAs, p̄X(t) and p̄Y(t), respectively, are defined as follows:

p̄X(t) ≡
1

NX
∑

t′∈[−X/2, X/2]
p(t + t′),

p̄Y(t) ≡
1

NY
∑

t′∈[−Y/2, Y/2]
p̄X(t + t′),

where p(t) represents the wind power output at time t and NX and NY are the numbers of
data points in time periods X and Y (in minutes), respectively.

VSTFs, STFs, and LTFs are represented by p̄X(t) and p̄Y(t), respectively, as follows:

VSTF(t) = p(t)− p̄X(t), (1)

STF(t) = p̄X(t)− p̄Y(t), (2)

LTF(t) = p̄Y(t). (3)

VSTF(t), STF(t), and LTF(t) can reproduce the original time series as follows:
VSTF(t) + STF(t) + LTF(t) = p(t). Therefore, no information is lost during the sepa-
ration process.

Figure 4 shows the time series of VSTFs, STFs, and LTFs. X and Y in Figure 3 and
Equations (1)–(3) are fixed to 1 and 30 min, respectively. The validity of this parameter
setting is discussed in the next subsection. Figure 4a includes the time series of p(t), LTFs,
STFs, and VSTFs. LTFs represent the trend of p(t) and change smoothly; they have larger
amplitudes than those of VSTFs and STFs. In Figure 4b, note that the STFs and VSTFs
change around a value of zero. STFs tend to have larger amplitudes and longer cycles
than VSTFs.

Figure 4. Time series of (a) wind power output and very short-, short-, and long-term fluctuations,
and (b) very short- and short-term fluctuations. Parameters X = 1 min and Y = 30 min.

3.2. Basic Properties of LTFs, STFs, and VSTFs

Figure 5 shows the power spectra of the time series of p(t), LTFs, STFs, and VSTFs in
the Tohoku area in FY2012. Comparing Figure 5a,b indicates that the power spectrum of
the LTFs has a similar trend to that of p(t). However, the power spectrum of the LTFs has a
steeper slope than that of p(t) because the separated VSTFs and STFs are removed. The
power spectra of the VSTFs and STFs have peaks after around several tens of seconds and
minutes, as can be seen in Figure 5c,d, respectively.
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Figure 5. (a) Power spectra of the time series of wind power output and (b) long-, (c) very short-,
and (d) short-term fluctuations in the Tohoku area in the 2012 fiscal year.

Microscopically, the time series of STFs consist of multiple half-cycles. Each half-cycle
has an amplitude, ∆p, and a period, τ, as shown in Figure 6, which contains more than
three half-cycles. The timescale of STFs is double the length of τ, thus, the period of a
whole cycle.

!"
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Figure 6. Amplitude, ∆p, and half-cycle period, τ, of short-term fluctuations.

The distributions of ∆p and τ in the three BAs are shown in Figure 7. The τ values
involving the maximum ∆p in each BA occur at approximately 15 min. Thus, the cycle
period that could have the maximum impact on power systems is approximately 30 min.
The maximum ∆p values in the Hokkaido area tended to be the largest ones among the
three BAs. Conversely, the ∆p values in the Kyushu area were relatively small.
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Figure 7. Scatter diagram of the amplitudes of half-cycles, ∆p, versus the half-cycle periods, τ, of
short-term fluctuations in the (a) Hokkaido, (b) Tohoku, and (c) Kyushu areas in the 2012 fiscal year.
Data point density is reflected by the colors: high (low)-density data are indicated by red (blue) dots.

In this paper, STFs are defined as fluctuations that have a timescale of several tens
of minutes. The parameters were set to X = 1 min and Y = 30 min in Figure 3 and
Equations (1)–(3), and analyzed STFs based on the power spectra, ∆p, and τ. In our
first analysis, there were a number of STFs with τ values of several tens of minutes.
Other analyses showed that STFs with the highest ∆p have periods of approximately
30 min. We consider that appropriate parameter settings can provide STFs consistent with
this definition.

4. Results
4.1. Statistical Properties of STFs

Some statistical properties of STFs in the Hokkaido, Tohoku, and Kyushu areas in
FY2012 are listed in Table 2. Comparing the three BAs, the Hokkaido one has the highest
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SD and percentile values. The Kyushu area has a smaller SD and the 1st and 99th percentile
values than Tohoku. These results are consistent with the trend shown in Figure 7.

Table 2. Statistical properties of short-term fluctuations: standard deviation (SD) and correla-
tion coefficients between short- and very short-term fluctuations (CCVSTF) and long-term fluc-
tuations (CCLTF).

Hokkaido Area Tohoku Area Kyushu Area

SD 0.014 0.009 0.008

Min. −0.191 −0.174 −0.176
1% −0.042 −0.026 −0.022
10% −0.013 −0.009 −0.009
90% 0.013 0.010 0.009
99% 0.042 0.026 0.023
Max. 0.155 0.106 0.114

CCVSTF 0.063 0.072 0.099
CCLTF 0.021 0.020 0.018

The Pearson product–moment correlation coefficients between STFs with VSTFs and
LTFs provide information about correlations at the same time and are defined as follows:

CCVSTF =
∑t∈[∆t, N∆t](STF(t)− STF)(VSTF(t)−VSTF)√

∑t∈[∆t, N∆t](STF(t)− STF)2
√

∑t∈[∆t, N∆t](VSTF(t)−VSTF)2
,

CCLTF =
∑t∈[∆t, N∆t](STF(t)− STF)(LTF(t)− LTF)√

∑t∈[∆t, N∆t](STF(t)− STF)2
√

∑t∈[∆t, N∆t](LTF(t)− LTF)2
.

VSTF, STF, and LTF are the averages of VSTF(t), STF(t), and LTF(t) during N∆t, where
∆t is the time step, 3 s in the Hokkaido area, 10 s in the Tohoku area, and 2.5 s in the
Kyushu area; N is the number of data. Correlation coefficients of STFs with VSTFs and
LTFs, CCVSTF and CCLTF, respectively, in Table 2, indicate that the correlations are small;
thus, STFs are effectively not correlated with VSTFs or LTFs.

On the other hand, we can deduce that there is some relationship between LTFs and
STFs, as follows. When LTFs in p(t) are small, p(t) itself must also be small. When p(t) is
small (large), the possible decrement (increment) of STFs at the next time step is limited by
the wind power output at that time. Therefore, we infer that the LTFs affect STFs.

4.2. Distributions of STFs and LTFs

To determine if there was any relationship between STFs and LTFs, we investigated
their distributions. Scatter diagrams of STFs versus LTFs in FY2012 are shown in Figure 8.
In the three BAs, when LTFs are small, the ∆p of the STFs are also small. The high-density
areas, which are colored red, are approximately elliptical in shape in all three BAs, with the
height and width of the ellipse differing according to the BA. The ellipse is largest for the
Hokkaido area, indicating that it had the largest ∆p for STFs. Although the Tohoku area
has LTFs of approximately the same width of those of the Hokkaido area, the ∆p of its STFs
tended to be smaller than those in Hokkaido, except for a few long lines around the ellipse.
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Figure 8. Scatter diagrams of short- (STFs) versus long-term fluctuations (LTFs) in the (a) Hokkaido,
(b) Tohoku, and (c) Kyushu areas in the 2012 fiscal year. Data point density is reflected by the colors:
high (low)-density data are indicated by red (blue) dots.

In Figure 8, there are several long lines around the ellipses. Each continuous line
indicates a single event during which p(t) increased or decreased drastically. In the
Hokkaido and Tohoku areas, these events tended to occur in winter. In the Tohoku area,
two events in November induced the largest and smallest STFs; these events are depicted
in Figure 9. In both cases, multiple low-pressure systems passed near the Tohoku area [44]
and we infer that these caused the events. The event on 27 November, shown in Figure 9a,
resulted from the wind turbines in multiple WPPs cutting out [26]. Wind turbines cut out
to avoid damage when the wind speed exceeds 25 m/s.
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Figure 9. The largest and smallest short-term fluctuations (STFs) in the Tohoku area in the 2012 fiscal
year. (a) An event on 27 November induced these fluctuations. (b) An event on 6 November induced
one of the largest STFs. LTF: long-term fluctuation, VSTF: very short-term fluctuation.

4.3. Seasonality of STFs

Figure 10 shows the maximum, minimum, and percentiles of SFTs in each month in
FY2012. While the maximum and minimum in each month are strongly affected by single
significant events, the percentiles depend on multiple events. Therefore we focus on these
in this paper, especially the 10th and 90th ones.

Figure 10. The maximum, minimum, and percentiles of short-term fluctuations (STFs) in each month
in the (a) Hokkaido, (b) Tohoku, and (c) Kyushu areas in the 2012 fiscal year.

In the Hokkaido and Tohoku areas, the percentiles have larger amplitudes in winter,
from November to February. The percentiles for the Kyushu area are approximately the
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same across FY2012. The STFs in the Tohoku area in FY2010 and FY2011 also tended to be
larger in winter, as shown in Figure 11. From FY2010 to FY2012, its STFs were smaller from
June to August.

Figure 11. The maximum, minimum, and percentiles of short-term fluctuations (STFs) in each month
in the Tohoku area for the fiscal years of (a) 2010 and (b) 2011.

4.4. Relationship between STFs and Average LTFs

Although the correlation coefficient between STFs and LTFs is small, as shown in
Table 2, in the Hokkaido and Tohoku areas, the ∆p of STFs tended to increase in winter
when p(t) increased [45], as shown in Figures 10 and 11. Hence, we inferred that there is
some relationship between STFs and p(t).

To reveal the relationship between STFs and LTFs, which indicate the trend in p(t), in
Table 3, we list the correlation coefficients between the monthly 10th and 90th percentiles
of STFs and average LTFs. These coefficients in each BA are sufficiently large to indicate
that there is a correlation.

Table 3. Correlation coefficients between the 10th and 90th percentiles of short-term fluctuations
(STFs) and average long-term fluctuations in each month for the 2012 fiscal year.

Balancing Area 10% of STFs 90% of STFs

Hokkaido −0.914 0.899
Tohoku −0.986 0.987
Kyushu −0.963 0.962

In Figure 12, we show the relationship between the 10th and 90th percentiles of STFs
and the average LTFs in each month, for the three BAs in FY2012. Each data point represents
one monthly percentile for one BA, thus, there are 72 dots in the figure, with those above
(below) the horizontal axis representing the 90th (10th) percentile. For all BAs, the STF
percentiles increased with the monthly average LTFs, with the dashed lines indicating
functions obtained by least-squares approximation of the percentiles in each BA. The slopes
of the lines for the Hokkaido area have the largest absolute values, with those of Tohoku
being the smallest.
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Figure 12. Scatter diagram of the 10th and 90th percentiles of short-term fluctuations in each month
versus the monthly average long-term fluctuations in the three balancing areas in the 2012 fiscal year.
The dashed lines indicate the least-squares approximations of these percentiles.

The absolute values of the slopes tend to decrease with wind power capacity, as
shown in Figure 13. While the capacity in the Hokkaido area was less than half that in the
Tohoku area, the absolute values of the slopes for Tohoku were larger than half of those for
Hokkaido. We expect that the absolute values of these slopes would not become zero even
if the capacity were exceptionally large. Therefore, the absolute values of the slopes would
decrease asymptotically to nonzero values.

Figure 13. Slopes of the least-squares approximations of the 10th and 90th percentiles versus the
wind power capacity in each balancing area.

5. Discussion and Conclusions

A high share of wind power generation in a power system can amplify the negative
impact of fluctuations in p(t) on system operation. To respond to these fluctuations,
a system operator prepares reserves with different timescales. While the fluctuations in
p(t) are mitigated though the smoothing effect [8,16,18–32], large fluctuations can remain
when a BA is restricted to a small area and has insufficient interconnections with other
BAs. Japan has 10 BAs and an inhomogeneous distribution of potential wind resources.
Therefore, to promote wind power generation in Japan, mitigation of the fluctuations in
p(t) is an urgent issue.

The fluctuations are separated into VSTFs, STFs, and LTFs, depending on their
timescale. VSTFs and STFs have timescales of less than 1 min and several tens of minutes,
respectively. LTFs have the longest timescale, of more than 1 h. In this paper, time series of
p(t) are separated into VSTFs, STFs, and LTFs via a method based on CMAs [26].

We analyzed historical data for p(t) in three BAs, i.e., Hokkaido, Tohoku, and Kyushu,
in Japan in terms of their fluctuations. The Hokkaido and Tohoku areas are in the northern
region on the main island of Japan, while the Kyushu area is mainly on Kyushu Island,
which is south of the main island. The northern BAs, Hokkaido and Tohoku, have a
different pattern of fluctuations from Kyushu, where the p(t) and ∆p of their STFs tend to
be large in winter and decrease in summer.
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The LTFs of p(t) indicate the trend in p(t). We investigated the relationship between
STFs and LTFs and found that the 10th and 90th percentiles of the STFs in each month
increased with the monthly average LTFs in all three BAs. The relationship between the
STF percentiles and the average LTFs in each BA can be approximated by a linear function.
Additionally, the absolute value of the slope of this function decreases with the wind power
capacity in a BA. This result provides an indication of the reserves required to respond to
STFs in p(t) in each BA.

Recently, OCCTO has been working on a new balancing market for Japan [14]. In-
formation about fluctuations in p(t) could contribute to efficient procurement of reserves
for the planned market, to promote the penetration of wind power while avoiding the
negative impact of fluctuations in p(t) on the power system. We consider that information
about fluctuations is essential for designing the new balancing market. According to the
relationship between the STFs and LTFs, the STFs can amplify and require more reserves
when wind power output increases, thus, when the LTFs are expected to increase. The new
balancing market should be designed to ensure required reserves, and system operators
use the reserves to respond to the STFs. In future work, we plan to develop a wind power
control method to mitigate STFs therein.
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Abbreviations
The following abbreviations are used in this manuscript:

BA Balancing area
CMA Centered moving average
FY Fiscal year
LTF Long-term fluctuation
OCCTO Organization for Cross-regional Coordination of Transmission Operators, Japan
SD Standard deviation
STF Short-term fluctuation
VRE Variable renewable energy
VSTF Very short-term fluctuation
WPP Wind power plant

Appendix A. Missing Data List

Sequences of missing data longer than 3 h were removed from the original time
series of p(t). The missing data are listed in Table A1. We defined the rate of loss as the
proportion of 1 year that the missing data covered. In the Hokkaido area, the missing data
were caused by signal transfer errors from WPPs to the data aggregation system. In the
Tohoku area, there were two sequences of missing data: from 11 to 12 March 2011 and from
7 to 8 April 2011. Earthquakes caused these losses; the former began just after the Great
East Japan Earthquake on 11 March 2011, and the latter began just after an aftershock of
the earthquake.
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Table A1. Missing data of longer than 3 h.

Balancing Area Fiscal Year Missing Data Rate of Loss

Hokkaido 2012 2013-01-14 9:28:12–2013-01-24 14:02:03 12.5%
2013-02-11 9:26:06–2013-03-18 23:56:57

Tohoku 2010 2011-03-11 14:47:10–2011-03-12 17:16:10 ∗1 0.3%
Tohoku 2011 2011-04-07 23:34:00–2011-04-08 8:51:40 ∗2 0.1%
Tohoku 2012 NA 0.0%
Kyushu 2012 NA 0.0%

NA: Not Applicable. ∗1 Caused by the Great East Japan Earthquake on 11 March 2011. ∗2 Caused by an aftershock
of the Great East Japan Earthquake.
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