
energies

Article

An Easily Accessible Microfluidic Chip for High-Throughput
Microalgae Screening for Biofuel Production

Shubhanvit Mishra 1, Yi-Ju Liu 2, Chi-Shuo Chen 3,* and Da-Jeng Yao 1,4,5,*

����������
�������

Citation: Mishra, S.; Liu, Y.-J.; Chen,

C.-S.; Yao, D.-J. An Easily Accessible

Microfluidic Chip for High-

Throughput Microalgae Screening for

Biofuel Production. Energies 2021, 14,

1817. https://doi.org/10.3390/

en14071817

Academic Editor: José Carlos

Magalhães Pires

Received: 28 February 2021

Accepted: 20 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Nano Engineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan;
shubhanvit@gmail.com

2 Food Industry Research and Development Institute, Hsinchu 300193, Taiwan; lyj20@firdi.org.tw
3 Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University,

Hsinchu 30013, Taiwan
4 Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
5 Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
* Correspondence: chen.cs@mx.nthu.edu.tw (C.-S.C.); djyao@mx.nthu.edu.tw (D.-J.Y.)

Abstract: Microalgae are important green energy resources. With high efficiency in fixing carbon
dioxide, microalgae are broadly applied for biofuel production. Integrating various cultivation
parameters, we applied ultraviolet (UV) mutagenesis, one of the most common approaches, to induce
genomic mutation in microalgae and thus enhance the production of lipid content, but the screening
process is convoluted and labor-intensive. In this study, we aimed to develop an accessible microflu-
idic platform to optimize the biofuel production of microalgae. Instead of traditional lithography, we
designed hanging-drop microfluidic chips that were fabricated using a cheap computer numerical
control (CNC) micro-milling technique. On each chip, we cultured in parallel Botryococcus braunii,
one of the most common freshwater microalgae for biofuel production, in sets of ten separated
hanging drops (~30 µL each); we monitored their growth in each individual drop for more than
14 days. To optimize the culturing conditions, using drops of varied diameter, we first identified the
influence of cell density on algae growth and lipid production. After introducing UV-induced random
mutations, we quantified the lipid content of the microalgae in situ; the optimized UV-C dosage
was determined accordingly. In comparison with wild-type B. braunii, the results showed increased
biomass growth (137%) and lipid content (149%) of the microalgae mutated with the desired UV
process. Moreover, we showed a capacity to modulate the illumination on an addressed chip area.
In summary, without using an external pump system, we developed a hanging-drop microfluidic
system for long-term microalgae culturing, which can be easily operated using laboratory pipettes.
This microfluidic system is expected to facilitate microalgae mutation breeding, and to be applied for
algae cultivation optimization.

Keywords: biofuel; microfluidic; microalgae; UV mutagenesis

1. Introduction

Global warming, caused by CO2 emissions and the depletion of fossil fuels, has
necessitated the search for sustainable and renewable energy sources [1]. In the past decade,
biofuel has attracted great attention among researchers as a promising renewable energy
source as it can be used to replace petrol and diesel while remaining carbon neutral [2,3].
Biodiesel can be produced from oil-containing crops [4]. As oil-containing crops require
large land areas, the generation of biodiesel from high-oil-containing crops can, however,
be the cause other problems, such as food scarcity [5]. Further, the use of farm land for
biofuel production can cause increased emissions of greenhouse gases, which are emitted
during the land use changes [6]. Under these circumstances, microalgae can be considered
as a promising feedstock for biodiesel production, as they have a greater growth rate
and lipid content than agricultural crops [3]. Botryococcus braunii is a green alga that is
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characterized by its ability to produce hydrocarbon-rich oil up to 61% of its dry mass [7–9].
B. braunii has attracted substantial interest as a potential species for the production of
biofuels [1]; when the extracted hydrocarbon-rich oil from B. braunii is cracked, which is a
process of catalytic and thermal degradation of long-chain hydrocarbons to form usable
shorter-chain hydrocarbons, it yields petrol 67%, aviation fuel 15% and diesel distillate
15%, which proportions are similar to the gasoil fraction of crude oil; it is hence considered
to be an effective candidate for third-generation biofuels.

Various microalgae studies have been conducted on culturing the cells in laboratory-
scale flasks, open-raceway ponds or closed photobioreactors [10–12]. These studies signifi-
cantly contribute to the understanding of basic algal biology and the selection of strains
for oil production, and explore various culture parameters such as light intensity, light
cycle [13], temperature [14], nutrient concentration [15], CO2, and pH [13]. In the develop-
ment of any optimization of biofuel production, two limitations can hamper the progress.
Firstly, because of intensive labor requirements and high operating costs, high-throughput
screening is difficult using conventional photobioreactors [16]. Secondly, in conventional
photobioreactors, it is challenging to maintain the culture conditions in a consistent and
precise manner [16]. In recent decades, many microfluidic-based techniques have been
developed that are capable of providing well-controlled culture conditions to optimize
algal growth and lipid productivity [17]. For instance, recent studies have demonstrated the
usefulness of devices with microchambers in the study of bacteria, as in the following: algae
that are used in a micro-scale bioreactor for the automated culture and density analysis of
microorganisms [18]; a fully automatic and programmable microfluidic device that enables
parallel culture of cells [19]; the cultivation of microalgae in a droplet-based condition for
the rapid screening of algal growth [20–22]; and simple chamber-based microfluidic devices
for the quantification of lipid content in microalgae under varied stress conditions [23].
These studies helped to identify optimal conditions for microbial growth [19,20,23].

In this work, we aimed to develop an easily accessible platform for the high-throughput
screening of microalgae with rapid growth and a high lipid content. In addition, UV muta-
genesis and various modulations of culture parameters, such as cell density and intensity
of illumination, were integrated into this system to achieve culture optimization for the
production of microalgae biofuel.

2. Materials and Methods
2.1. Microalgae Culture

Botryococcus braunii (AL20016, UTEX 2441) was supplied by Bioresource Collection and
Research Centre (BCRC) in the Food Industry Research and Development Institute (FIRDI),
Taiwan. It was cultivated in Bold-3N medium, which was prepared with double-distilled
water (ddH2O) and various inorganic salts were added as per standard protocol [24]. Both
experimental and stock cultures were kept in a biochemical incubator at 20 ± 1 ◦C, with
a 12:12 h light/dark cycle (intensity of 1500 lux) provided by Warm White LED (WISVA
OPTOELECTRONICS HH-S60F010-5050-12 WW) with a regulated intensity control switch.
The cell cultures were shaken three times a week without aeration. Culture stock was
maintained in 20 mL volume, and the cell density reached approximately 1.8 × 105 cells/mL
in 14 days.

2.2. Chip Design and Fabrication

Microfluidic hanging-drop devices were made using a computer numerical control
(CNC) micro-milling system (Roland MDR-40A) as described elsewhere [25]. The devices
were composed of two polystyrene layers (Figure 1A) of 25 × 75 mm. The thickness of
the upper layer was 1.5 mm, and it was used to make the inlet and outlet; the lower layer
was also made of polystyrene which was 2 mm thick and consisted of a channel (thickness:
1200 µm) with opening wells at the bottom (Figure 1A). The chip used to study the effect of
cell density on cell growth consisted of 13 × 4 opening wells with diameters of 1.1, 1.5 and
1.8 mm. For the other tests, the chip consisted of 13 × 4 opening wells of diameter 1.1 mm.
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For the assembly of the hanging-drop device, the fabricated layer was first immersed in
ethanol solution (75%) and cleaned with an ultrasonic cleaner for 30 min to remove any
residual particles formed during fabrication. After cleaning, both the upper and bottom
layers were assembled using adhesive tape (0.05 mm, 300LSE, 3 M) which was cut using
a laser-cutting instrument (C180II GCC, LaserPro). The outlet was made with the upper
part of a pipette tip (1 mL, diameter 4.5 mm, height 5 mm). The outlet was bonded with
poly(dimethylsiloxane) (PDMS) and cured at 60 ◦C for 90 min. The base stand for the chips
were also made from PDMS, cast using a laser-cut polystyrene mold, and cured at 90 ◦C
for 60 min. To study the effect of light on the growth, we placed this chip on a holder stand
made of black opaque polystyrene sheet (thickness 3 mm) to block the light in the desired
region (Figure 1A).

Figure 1. Illustration of the chip design. (A) Layout of a chip used to study the effect of light. The chip holder consists of
three regions, two of which were exposed to light and one was an unexposed region. (B) Image of an actual assembled chip.
(C) A chip filled with yellow dye shows the formation of a hanging drop formed on the bottom of the chip through the well
(scale = 1 mm). (D) Schematic illustration of the hanging-drop chip operation. (E) Schematic diagram to summarize the
experimental design.
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2.3. On-Chip Microalgae Culturing

All cell seeding was performed in a sterilized laminar-flow hood. The chips were
sterilized with UV-C light for 30 min before use. The chip was filled with ethanol solution
(75%) using a standard pipette. Then a culture medium (900 µL) with algal cells (density
17 × 104 cell/mL) was injected through the inlet. The cell suspension uniformly distributed
the cells within the microchannel and allowed the cells to fall into the wells to form hanging
drops. After the cells settled into the hanging drops for 30 min, the microchannel was
washed with fresh medium three times to remove the residual cells that were unable to fall
into the well. After the washing step, the channel was filled with fresh medium (950 µL).
The chips were then placed in an incubator at 20 ± 1 ◦C, in warm white light with a 12:12 h
light:dark cycle and an intensity of 1500 lux for 14 days.

2.4. Analysis of the Microalgae Growth Rate

The growth of B. braunii inside the hanging-drop chip was characterized by measuring
the intensity of chlorophyll autofluorescence of cells over time as in the existing litera-
ture [26]. The microalgae were imaged using an epi-fluorescent microscope (Eclipse Ti,
Nikon Instruments, Inc., Japan) equipped with a filter set (TXRED, excitation at 559 nm,
emission at 630 nm) every two days. To measure the growth rate, we selected 20 samples
in each chip from a well with a specific diameter. The total intensity as a sum of chloro-
phyll autofluorescence was measured with image analysis software (Image J, NIH, USA).
Large images (Figure 2A) of each chip (field area 13 mm × 40 mm) were acquired using a
microscope with an automatic stage and stitched together afterward.

Figure 2. The microalgae cultured in the chip with three well diameters. (A) Bright-field image
showing the formation of algal cell aggregated on a chip within the wells of sizes 1.1, 1.5 and 1.8 mm
on its seventh day of culture. (B) Representative time-lapse bright field and chlorophyll (λ = 645 nm)
images showing the increased cell count (day 1, day 7 and day 13); the cell aggregations were observed.
(C) Growth curve measured using the value of total chlorophyll intensity at wavelength 645 nm.
(D) Quantification analysis of lipid content in wells of varied diameter (* indicated p-value < 0.05,
n = 54).
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2.5. Microalgae Lipid Quantification

To analyze and to quantify the lipid content, we utilized fluorescence staining (Nile
red) [16]. Nile red, a lipid-soluble fluorescent dye that binds to neutral lipids, has been
shown to stain B. braunii oil efficiently in both the extracellular matrix and intracellular
oil bodies, and has been used to accurately evaluate the oil content in B. braunii [27]. For
the lipid quantification, we stained the cells with Nile red fluorescent dye (concentration
10 µg/mL dissolved in dimethyl sulfoxide solution 10%) on the fourteenth day of culture.
To quantify the fluorescence, we used a microscope (Eclipse Ti, Nikon Instruments, Inc.)
equipped with a filter set (TXRED, excitation at 559 nm, emission at 630 nm); the intensity
sum was measured with image analysis software (Image J). The lipid content percentage
was calculated by finding the difference between the intensities before and after staining,
then dividing the difference by the initial intensity.

3. Results and Discussion
Measurement of Growth Rate In Situ and Quantification of Lipid Content of B. braunii

To study the influence of the cell density on the microalgae, we performed experiments
with the hanging-drop chip using wells of varied diameter (1.1, 1.5, 1.8 mm). The growth
rate after culture for 14 days in the chip was measured by taking the mean value of the
total chlorophyll intensity (n = 54, from three independent experiments). Within the same
chip, we managed the seeding density in each well by varying the diameter of the well.
After seeding, we noticed that the range of seeding density, based on the total intensity,
varied from 2.96 ± 0.327 to 7.08 ± 0.430 (A.U.) according to the increasing diameter of the
well. The growth of microalgae was monitored and calculated using the total fluorescent
intensity of chlorophyll in each well (Figure 2B,C). On day 14, we found that the total
chlorophyll signal in the well with a diameter of 1.8 mm was 4.86 times that in the well
with a diameter 1.1 mm and 5.65 times that in the well with a diameter 1.5 mm; once
normalized with the initial chlorophyll signal on day 0, we noticed that the growth rate
of microalgae in a small hanging drop was greater than that in larger drops (Figure 2C).
The signals of chlorophyll are strongly associated with biomass production [28]. Being
limited by the volume of the hanging drop, the biomass cannot be directly evaluated
as for a large-scale approach [16]; our data indicated a greater biomass production with
increased cell density. We also noticed a more rapid formation of microalgae aggregation
in the smaller droplets. The lipid content on the fourteenth day of microalgae culture in
wells of diameter 1.1 mm showed Nile red signals 1.70 and 2.53 times those from wells of
1.5 mm and 1.8 mm, respectively (Figure 2D). It has also been reported that the fluorescent
intensity of cells stained with Nile red and the lipid content in B. braunii as determined
with a conventional solvent extraction system show a linear relation (R2 = 0.998) [27].

These results indicate that in our hanging-drop chip, the large cell density improves
cell growth and lipid production. In a small hanging drop, the microalgae accumulated
quickly at the bottom because of the strong curvature of a small drop. We speculate that
the spatial distribution of a microalgae community is associated with the alteration of
microalgae physiology. The increased cell growth observed in our study confirms previous
findings, which indicated that a large cell density is associated with increasing proliferation,
such as an algae bloom in nature [29]. Previous authors also reported that small colonies
have advantages over dispersed microalgae, such as greater affinities for light and nutrients,
and subsequently greater rates of growth [30]. In a conventional culture flask, the cell
density and nutrition limitation are coupled so that the effects of a single factor are not
determined easily. Here, with our developed chip, algae of varied cell density were cultured
in separated wells under the same experimental conditions of nutrition; the results confirm
the influence of cell density on cell growth.

A greater lipid content of microalgae was observed in a 1.1 mm well, which might
also be associated with increased cell density. We speculated that cell aggregation may
facilitate the formation of biofilm matrix and high lipid content. During photosynthesis,
extracellular polymeric substances (EPS) are released by algae, and algae attach together
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with EPS to form a complicated biofilm community. The growth of biofilm may lead
to local nutrient starvation and stimulate lipid accumulation [31]. With our system, we
decoupled the influences of ensemble nutrition stress and cell density, and reported greater
lipid production of microalgae under high cell density in a local environment. Although
further investigation is needed to understand the inter- and intra-cellular mechanisms
of the influence of cell density on lipid production, we demonstrated that a chip can be
used to monitor microalgae growth with a high throughput and evaluate the lipid content.
We conducted tests to compare the growth rate and lipid content with a simultaneous
comparison of cell density.

As microalgae in a 1.1 mm well showed the greatest oil content, we conducted a
subsequent experiment on our 1.1 mm chip to study the effect of UV-C mutagenesis on the
chip. Tests showed that UV irradiation of various algae species improves the cell growth
and lipid accumulation of microalgae and results in a high lipid-producing strain [32].

Appropriate UV exposure causes random mutagenesis in microalgae, which is caused
mainly by the alteration of the DNA of the organism; the UV exposure induces either the
formation of thymine dimers that cause a transition of DNA base pairs, or the deletion of
base pairs. This genetic alteration further results in an over-expression of nitrate reductase
(NR) in the mutant strain that contributes to an increased growth rate [33]. B. braunii
were seeded on a chip and irradiated with UV-C light (Philips TUV UV-C TL-D, 36W)
for 5, 10 and 15 min on the first day. The growth rate and lipid content were calculated
from 60 samples (20 in each chip) and compared to a control chip that was unexposed
to UV-C (Figure 3C,D). From the curve of growth rate, we observed on the fourteenth
day chlorophyll intensity values of 410.48 ± 29.7, 561.84 ± 28.7, 504.84 ± 28.76, and
381.74 ± 28.78, respectively, from UV exposure of 5 and 10 min, control, and 15 min. The
lipid contents on the fourteenth day of culture were found to be 1.61 ± 0.31, 2.40 ± 0.16,
1.45 ± 0.27, and 1.92 ± 0.64, respectively (Figure 3B). These results indicate that, in our
hanging-drop chip with B. braunii algae culture, the 5 min UV-C exposure was considered
to be the most efficient, increasing both the growth rate by 36.87% and the lipid content by
49.02%. The greater lipid content might be directly associated with a specific mutagenesis
of the microalgae. The greater growth rate caused by mutagenesis might also have led to a
deficiency of nutrients, which caused nitrogen starvation and further induced an increased
lipid content [34].

Our data also showed that an excessive dose of UV exposure can lead to undesired
effects on the microalgae, such as a small growth rate and lipid content (Figure 3C,D).
UV-C exposure can degrade the algal photosynthetic apparatus and pigment content; the
oxidative stress and genotoxicity effects generated by UV exposure can further trigger
cellular lethality and senescence [35]. With our developed system, in addition to screening
parameters simultaneously for cell growth and lipid productivity, our microfluidic platform
can be applied to study the impact of UV toxicity.

In addition to the procedure for optimization, we could easily select an algae mutant
from each individual well. For instance, a scatter plot of 20 samples from one experiment
was taken on the fourteenth day; the data present the lipid content of microalgae in
different samples, which show an uneven distribution under each mutation condition
(Figure 3D). Once microalgae with a high lipid content are determined, in contrast to a
sophisticated algae extraction process [36], the desired microalgae for further studies can
be easily extracted using a 1 mL pipette without affecting the other strains.

We further conducted an experiment on our modified chip to study the effect of
the presence and absence of light intensity (Figure 4). On comparison of the fluorescent
intensity value of chlorophyll between the regions that were exposed and unexposed to
warm white light (1500 lux for 12/12 h cycle), the results showed an initial intensity value
of 264 (A.U.) in the region with light and 255 (A.U.) in the region without light. On the
fourteenth day of culture the exposed and unexposed regions with light of the specified
intensity showed mean intensity values (in A.U.) of 1466.03 ± 447.00 and 386.25 ± 42.19 in
regions of the presence and absence of light, respectively (Figure 4C); the lipid content on
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the fourteenth day of culture was found to be 2.09 ± 0.30786 and 1.68 ± 0.29, respectively.
The algae in a region exposed to light showed 2.27 times the cell growth of algae in the
unexposed region, which showed slow growth, but in the lipid content result there was only
a 19.6% difference in lipid content between exposed and unexposed regions (Figure 4B).
The results support previous findings, which indicated that the energy produced during
high light intensity was used for cell division instead of being stored in the form of lipids,
whereas in the absence of light the cells do not go through photo-oxidation, which results in
the production of a greater lipid content [37]. These results indicate that our hanging-drop
chip can be used to define the light conditions to optimize oil productivity in microalgae.
The illumination intensity in regular bioreactors, however, alters when the microalgal
density increases over time, which makes it difficult to apply identical conditions to all
algal cells in a large culture system [20]. It is worthy of mention, though, that this device
can be used to screen culturing parameters for rapid side-by-side comparisons between
growth and oil production; more practical considerations and larger-scale tests are required
to apply the outcome further for industrial culturing.

Figure 3. B. braunii treated with a UV mutagenesis procedure on a chip, and its lipid content comparison. (A) Representative
images of algal cells in the chip observed at wavelength 645 nm on its fourteenth day of culture. (B) Quantification of lipid
content of three UV-C exposures of a chip—5, 10 and 15 min, with unexposed chip as a control (* indicated p-value < 0.05,
n = 60). (C) Comparison of growth curves of three UV-C chips with exposures 5,10 and 15 min with an unexposed chip as a
control (n = 60). (D) Scatter plot of the mean intensity of Nile-stained algal cells shows a variation in lipid production with
different UV exposure (n = 20 for each UV irradiance condition).
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Figure 4. Formation of cell aggregate in the chip with regions of light and no light and the growth curve. (A) Experimental
setup of chip with LED light source. (B) Formation of algal cell aggregate within the wells in the chip, which was observed
at wavelength 645 nm with region of presence and absence of light on the fourteenth day of culture. (C) Comparison of
curves of growth rate in the presence and absence of light (n = 54). (D) Comparison of lipid content of algae grown in a
region of the presence and absence of light (* indicated p-value < 0.05, n = 54).

4. Conclusions

In this study, we have developed a hanging-drop microfluidic device for the high-
throughput screening of microalgae, based on the growth rate and lipid content. In contrast
to previous microfluidic approaches [19,20,23,26,27], we first took advantage of the easily
accessible hanging drop as a separate bioreactor for algae culturing. By modulating the
design of the hanging-drop chip, we easily customized the culture parameters, such as
the cell density and illumination. We found, under our experimental conditions, that
the clustering of microalgae was associated with enhanced lipid production. Using our
hanging-drop chip, we also demonstrated the process for optimizing the UV dosage for
mutagenesis to increase the algae growth rate and lipid content simultaneously. Moreover,
integrated with a high-throughput microalgae physiology monitored in situ, we directly
selected the desired specimens with a laboratory pipette due to the semi-open nature of
the hanging drops. Although more studies are required to expand the outcomes of this
study for algae cultivation, based on our obtained results, our easily accessible microfluidic
system can accelerate the mutation breeding of microalgae and is expected to facilitate the
screening process further for microalgae biofuel production.
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