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Abstract: The article presents the possibility of using the currents’ physical components (CPC) theory
to generate the reference current of the active power filter (APF). The solution proposed by the authors
is based on the cooperation of minimizing balancing compensators (MBC), which, due to their use in
4-wire systems, have been divided into two structures. The first compensator, which purpose is to
minimize and balance the reactive current and the unbalanced current of the zero sequence, is built
in the star system (STAR-MBC). The purpose of the second compensator, which operation occurs
in the delta system (DELTA-MBC), is to minimize and balance the other two components, i.e., the
unbalanced current of the negative sequence and the unbalanced current of the positive sequence.
The two structures cooperating with each other significantly reduce the currents associated with the
reactive elements, i.e., reactive current, and the unbalanced current. As mentioned, these currents are
reduced but not compensated to zero or to the reference value. In order for the compensation and
balancing to bring the preferable effect, an APF system should be included, which will cooperate
with MBC compensators. This solution is presented in this publication. The control of the active part
of the hybrid active power filter (HAPF), which was presented in the paper, consists of the reflection
of the waveform of the nonsinusoidal active current. In this approach, no current shift in relation
to voltage is obtained, but the waveforms of these quantities remain distorted. The reactive current
is compensated and the unbalanced currents are balanced. The second definition of generating a
reference current can also be used. Through this approach, the active current with a sinusoidal
waveform is achieved. The second approach allows for an additional reduction of the three-phase
RMS value of the load’s current. In both of these approaches, the active currents flowing through
the lines will reflect the amplitude and phase asymmetry that is present in the supply voltage. The
APF system will follow the changes in power or load conditions and generate the correct value for
the reference current. The calculations presented in the article, as well as the current and voltage
waveforms, were created as a result of the constructed mathematical models, which were used
for theoretical illustrations. Calculations and waveforms were generated based on a script written
in Matlab.

Keywords: asymmetrical supply; unbalanced load; balancing compensation; nonsinusoidal waveforms;
hybrid power filters; currents’ physical components (CPC) theory

1. Introduction

Low voltage electrical installations in industrial plants are four- or five-wire systems.
Due to the very frequent unbalance load in the supply lines, there exists an imbalance of
the current. In addition to the unbalanced current, there is also a reactive current associated
with nonlinear elements and reactive elements [1,2].

If to the assumption of the existence of the current asymmetry, we also add the
existence of the supply source imbalance, which is a real phenomenon in power networks,
we obtain a three-phase four-wire system with an asymmetrical nonsinusoidal voltage
source and an unbalanced (most often also nonlinear) load [3–6].
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Another aspect that should be discussed is the possibility of application of the com-
pensation devices in systems with currents of several or tens kA. In such systems, hybrid
devices should be used [7,8]. They have reactive elements whose function is to initially
compensate for high values of line currents. Hybrid systems also include switching devices
widely known as active power filters (APF). Their main function is to compensate and
balance the remaining currents of significantly lower values [8].

There are many solutions relating to the APF strategy control in the literature [9–16].
The most common approach is to use a mathematical description known as the instanta-
neous reactive power (IRP) p-q theory [12,13,17,18] or its expand [19,20]. This approach is
based on the time domain and therefore is by definition convenient for generating reference
currents because the APF strategy control is then significantly faster than methods based on
the frequency approach. However, there are also significant disadvantages to this approach.
The first is the generation of additional distortion in the form of the 3rd harmonic appearing
in the current [1,21,22] and the lack of recapture in physical phenomena, especially in not
including the asymmetry of the supply voltage. The lack of such a reflection contributes
to the incorrect control of switching elements in the APF. Besides, the most popular time-
domain method, which is the IRP p-q, the control is also done by a synchronous reference
frame (SRF) [23–25] or an approach named simplified SRF (sSRF) [25]. This approach is
also known as the d-q method or simplified d-q method. The most popular frequency
domain approaches are discrete Fourier transform (DFT) [26,27] or fast Fourier transform
(FFT) [28,29]. It is also possible to combine the d-q method and the Fourier transform
(dqFourier) [30,31].

For several years now, an increasingly popular method of control is the one based
on model predictive control (MPC) [32–34]. To improve the quality of energy, MPC con-
trollers cooperate with APF systems, which are controlled by, for example, conservative
power theory (CPT) [33]. At this point, we should also mention artificial neural networks
(ANN) [35,36] or the wavelet transform [37].

The article presents a description of energy properties in 3-phase 4-wire systems. The
considered voltage supply has amplitude and phase asymmetry. Additionally, it is also a
nonsinusoidal voltage [3,38,39]. Three parameters related only to one physical quantity
were not previously considered in the mathematical description of these types of systems.
As it can be seen, it affects the voltage unbalance negatively affecting the load, causing
an increase in the unbalanced current as a result of an additional component depending
on the harmonic sequence. Determining the equivalent parameters of the load allows
for the correct determination of the current components and their physical interpretation.
The possibility of physical interpretation and the knowledge of the equivalent parameters
allows determining the parameters of an ideal balancing compensator (a description of
such a compensator for an asymmetric sinusoidal supply can be found in [40–42]). At the
next stage, with the knowledge of the ideal parameters of the balancing compensators, it is
possible to determine the parameters of the minimizing balancing compensator [1,6,43–46].
At the moment of writing this article, no one, except the authors, has determined the
parameters of an ideal balancing compensator dedicated to 4-wire systems powered by
asymmetrical nonsinusoidal voltage. If there is no description of the ideal compensator,
the mathematical description and determination of MBC parameters are also impossible.
This publication presents the methodology used in the design of minimizing balancing
compensators. As it is known, the voltage source and the load are time-varying. Therefore,
the article proposes an approach allowing the determination of the reference currents of the
active part of the hybrid active power filter. When properly implemented, both approaches
will allow the injection of current waveforms of the appropriate shape and value to the line
and to the neutral wire. The first approach allows to obtain an active current identical to
the supply voltage waveform, so this waveform will be a nonsinusoidal waveform. The
second approach makes it possible to generate a reference current of an APF so that only
the active current waveform of the fundamental harmonic is visible from the side of the
voltage source. Presentation of the possibility of using the CPC Theory in designing both a
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minimizing balancing compensator and in generating the reference current of an active
power filter in one publication is rare.

The energy description of three-phase four-wire systems supplied from a nonsinu-
soidal asymmetrical voltage source has been presented in Sections 2 and 3 shows the
theoretical illustration of a three-phase four-wire system presenting the correctness of the
mathematical description proposed in Section 2. The Section 4 includes considerations
and equations presenting the mathematical synthesis of the minimizing balancing com-
pensator. The theoretical illustration of the solution proposed in Section 4 is shown in
Sections 5 and 6 discusses the possibility of generating reference currents injected into the
supply lines and the neutral wire. The final Section 7 presents the values and waveforms
that can be obtained by connecting an active part to the passive system in the form of an
active power filter.

2. Description of Currents’ Physical Components (CPC) Theory in 3-Phase 4-Wire
Systems with Asymmetrical Voltage Waveforms

The nonsinusoidal voltage of the source of the distribution system can be described as
a three-phase vector, the elements of which are the voltages at the terminals R, S, T, namely:

en =
[

eRn eSn eTn
]
, (1)

where: eRn, eSn, eTn are the nonsinusoidal temporal voltages values at the terminals R, S,
and T of the voltage source.

This voltage, as asymmetrical and nonsinusoidal, may have symmetrical components
for individual harmonics, i.e., the symmetrical component of the positive sequence, the
symmetrical component of the negative sequence, and the symmetrical component of
the zero sequence. Consequently, the asymmetric nonsinusoidal line voltage is given by
the vector:

un =
[

uRn uSn uTn
]T, (2)

where: uRn, uSn, uTn are the nonsinusoidal temporal voltages values at the terminals R, S,
and T of the load.

Which may have three components for each harmonic:

un = up
n + un

n + uz
n, (3)

where: up
n is the symmetrical component of the positive sequence of the supply voltage,

un
n is the symmetrical component of the negative sequence of the supply voltage, uz

n is the
symmetrical component of the zero sequence of the supply voltage.

Figure 1 shows a three-phase four-wire system supplying an unbalanced linear time-
invariant load (LTI).

Figure 1. Linear time-invariant load (LTI) load supplied from four-wire line.
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Figure 1 shows the three-phase four-wire system supplying an unbalanced linear
time-invariant load (LTI):

u(t) =

 uR(t)
uS(t)
uT(t)

 =
√

2Re ∑
n∈N

 URn
USn
UTn

ejnω1t =
√

2Re ∑
n∈N

Unejnω1t, (4)

where: URn, USn, UTn are the nonsinusoidal complex RMS (CRMS) values of the voltages
at the terminals R, S, and T of the load; Un is a three-phase vector of CRMS values of
harmonics of phase voltages.

The vector of the currents of lines can be represented in the same way, namely:

i(t) =

 iR(t)
iS(t)
iT(t)

 =
√

2Re ∑
n∈N

 IRn
ISn
ITn

ejnω1t =
√

2Re ∑
n∈N

Inejnω1t, (5)

where: IRn, ISn, ITn are the nonsinusoidal CRMS values of the currents in lines R, S, and T;
In is a three-phase vector of CRMS values of harmonics of line currents.

Considering the purpose of the article, only the final relationships necessary for
understanding the next section will be presented in this section. Detailed information is
presented in the authors’ publication [3].

Due to the currents’ physical components (CPC) theory, the current of an unbalanced
LTI load supplied with an asymmetrical nonsinusoidal voltage [3] may have four compo-
nents in total. The component of the current related to the permanent energy transmission
from the source to the load is the active current ia, the waveform of which takes the form:

ia = Geu = ∑
n∈N

ian =
√

2Re ∑
n∈N

GeUnejnω1t =
√

2Re ∑
n∈N

{
Ge

(
Up

n + Un
n + Uz

n

)
ejnω1t

}
=
√

2Re ∑
n∈N

{
Ge

(
1pUp

n + 1nUn
n + 1zUz

n

)
ejnω1t

}
, (6)

where: Up
n, Un

n, Uz
n are the CRMS values of symmetrical voltage components accom-

plished from the Fortescue transformation; 1p, 1n, 1z are the unit vectors of symmet-
rical components described by the Fortescue transformation; Up

n, Un
n, Uz

n are the vec-
tors of the CRMS values of symmetrical voltage components accomplished from the
Fortescue transformation.

The three-phase RMS value of an active current is associated to the equivalent conductance
of the entire system Ge and to the three-phase RMS value of the supply voltage ‖u‖:

‖ia‖ = Ge‖u‖ =
P
‖u‖ , (7)

The component of the current associated with the presence of the difference between
the equivalent conductance of the entire system Ge and the equivalent conductance of indi-
vidual harmonics Gbn is the scattered current is, the waveform of which can be presented
as follows:

is = ∑
n∈N

isn =
√

2Re ∑
n∈N

{
(Gbn − Ge)Unejnω1t} =

√
2Re ∑

n∈N

{
(Gbn − Ge)

(
Up

n + Un
n + Uz

n

)
ejnω1t

}
=
√

2Re ∑
n∈N

{
(Gbn − Ge)

(
1pUp

n + 1nUn
n + 1zUz

n

)
ejnω1t

} (8)

The three-phase RMS value of the scattered current ‖is‖ is calculated from the relationship:

‖is‖ =
√

∑
n∈N

[
(Gbn − Ge)

2‖un‖2
]
, (9)

The component of the current associated with the shift between the voltage waveform
and the current waveform for individual harmonics and related to the equivalent parameter
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of the circuit in the form of equivalent susceptance Bbn is the reactive current ir, and its
waveform is described as follows:

ir = ∑
n∈N

irn =
√

2Re ∑
n∈N

{
jBbnUnejnω1t

}
=
√

2Re ∑
n∈N

{
jBbn

(
Up

n + Un
n + Uz

n

)
ejnω1t

}
=
√

2Re ∑
n∈N

{
jBbn

(
1pUp

n + 1nUn
n + 1zUz

n

)
ejnω1t

}
, (10)

The three-phase RMS value of the reactive current ‖ir‖ is equal:

‖ir‖ =
√

∑
n∈N

[
(Bbn)

2‖un‖2
]
, (11)

where: ‖un‖ is the three-phase RMS value of the voltage of the respective harmonic.
In the system, as a result of imbalanced of a load, there is also a fourth component of

the current, called the unbalance current iu. The waveform of the unbalanced current is
resulted by subtracting from the waveform of the total current i three components in the
form of active current ia, reactive current ir, and scattered current is:

iu = ∑
n∈N

iun =
√

2Re ∑
n∈N

Iunejnω1t =
√

2Re ∑
n∈N

{
(In − Ibn)ejnω1t

}
=
√

2Re ∑
n∈N

{
(In − YbnUn)ejnω1t

}
=
√

2Re ∑
n∈N

{
(In − (Ge + (Gbn − Ge) + jBbn)Un)ejnω1t

}
,

=
√

2Re ∑
n∈N

{(
(In − Ibn)

(
1pUp

n + 1nUn
n + 1zUz

n

))
ejnω1t

}
=
√

2Re ∑
n∈N

{(
(In − Ibn)

(
Up

n + Un
n + Uz

n

))}
ejnω1t

(12)

where Ibn = YbnUn is the vector of line currents consequent from the active and
reactive powers of respective harmonics.

The three-phase RMS value of the unbalanced current ‖iu‖ is:

‖iu‖ =
√
‖i‖2 −

(
‖ia‖2 + ‖ir‖2 + ‖is‖2

)
, (13)

Additionally, the unbalanced current can be divided into three symmetrical compo-
nents of the appropriate order [3–5]. The first component of the unbalanced current iu is
the unbalanced current of the positive sequence ip

u, which is related to the voltage asym-
metry dependent admittance Ydn, the generalized unbalanced admittance of the positive
sequence Yp

n , the generalized unbalanced admittance of the negative sequence Yn
n, and the

generalized unbalanced admittance of the zero sequence Yz
n:

ip
u = ∑

n∈N
ip
un =

√
2Re

{
∑

n∈N
Ip

unejnω1t

}
=
√

2Re ∑
n∈N

{
1p
(

YdnUp
n + Yp

nUp
n + Yz

nUn
n + Yn

nUz
n

)
ejnω1t

}
, (14)

The three-phase RMS value of the unbalanced current of the positive sequence is equal:

∥∥∥ip
u

∥∥∥ =

√
3 · ∑

n∈N

∣∣∣YdnUp
n + Yp

nUp
n + Yz

nUn
n + Yn

nUz
n

∣∣∣2, (15)

The unbalanced current of the negative sequence in
u can be determined analogically,

the waveform of which can be described by the relationship:

in
u = ∑

n∈N
in
un =

√
2Re

{
∑

n∈N
In

unejnω1t

}
=
√

2Re ∑
n∈N

{
1n
(

YdnUn
n + Yn

nUp
n + Yp

nUn
n + Yz

nUz
n

)
ejnω1t

}
, (16)

The three-phase RMS value of the unbalanced current of the negative sequence is equal:

‖in
u‖ =

√
3 · ∑

n∈N

∣∣∣YdnUn
n + Yn

nUp
n + Yp

nUn
n + Yz

nUz
n

∣∣∣2, (17)
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The last component is the unbalanced current of the zero sequence iz
u. The waveform

of this current is:
iz
u = ∑

n∈N
iz
un =

√
2Re ∑

n∈N

{
Iz

unejnω1t
}
=
√

2Re ∑
n∈N

{
1z
(

YdnUz
n + Yz

nUp
n + Yn

nUn
n + Yp

nUz
n

)
ejnω1t

}
, (18)

The three-phase RMS value of the unbalanced current of the zero sequence is equal:

‖iz
u‖ =

√
3 · ∑

n∈N

∣∣∣YdnUz
n + Yz

nUp
n + Yn

nUn
n + Yp

nUz
n

∣∣∣2, (19)

In relation to the fact that all components are mutually orthogonal [3], the three-phase
RMS value of the load’s current, according to currents’ physical components theory, is:

‖i‖2 = ‖ia‖2 + ‖is‖2 + ‖ir‖2 +
∥∥∥ip

u

∥∥∥2
+ ‖in

u‖
2 + ‖iz

u‖
2, (20)

The respective powers are obtained by multiplying the three-phase RMS value of the
supply voltage and the three-phase RMS values of the individual components of the load
current (7), (9), (11), (12), (17), and (19):

S =

√
P2 + Q2 + D2

s + Dp2
u + Dn2

u + Dz2
u , (21)

The power factor λ can be expressed in terms of the powers’ components or the
currents’ components:

λ =
P
S
=

P√
P2 + Q2 + D2

s + Dp 2
u + Dn 2

u + Dz 2
u

=
‖ia‖
‖i‖ =

‖ia‖√
‖ia‖2 + ‖ir‖2 + ‖is‖2 +

∥∥∥ip
u

∥∥∥2
+ ‖in

u‖
2 + ‖iz

u‖
2

, (22)

As can be seen, the power factor λ consists of six powers or currents which, apart
from the active power P or the three-phase RMS value of the active current, are lower than
its value. It should also be mentioned that in systems with nonsinusoidal waveforms, the
power factor λ will not reach the value equal to 1, as long as there is the scattered current
in the considered system.

3. Theoretical Illustration—Currents’ Components

For theoretical illustration, the system shown in Figure 2 has been prepared. This
is a three-phase four-wire system supplied with an asymmetrical nonsinusoidal voltage.
The load is unbalanced and is an LTI load type. In the voltage source, in addition to
the fundamental harmonic with a frequency of 50 Hz, harmonics 3rd, 5th, and 7th are
also presence.

Figure 2. Three-phase four-wire system with LTI load.
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The values of resistance as well as capacitive and inductive reactance for the funda-
mental harmonic, shown in Figure 2, are presented in Table 1.

Table 1. List of phase impedances with division of resistance, inductive, and capacitive reactance values.

Line Resistance R [Ω] Inductive Reactance XL [Ω] Capacitive reactance XC [Ω]

R 1 1 -
S 2 1.5 2
T R1 = 0.5, R2 = 5 1 -

Table 2 presents the values of the voltages harmonics and the values of the harmonics
of the line currents of the load.

Table 2. List of the values of the phase voltages and the values of the line currents.

Harmonic Order
Phase R Phase S Phase T

Un [V]

1st 230ej5◦ 215e−j110◦ 220ej99◦

3rd 20ej0◦ 33ej10◦ 30e−j20◦

5th 40e−j6◦ 20ej114◦ 27e−j133◦

7th 19ej7◦ 10e−j100◦ 30ej124◦

In [A]
1st 162.64e−j40◦ 104.47e−j169◦ 220ej45.9◦

3rd 6.33e−j71.6◦ 15.04ej0.9◦ 12.36e−j71.9◦

5th 7.85e−j84.7◦ 9.64ej109.6◦ 7.99e−j175◦

7th 2.69e−j74.9◦ 4.91e−j103◦ 7.61ej89.9◦

Figure 3 shows the three-phase voltage waveform at the terminals of the analyzed
load, and the three-phase waveform of the line current is shown in Figure 4.

The equivalent parameters of the load presented in Figure 1 (in accordance with CPC
Theory [3]) are listed in Table 3.

Figure 3. The three-phase voltage waveforms at the terminals of the load.
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Figure 4. The three-phase current waveforms of the load.

Table 3. List of the values of the individuals admittances.

Parameter [S]
Harmonic Order

1st 3rd 5th 7th

Ge 0.445
Gbn 0.454 0.318 0.152 0.180
Bbn −0.572 −0.205 −0.171 −0.133

Ydn
4.475 ·

10−3ej178.8◦ 0.056e−j151.6◦ 0.099ej16.8◦ 0.067ej27.1◦

Yp
n - - - -

Yn
n 0.107e−j142.8◦ 0.158ej171.8◦ 0.159ej161.5◦ 0.157ej156.7◦

Yz
n 0.193ej45.3◦ 0.091e−j97.1◦ 0.116e−j119.9◦ 0.125e−j127.5◦

Extensive information why the generalized unbalanced admittance of the positive
sequence is always 0 is presented in [3].

Based on the information included in Table 2, the three-phase RMS values of the
supply voltages are 392.43 V, and the three-phase RMS values of the currents of the line are
294.09 A.

Table 4 presents the three-phase RMS values of currents’ components for appropriate
harmonics described in CPC Theory (7), (9), (11), (15), (17), and (19). In Table 4 are also
included the total three-phase values for specific currents’ components and the total value
of the three-phase current (20).

Table 4. List of the values of the currents’ components.

Current [A]
Harmonic Order

Total Value [A]
1st 3rd 5th 7th

‖ia‖ 170.75 21.73 23.22 16.40 174.46
‖is‖ 3.81 6.21 15.30 9.75 19.55
‖ir‖ 219.82 10.04 8.94 4.91 220.29∥∥∥ip

u

∥∥∥ 18.55 6.73 4.68 0.83 20.30

‖in
u‖ 28.08 5.20 2.24 3.86 28.91
‖iz

u‖ 76.42 2.23 6.98 2.29 76.81
‖i‖ 292.86 20.47 14.78 9.45 294.09

Based on (7), (9), (11), (15), (17), and (19) and using the already known three-phase
RMS values of appropriate components, the power factor λ (22) is 0.593.
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As can be seen from the value of the power factor λ, it follows that the considered
system should be subjected to compensation and balancing. The balancing compensation
can be performed passively by using reactance elements in the form of chokes and/or
capacitors. Compensation and balancing can also be carried out actively using an active
power filter (APF). It is also possible to use a hybrid system in the form of a designed
balancing compensator made of passive elements and an active part in the form of an APF.
The third solution is a very often used compromise between the accuracy of compensation
and symmetrization and the economic justification for improving the quality of electricity.

4. The Compensator Minimizes the Reactive Current and the Unbalanced Current on
the Basis of the Currents’ Physical Components Theory in 3-p 4-w Systems

Due to the number of elements in one branch, the most advantageous condition is
that such a branch has only one reactance element. Unfortunately, in the real conditions
of the power system, if the compensator branch has a capacitive impedance, it can very
often resonate with the system for higher harmonics. To prevent such a phenomenon, the
compensator branch should be purely inductive or it should be connected in series with
the capacitor, forming the LC branch [6,43–46].

The vector of the complex RMS values of nonsinusoidal voltages in the branches of
balancing compensators takes the form:

Un =
[

URSn USTn UTRn URn USn UTn
]T, (23)

where the nonsinusoidal phase-to-phase voltages are described in [46,47], and the nonsinu-
soidal phase voltages by Equation (4)

The vector of the branch currents of an ideal balancing compensator can be represented as:

jT =
√

2Re ∑
n∈N

jTnUnejnω1t, (24)

where the vector Tn is:

Tn =



TRSn 0 0 0 0 0
0 TSTn 0 0 0 0
0 0 TTRn 0 0 0
0 0 0 TRn 0 0
0 0 0 0 TSn 0
0 0 0 0 0 TTn

, (25)

The vector Tn consists of two components relating to ideal balancing compensators.
The elements TSTn, TRSn, TTRn refer to the value of the ideal balancing compensator (the
index “n” means the order of harmonics) in the delta structure. So they are phase-to-phase
susceptances. The elements of the TRn, TSn, TTn refer to the value of the ideal balancing
compensator in the star structure. So they are phase-to-neutral susceptances.

For the minimizing balancing compensator (MBC), the reactive current, and the
unbalanced currents, the vector of the branch currents can be represented as follows:

jD =
√

2Re ∑
n∈N

jDnUnejnω1t, (26)

where the vector Dn is:

Dn =



DRSn 0 0 0 0 0
0 DSTn 0 0 0 0
0 0 DTRn 0 0 0
0 0 0 DRn 0 0
0 0 0 0 DSn 0
0 0 0 0 0 DTn

, (27)
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The vector Dn, identical to the vector Tn, consists of two compensators of different
structures. The main difference between the elements in both vectors is the ideality of the
constituent elements. The susceptances DRSn, DSTn, DTRn in the delta system are designed
to minimize the value of unbalanced currents of the negative and positive sequences, but
not for ideal compensation. The same is the case with susceptances DRn, DSn, DTn. The
selection of the parameters of these susceptances is to contribute to the reduction of reactive
current and the unbalanced current of the zero sequence. In order to be able to optimally
minimize the reactive current and the unbalanced current, the minimum distance should
be determined for these two vectors.

The distance of the jT and jD vectors can be defined as the RMS value of the difference
of their currents, namely:

d = ‖jT − jD‖ = ‖∆j‖, (28)

Two compensators with the susceptances DRSn, DSTn, DTRn and DRn, DSn, DTn, com-
pensate and balance the unbalanced currents of the positive and negative sequences (the
balancing compensator in delta structure) and the reactive current and the unbalanced
current of the zero sequence (the balancing compensator in star structure), respectively. If
the RMS value of the difference of hypothetical currents, ideal balancing compensators,
and the minimizing balancing compensators built of at most two-elements LC, equal to:

∆j =
√

2Re ∑
n∈N

(Tn −Dn)Unejnω1t =
√

2Re ∑
n∈N

∆Jnejnω1t, (29)

is as small as possible, then the square of the RMS value of this current, otherwise the
square of the distance of the currents jT and jD is equal to:

d2 = ‖∆j‖2 = Re ∑
n∈N

∆JT
n ·∆J∗n = ∑

n∈N

(
∆J2

RSn + ∆J2
STn + ∆J2

TRn + ∆J2
Rn + ∆J2

Sn + ∆J2
Tn
)

= ∑
n∈N

[
(TRSn − DRSn)

2U2
RSn + (TSTn − DSTn)

2U2
STn + (TTRn − DTRn)

2U2
TRn + (TRn − DRn)

2U2
Rn + (TSn − DSn)

2U2
Sn + (TTn − DTn)

2U2
Tn

] (30)

The square of the currents distances jT and jD is therefore the sum of three nonnegative,
mutually separate terms for each of the balancing compensator structures, the general form
of which can be written as follows:

d = ‖jT − jD‖ =
√

∑
n∈N

∆JT
n ·∆J∗n =

√
∑

n∈N
∑
k∈K

(Tkn − Dkn)
2U2

kn, (31)

where k is a symbol in the set K = {RS, ST, TR, R, S, T}.
On the grounds of that the order of summing the harmonic orders n and the branch

indexes k can be different, the distance d could be expressed as follows:

d =

√
∑

n∈N
∑
k∈K

(Tkn − Dkn)
2U2

kn =
√

∑
k∈K

d2
k , (32)

As can be seen, the values under the square root will be nonnegative numbers, so it is
not possible for the values to eliminate.

The distance d is minimal when the individual distances dk for individual branches of
the balancing compensators are also minimal, namely:

∑
n∈N

(Tkn − Dkn)
2U2

kn = minimum, (33)

It is known that the RMS value of the fundamental voltage harmonic, whether phase-
to-phase or phase, is much higher than the RMS value of any other harmonic [6,43–46].
Consequently, if in individual branches of one of the two compensators no resonance
appears in the nearby of the harmonic frequency of the supply voltage, then the dominant
component in the distance d of the jT and jD vectors is the difference in susceptance between
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the ideal and minimizing compensator in a given branch for the fundamental frequency,
i.e.,: TXY1—DXY1 or TX1—DX1. This assumption determines the choice of susceptance for
the fundamental frequency DXY1 or DX1, namely, their signs must be the same as those of
TXY1 or TX1 susceptance.

It was assumed that if the susceptance of TXY1 or TX1 is negative, then the compensator
with a delta structure between the TXY terminals should have a branch with a choke,
because its susceptance is also negative, or if the compensator with a star structure between
the phase terminal and the neutral wire TX should also have branch with a choke. The
inductance of such a choke, regardless of whether it is connected between phases or phase
and neutral wire, should minimize the value:

∑
n∈N

(
Tkn +

1
n ω1Lk

)2
U2

kn = minimum, (34)

If the line-to-line susceptance TXY or the line susceptance TX is positive, the com-
pensator should have a capacitor in the branch, but it should be connected in series with
the choke, so that for higher order harmonics this branch has an inductive character and
positive for the fundamental frequency:

dk1 =
ω1Ck

1−ω2
1 LkCk

, (35)

This requires that the resonant frequency of such a branch be higher than the funda-
mental frequency, i.e.,:

ωr =
1√

LkCk
, (36)

The inductance and capacitance of such a branch should minimize the following expression:

∑
n∈N

(
Tkn −

nω1Ck

1− n2 ω2
1 LkCk

)2

U2
kn = minimum, (37)

The inductance Lk satisfying Equation (34) can be found from the condition:

d
dLk

{
∑

n∈N

(
Tkn +

1
nω1 Lk

)2
U2

kn

}
= 0, (38)

By fulfilling the expression (38), i.e., by calculating the inductance of a given branch,
we can treat it as the optimal inductance of that branch, therefore:

Lk, opt = −
∑

n∈N

U2
kn

n2

ω1 ∑
n∈N

TknU2
kn

n

, (39)

The left side of the expression (37) is a function of two variables, i.e., inductance Lk
and capacitance Ck. The inductance of Lk is a continuously decreasing function, which
means that there is no minimum for any finite value. Its choice depends on the person
accomplishing the calculations [43–45]. After choosing the inductance, the capacitance Ck
can be calculated from formula (37). When looking for the minimum in expression (37), we
have to fulfill the condition:

d
dCk

 ∑
n∈N

(
Tkn −

nω1Ck

1− n2 ω2
1 LkCk

)2

U2
kn

 = 0, (40)
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The distance defined by the expression (40) for any branch has a minimum due to the
optimal capacitance of the capacitor when:

∑
n∈N

nTknU2
kn(

1− n2 ω2
1 Lk, optCk, opt

)2 − ∑
n∈N

n2ω1Ck, optU2
kn(

1− n2 ω2
1 Lk, optCk, opt

)3 = 0, (41)

Considering the optimal capacity Ck, opt occurring in the dependence (41), this equation
is an implicit equation. Therefore, calculating this capacity requires numerical methods,
especially in an iterative process. The iterative formula for determining the optimal capacity
takes the form:

Ck, i+1 =

∑
n∈N

nTknU2
kn

(1−n2ω2
1 Lk, optCk, i)

2

ω1 ∑
n∈N

n2U2
kn

(1−n2ω2
1 Lk, optCk, i)

3

, (42)

After the ith iteration, it will concur to obtain several capacities, which in the final
stage of calculation should cause to the optimal capacity.

5. Theoretical Illustration—Symmetrization and Compensation of Currents’
Components and Minimalization of the Structure of Balancing Compensators

For the theoretical illustration of the minimizing balancing compensation, the system
analyzed in Figure 2 was chosen. According to the information in Chapter 4, the minimiza-
tion is primarily focused on incomplete balancing compensation of reactive current and
the unbalanced current, as well as limiting the number of reactive elements to a maximum
of two in one branch [6,43–46].

Based on Equation (36), the resonant frequency was chosen with the value ωr = 1.07ω 1.
Table 5 presents the values of the reactance elements of the minimizing balancing com-
pensators (MBC) with star (STAR-MBC) and delta (DELTA-MBC) structures, calculated on
the basis of expressions (39) and (42). The required optimal capacity in each branch was
estimated in the fifth iteration.

Table 5. List of the values of the reactive elements for the minimizing balancing compensators.

Structure R S T

STAR-MBC
C[µF] L[mH] C[µF] L[mH] C[µF] L[mH]

95.21 92.75 203.91 43.38 402.29 21.93

RS ST TR

DELTA-MBC
C[µF] L[mH] C[µF] L[mH] C[µF] L[mH]

53.96 163.83 − 21.2 28.88 307.93

Figure 5 shows the analyzed system which connected the minimizing balancing
compensators in both structures.

Table 6 presents the three-phase RMS values of the component currents, defined in
the CPC theory, after the minimizing the balancing compensation shown in Figure 5.

As can be observed in Table 6, as a result of connecting the compensators MBC, the
three-phase RMS currents for higher harmonics have increased. It is related to the purpose-
ful inaccuracy of the inductive susceptances so that there is no resonance phenomenon
between the MBC and the inductance of the power network. The increase in the three-phase
RMS values of the component currents does not, however, result in the flow of a large
amount of energy, because the amplitudes of the harmonic voltages are also relatively low
in relation to the fundamental harmonic voltage.
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Figure 5. The analyzed system with connected minimizing balancing compensators (MBC).

Table 6. List of the values of the three-phase currents’ components after the minimizing
balancing compensation.

Current [A]
Harmonic Order

Total Value [A]
1st 3rd 5th 7th

‖ia‖ 170.75 21.73 23.22 16.40 174.46
‖is‖ 3.81 6.21 15.30 9.75 19.55
‖ir‖ 3.56 12.11 10.96 6.45 17.92∥∥∥ip

u

∥∥∥ 0.82 7.23 3.54 0.95 8.14

‖in
u‖ 2.04 5.70 2.04 4.11 7.59
‖iz

u‖ 2.89 2.43 7.23 2.29 8.47
‖i‖ 170.87 27.35 31.02 20.71 177.02

Figure 6 shows the waveform of line currents after the minimizing the balancing compensation.

Figure 6. The three-phase current waveforms of the load after minimizing balancing compensation.

Due to the use of the minimizing balancing compensation, the power factor λ (22)
increased to the value of 0.986.
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This means that in systems with the scattered current associated with a change in
conductance on the order of harmonics, it is not possible to obtain the power factor λ equal
to unity. For this to become, such a system should use power electronic elements, known
as an active power filter.

6. CPC Theory—The Possibility of Using the Active Power Filter to Generate the
Reference Current

The active power filter (APF) as a compensator for reactive power (reactive current)
and unbalanced power (unbalanced current) has to be equipped with a measurement and
identification system for the load’s parameters. Currents and voltages can be measured at
the spot, where it will be operated without feedback, or where the feedback loop will be
required. In the first case, the system will be investigated as a stable system, while in the
second case, problems with stability may appear. The problem of stability must therefore
be included in the APF control algorithm.

Stability is not investigated in this article. Essentially, the identification of the param-
eters of an unbalanced three-phase load, which is performed by measuring the currents
and voltages at its terminals, is significant for compensation. The identification of the
load has to be made on the basis of the knowledge of the current and voltage waveforms,
and more precisely, the sequences of their discrete values, provided by the waveform
sampling system and the analog-to-digital converter. When the sampled sequences are
known, the complex RMS values of the supply voltage, load currents, and the current in
the neutral conductor can be calculated, i.e.,: UR, US, UT, IR, IS, IT and IN, which will be
the resultant of the line currents. The most common method for this is the discrete Fourier
transform (DFT) together with the fast Fourier transform (FFT) algorithm [9,16,48]. It is
also possible to abbreviate the computational time by using the algorithm described in [49].

Before launching the capability of generating a reference current in an active power
filter, the appropriate APF system should be chosen first. Among many available solu-
tions [9,10,12–18,50–52], four-wire systems [10,15] should be used. The use of four-wire
systems has the advantage over three-wire systems that in addition to injecting reference
currents to compensate for the line currents iR (t), iS (t), and iT (t), it is also possible to inject
a reference current to compensate for the current in the neutral wire iN (t). As it is known,
the current in the neutral wire with non-linear loads or with unbalanced linear loads can
reach very high values.

To obtain the reference current iRSTre f (t) of an active power filter or a hybrid power
filter (the active part of this filter), we use the system of equations:

iRSTre f (t) =



iRre f (t) = −
√

2Re
{

N
∑

n=1
irRn(t) +

N
∑

n=1
isRn(t)+

N
∑

n=1
ipuRn(t) +

N
∑

n=1
inuRn(t)+

N
∑

n=1
izuRn(t)

}
iSre f (t) = −

√
2Re

{
N
∑

n=1
irSn(t) +

N
∑

n=1
isSn(t)+

N
∑

n=1
ipuSn(t) +

N
∑

n=1
inuSn(t)+

N
∑

n=1
izuSn(t)

}
iTre f (t) = −

√
2Re

{
N
∑

n=1
irTn(t) +

N
∑

n=1
isTn(t)+

N
∑

n=1
ipuTn(t) +

N
∑

n=1
inuTn(t)+

N
∑

n=1
izuTn(t)

} (43)

In this way, despite the significant number of calculations, it is possible to generate a
reference current which, when injected into the line, guarantees the active current waveform
seen from the power source. As can be seen, the active current waveform will be identical
to the supply voltage waveform, i.e., it will be a nonsinusoidal waveform with the same
asymmetry and nonsinusoidal character as the voltage waveform. Additionally, the system
of Equation (43) should be supplemented with the equation of the reference current injected
into the neutral wire, namely:

iNre f (t) =

{
−
√

2Re

{
N

∑
n=1

iaZn(t)+
N

∑
n=1

irZn(t) +
N

∑
n=1

isZn(t)+
N

∑
n=1

izun(t)

}
, (44)

From Equation (44), it can be seen that not only a nonsinusoidal unbalanced current
of the zero sequence flows in the neutral wire, but also the zero sequences of nonsinusoidal
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active, reactive, and scattered currents. It is caused only by the asymmetry of the supply
voltage. At the moment when the supply voltage will be symmetrical, the components
related to the zero sequence current of the respective components will disappear from
Equation (44).

Figure 7 shows an example of APF connection to the LTI load.

Figure 7. The analyzed system with connected the minimizing balancing compensators (MBC) and the active power filter (APF).

As has already been mentioned in Chapter 5, due to the use of the minimizing
balancing compensation, the power factor (22) was equal to 0.986. Using the system of
Equations (43) and (44), we can obtain the power factor equal to 1.

It should be noted, however, that the definition of this power factor consists of the
sum of the active powers P and the sum of apparent powers S. If we define the power
factor as the value of the active power of the fundamental harmonic P1 or the value of the
active current of the fundamental harmonic ia1, then the power factor λ 1:

λ 1 =
P1

P
=

ia1

ia
, (45)

It will still be lower than unity and it will be 0.979.
To obtain the active current of the fundamental harmonic, the relation (43) should be

modified to the form:

iRSTre f (t) =



iRre f (t) = −
√

2Re
{

N
∑

n=2
iaRn(t) +

N
∑

n=1
irRn(t) +

N
∑

n=1
isRn(t)+

N
∑

n=1
ipuRn(t) +

N
∑

n=1
inuRn(t)+

N
∑

n=1
izuRn(t)

}
iSre f (t) = −

√
2Re

{
N
∑

n=2
iaSn(t) +

N
∑

n=1
irSn(t) +

N
∑

n=1
isSn(t)+

N
∑

n=1
ipuSn(t) +

N
∑

n=1
inuSn(t)+

N
∑

n=1
izuSn(t)

}
iTre f (t) = −

√
2Re

{
N
∑

n=2
iaTn(t) +

N
∑

n=1
irTn(t) +

N
∑

n=1
isTn(t)+

N
∑

n=1
ipuTn(t) +

N
∑

n=1
inuTn(t)+

N
∑

n=1
izuTn(t)

} (46)

Compensation of the current in the neutral wire will still be achieved with the use of
the reference current described by Equation (44), because the zero sequence active current
is associated with each harmonic, including the fundamental harmonic.

By using Equations (44) and (46), it is possible to receive the power factor λ equal to
unity and associated with the fundamental harmonic of the active current. The waveform
of the active current of the fundamental harmonic will have the same asymmetry as the
fundamental harmonic of the voltage waveform.
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7. Theoretical and Simulation Illustration—The Analysis of the System with an Active
Power Filter Connected

The summary of the theoretical analysis is the determination of the reference currents
in the X-X’ and Y-Y’ cross-sections and the depiction of the waveforms of the line current
that can be obtained on the basis of the relationship (43) and (46) in the Z-Z’ cross-section.

Figure 8 does not present the load considered earlier, only the minimizing balancing
compensators (DELTA-MBC and STAR-MBC) and the connected energy power filter (APF)
with marked cross-sections that will be considered.

Figure 8. The analyzed theoretical illustration which connected the minimizing balancing compensators (MBC) and the
active power filter (APF).

Basing the APF control algorithm based on the relationship (43), the waveform of the
three-phase reference current is received, shown in Figure 9.

Figure 9. The waveform of three-phase referent current in cross-section X-X’—Equation (43).

Based on the reference current generated in this way (Figure 9) and the relationship
(43) in the cross-section Z-Z’, a nonsinusoidal active current waveform will be obtained as
shown in Figure 10.
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Figure 10. The waveform of three-phase nonsinusoidal active current in cross-section Z-Z’.

Due to the use of the passive compensation in the form of the minimizing balancing
compensation, it was capable to reduce the RMS value of the currents in the respective
lines (Table 7). The application of the active filtration and the injection of the reference
currents to the supply lines will contribute to a further reduction in the RMS value of the
currents of the line.

Table 7. List of the RMS value of the currents of the lines before compensation and after using the
passive and active compensation.

Phase
RMS Value [A]

BEFORE MBC APF (43) APF (46)

R 162.97 105.93 104.95 102.25
S 106.10 99.37 98.34 95.58
T 220.62 101.19 100.67 97.80
‖i‖ 294.09 177.02 174.46 170.75
N 180.75 62.96 0 0

The values presented in Table 7 have been calculated based on an algorithm written
in the form of a script in the Matlab software. The algorithm created in Matlab was based
on the relationships described in Section 2, Section 4, and Section 6.

Based on Equation (44), the reference current injected into the neutral wire (cross-
section Y-Y’) has the waveform shown in Figure 11.

Figure 11. The waveform of the reference current in cross-section Y-Y’.
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Due to the use of passive compensation in the form of the minimizing balancing
compensation, it was possible to reduce the RMS value of the current in the neutral wire
(Table 7). The use of active filtration and the injection of the reference current (44) to the
neutral wire will contribute to the complete (in a theoretical example) compensation of the
current (Table 7).

Based on the APF control algorithm ensuing from Equation (46), the waveform of the
three-phase reference current is obtained, as shown in Figure 12.

Figure 12. The waveform of three-phase referent current in cross-section X-X’—Equation (42).

Based on the reference current generated in this way (Figure 12) and the relation (46)
in the Z-Z’ cross-section, a sinusoidal active current waveform is obtained (Figure 13).

Figure 13. The waveform of three-phase sinusoidal active current in cross-section Z-Z’.

The application of the active filtration expressed in relation (46) and the injection of
the reference currents to the supply lines will contribute to a further reduction of the RMS
values of the currents of the lines (Table 7).

As can be seen from Figure 13, the waveform of the active currents in the respective
lines is charged with the difference in amplitude and phase shift, as it responds to the values
of amplitude and phase shift in the supply voltage of the fundamental harmonic. When
using CPC theory (approach for the description of systems with asymmetrical voltage
waveforms) as a method for generating reference currents, it should be remembered that



Energies 2021, 14, 1815 19 of 21

without symmetrization of the voltage supply, the active currents (version with sinusoidal
or nonsinusoidal waveforms), will reflect the amplitude and phase asymmetry present in
this supply voltage.

8. Conclusions

The article presents an unbalanced linear time-invariant load supplied with asymmet-
rical nonsinusoidal voltage in four-wire systems. It can be almost perfectly balanced and
its reactive power can be compensated also almost perfectly. The use of the minimizing
balancing compensation (the passive part of the hybrid filter) increases the power factor to
a value close to unity. The application of an active power filter results in additional benefits
of the compensation of the reactive, scattered, and unbalanced currents that cannot be
compensated using passive elements in the form of the minimizing balancing compensator.

The solution proposed on the basis of Equation (43) in generating reference currents
results in obtaining only the nonsinusoidal active current. In such an approach, the reactive
power and the unbalanced power do not exist, because the active current waveform is
identical to the nonsinusoidal supply voltage waveform (there is no shift between voltage
and current waveform). The second approach, which is described with the relation (46),
focuses only on obtaining a sinusoidal active current reflecting the voltage waveform of
the fundamental harmonic. Additionally, the second approach improves the stability and
energy efficiency of the supply network.

The control methods of APF proposed in the article clearly show the possibility of
including the asymmetry of the supply voltage, which is so often omitted by other authors.
The phenomenon of voltage asymmetry is present to a greater or lower rank in every
supply system. As it has been shown in the article, accepting this phenomenon allows the
correct mathematical description of LTI loads and, at the same time, contributes to a more
precise control of generation of the reference current of the APF. This is because previously
no one considers the three coefficients of asymmetry, which together can correctly describe
the admittance dependent on voltage asymmetry.

The authors of the article, for some time, have been focusing on the correct descrip-
tion of energy properties, which are closely related to physical phenomena. Due to this
approach, a correct mathematical description is obtained, which is a further stage to use
for theoretical and then real improvement of the power supply conditions in single- or
three-phase systems.
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41. Sołjan, Z.; Hołdyński, G.; Zajkowski, M. Balancing reactive compensation at three-phase four-wire systems with a sinusoidal and
asymmetrical voltage source. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68, 71–79. [CrossRef]

42. Holdynski, G.; Soljan, Z.; Zajkowski, M. CPC-based reactive compensation at three-phase four-wire systems powered from
asymmetric sinusoidal voltage source. In Proceedings of the 2019 20th International Scientific Conference on Electric Power
Engineering (EPE), Kouty nad Desnou, Czech Republic, 15–17 May 2019; Institute of Electrical and Electronics Engineers (IEEE):
Picataway, NJ, USA, 2019; pp. 1–6.

43. Czarnecki, L.S. Minimisation of distortion power of nonsinusoidal source applied to linear loads. Proc. IEE 1981, 128, 208–210.
44. Czarnecki, L.S. Minimisation of unbalanced and reactive currents in three-phase asymmetrical circuits with nonsinusoidal voltage.

IEE Proc. B 1992, 139, 347–354.
45. Czarnecki, L.S. Minimization of reactive power under nonsinusoidal conditions. IEE Trans. Instrum. Meas. 1987, 36, 18–22.
46. Czarnecki, L.S.; Bhattarai, P.D. CPC-based reactive compensation of linear loads supplied with asymmetrical nonsinusoidal

voltage. Prz. Elektrotechniczny 2019, 1, 3–10.
47. Czarnecki, L.S.; Bhattarai, P. Power and compensation in circuits with distorted and asymmetrical current and voltage waveforms.

Vol. 8, Power and compensation of circuits with asymmetrical supply voltage. Aut. Elektr. Zakł. 2015, 6, 8–18. (In Polish)
[CrossRef]
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