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Abstract: Machine learning is widely used as a panacea in many engineering applications includ-
ing the condition assessment of power transformers. Most statistics attribute the main cause of
transformer failure to insulation degradation. Thus, a new, simple, and effective machine-learning
approach was proposed to monitor the condition of transformer oils based on some aging indicators.
The proposed approach was used to compare the performance of two machine-learning classifiers:
J48 decision tree and random forest. The service-aged transformer oils were classified into four
groups: the oils that can be maintained in service, the oils that should be reconditioned or filtered,
the oils that should be reclaimed, and the oils that must be discarded. From the two algorithms,
random forest exhibited a better performance and high accuracy with only a small amount of data.
Good performance was achieved through not only the application of the proposed algorithm but also
the approach of data preprocessing. Before feeding the classification model, the available data were
transformed using the simple k-means method. Subsequently, the obtained data were filtered through
correlation-based feature selection (CFsSubset). The resulting features were again retransformed
by conducting the principal component analysis and were passed through the CFsSubset filter. The
transformation and filtration of the data improved the classification performance of the adopted
algorithms, especially random forest. Another advantage of the proposed method is the decrease
in the number of the datasets required for the condition assessment of transformer oils, which is
valuable for transformer condition monitoring.

Keywords: transformer oil; physicochemical tests; oil assessment; machine learning; features extrac-
tion; features selection; ensemble techniques; random forest

1. Introduction

Power transformers are the most important and critical equipment in substations.
In these transformers, insulating oils fulfil a two-fold function: serving as a coolant and
dielectric liquid [1,2]. Under service conditions, the oil undergoes a slow and steady-state
degradation due to aging, high temperature, and chemical reactions such as oxidation [3].
These interrelated mechanisms contribute to the formation of water, sludge, acids, dissolved
gases, and other decay contents, which lead to a decrease in dielectric strength and a
concomitant increase in oil viscosity. These factors influence the insulation dielectric
properties and heat dissipation efficiency, which are the primary objectives of oil [4].
The oil condition must be regularly analyzed and reclaimed or replaced when necessary
to prevent sudden transformer failure, which can lead to high time consumption and
resource costs [3]. IEC 60422, BS 5730, and IEEE Std 637 can be used as guides to set the
testing frequency. Moreover, these guides can provide the recommended limits for tests
and actions that should be taken based on results [5]. Common diagnostic techniques
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depend on testing based on physical, chemical, and electrical parameters. In general,
physical measurements involve the determination of parameters such as temperature,
vibration, and acoustic emission. However, the most frequently used diagnostic methods
that provide useful information about transformation insulation conditions are chemical
and electrical analyses [6,7]. Furthermore, these measurements are referred to as oil quality
tests that serve as oil deterioration indicators [8]. Based on these indicators, the actions
that should be taken by maintenance engineers regarding the insulating oil are eased.
The interpretation of test results is challenging because of the complexity of the structure
and degradation mechanism of transformers [9]. An expert analyst must be present
during diagnosis [10]. The right decision is essential because a misinterpretation may
cause transformer damage, thereby exposing workers to fatal accidents, colossal economic
losses, network shut down, and the removal of the network from service. Thus, intelligent
techniques and their applications, which can be used to store human experience and react
intelligently and automatically to help inexperienced analysts in making the right decisions,
must be investigated. Furthermore, this intelligence can be integrated into an overall online
system as a part of smart grid monitoring systems [9]. Numerous investigations on the
application of intelligent techniques for the monitoring and diagnosis of transformers
have been reported in the literature [11-14]. In most studies, irrespective of whether
these studies are listed in this paper, intelligent techniques are applied either to interpret
dissolved gas analysis data or to predict transformer health index conditions. However, to
the best of authors” knowledge, only few articles addressing the problem of transformer oil
quality assessment through artificial intelligence are available in the literature. Researchers
have investigated the performance of artificial neural networks (ANNSs), especially the
back propagation (BP) algorithm trained using Levenberg-Marquard and momentum
techniques [15-17] and fuzzy logic [18] for the assessment of transformer oil quality. These
studies have presented some limitations, which may have arisen either from the approach
used by the authors to address the subject or from the intelligent techniques employed.
For the study methodology, the authors did not conducted preprocessing. However,
preprocessing of data is an important step in artificial intelligence processes that can provide
additional information for better prediction. Therefore, the researchers used only raw data
to develop prediction models. The amount of data used for validation was limited to few
cases, which was insufficient for generalization. In addition, the primary drawback of all
ANN-based algorithms is that they require a large dataset for proper training to guarantee
reliable analyses [19,20]. ANNs have highly limited analysis capacity—in particular, with
back propagation learning, which often leads to an overfitting phenomenon with low
generalization ability. Fuzzy logic does not directly handle the measured data, and the
derivation of their rules may be difficult [15]. Recently, with an increase in the capacity of
computers to process data, new machine-learning (ML) algorithms have been developed
to assess power equipment conditions [21,22].

In this study, new ML techniques were applied to diagnose the condition of trans-
former oils. Two well-known algorithms, namely J48 decision tree and random forest, were
tested and compared based on a dataset of 91 samples collected from in-service power
transformers of the Algerian National Society for Electricity and Gas (SONELGAZ). The
aim behind the application of these two algorithms is to assess the improvement in terms
of decision-making accuracy versus the previously applied algorithms such as ANN and
FL, especially when the data are properly preprocessed.

Given the aforementioned shortcomings of the previous works, the difference between
our contributions and the other ones can be summarized as follows:

e The proposed classifiers (J48 and random forest) have not been used before for as-
sessing the quality of transformer oils. The reason why these algorithms are used is
because they have had numerous successful applications in many fields, such as image
processing, biomedicine, and economic pattern classification, due to their antinoising
advantages and better model generalization abilities [14]. In addition, due to lack of



Energies 2021, 14, 1809

30f15

data, algorithms such as J48 decision tree and random forest are more appropriate for
building the prediction model with a relatively small amount of data.

e  Before feeding the algorithms, the data used were preprocessed by passing through
different filters that fall within the so-called features engineering. The goal of this is to
change the shape of the data so that the prediction algorithms can acquire additional
information that helps improve classification capabilities.

For the model validation, all the data were used to simultaneously train and test
the classification model instead of employing the available data for only training and
then testing the model for a few new cases, as performed in most studies available in the
literature. This approach is known as cross-validation (CV). The algorithm performance
was tested before and after each data filtration process to observe the influence of each
filtering step on the output of the classifier.

e The remainder of this paper is organized as follows: the physicochemical tests
are described in Section 2. The description of the raw data that feed the classification
algorithms, accompanied by a brief overview of the J48 and random forest algorithms as
well as the different filters used to preprocess the data is reported in Section 3. This section
ends with the metrics used to assess the performance of the classifiers and the validation
approach of the proposed model. In Section 4, the obtained results with a discussion of our
findings are reported. Finally, the conclusions with some directions for future perspectives
are given in Section 5.

2. Oil Quality Testing

The oil condition highly affects the performance and service life of transformers. A
combination of electrical, physical, and chemical tests was performed to monitor changes
in the electrical properties, extent of contaminants, and deterioration degree in the in-
sulating oil. The results were used to establish preventive maintenance procedures and
prevent costly shutdowns and premature equipment failure to extend the service life of the
equipment. A wide range of tests are available for the condition assessment of insulating
oils. Table 1 presents the most commonly used tests and their important properties. The
threshold levels of these tests are specified in ASTM D3487 for new oils [23] and IEEE
Guide C57.637-2015 for service oils [24].

Table 1. Insulating oil tests.

Type of Test

ASTM Method Significance/Effects

Dielectric Breakdown

Neutralization Number

Interfacial Tension (IFT)

Water Content

Power Factor

Oxidation Inhibitor (DBPC 1)

Metals in Oil

Describes the 0il’s function as an insulant. This parameter is affected by
moisture, particles, cellulose fibers and temperature.
Represents a measure of the trace amount of acidic or alkaline

D644, D974 contaminants in the insulating liquid. With increasing oxidation level of
in-service oil, polar compounds, particularly organic acids form in the oil.
Indicates the presence of polar contaminants, acids, solvents, varnish. This

D971 is a useful screening method for in-service oils exposed to soaps, acids,

varnishes, and solvents.
Increases electric conductivity and dissipation
D1533 factor and lowers the electric strength. Moisture increase may arrive from
excessive paper decomposition.
Describes the insulating liquid’s function as a dielectric. This parameter is
D924 (100, 25 C) affected by contaminants (moisture, conductive particles, dissolved metals,
peroxides, acids, salts/overheating, etc.)

Represents a quantitative assessment of the amount of inhibitors by mass

D2668, D1473 in the liquids. With increase in aging, the inhibitors are consumed and

need to be replenished when needed.
The presence of metal contaminants may affect many oil properties. This is
generally indicative of pump wear, arcing or sparking with metal.

D877, D1816

1 DBPC—Dibutyl Paracresol.
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Table 2 presents the tests and standards adopted by SONELGAZ with suggested limit
values. The voltage rating of the tested transformers was 72-170 kV [25].

Table 2. Standards and oil test limits adopted by SONELGAZ.

Test Item Standard Limit Values
Color ASTM D1500 <2
tgd IEC 60250, <0.3
Acidity (mgKOH/g) TEC 60296 <0.1
Viscosity (cSt) NEF-T-60 100 <10.5
Dielectric strength (kV) IEC 60156 >40
Water content (ppm) ISO 12-760 <30

3. Materials and Methods
3.1. Description of Data

In this study, six physical and chemical tests were conducted on the 91 transformer
oil samples obtained from in-service transformers with a voltage range of 72-170 kV.
The dataset contains the six parameters—namely, color, kinematic viscosity (cSt), acidity
(mgKOH/g), dissipation factor (tgb), dielectric strength (kV), and water content (ppm).
The expert’s decision regarding the action to be taken is one of the following four categories:
status quo, filter, reclaim, and discard. The actions taken by the experts are usually based
on guides established by the standard bodies IEC and IEEE, industrial companies and
research institutes, who classify the in-service oils into groups according to their states. For
each group, a specific corrective action is recommended [26]. IEEE have defined these four
groups for in-service oils [27]:

e  Group I—oils that are in satisfactory condition for continued use.

e  Group II—oils that only require reconditioning (by settling, filtering, centrifuging, and
vacuum drying or degassing [28]) for further service.

e  Group llI—oils in poor condition. Such oil should be reclaimed (restored to usefulness
by the removal of contaminants and products of degradation such as polar, acidic, or
colloidal materials from used electrical insulating liquids by chemical or adsorbent
means [28]) or disposed of depending upon economic considerations.

e  Group IV—ails in such a poor condition that it is technically advisable to dispose
of them.

To understand the shape and distribution of the data used, Figure 1 presents the plot
of the average values and standard deviations of different tests for each decision category.
The decisions in the graph are arranged from the category of oil that indicates a good
quality to deteriorated oil: from keeping the oil in status quo, to filtering, reclaiming, then
definitely discarding and changing it.

Almost all the oil quality indicators are good in the oils that should be used in service
(Figure 1). The oil quality gradually decreases in the other oils, except for the viscosity
indicator, for which the change is insignificant. The fact that viscosity remains almost
unaffected by aging is confirmed by results reported in [29].

The oil parameters usually influence each other [4,30]. With an increase in the moisture
content, the electrical strength of the insulating oil decreases (Figure 1). Although the oil
to be filtered is better than that to be reclaimed according to most parameters (color,
viscosity, acidity, and tgd), this is not the case according to the comparison of their dielectric
strengths because the water content in the oil to be reclaimed is less than that in the oil to
be filtered. This phenomenon also occurs when the acidity increases; it substantially affects
the dissipation factor [30]. To undertake a highly explicit analysis and help engineers in
condition monitoring by identifying the relevant parameters from that are not interrelated,
a correlation analysis was performed. Table 3 presents correlation coefficients between
various parameters on the basis of the data provided.
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Figure 1. Average values and standard deviations of different parameters for each decision category.
Table 3. Correlation matrix of the physico-chemical parameters.
Color Viscosit Acid Number Dielectric Tgd Water Content
y Strength 8
Color 1
Viscosity 0.041859 1
Acid Number 0.445081 0.103748 1
Dielectric Strength —0.13946 —0.03912 —0.26409 1
Tgd 0.262958 0.111397 0.695077 —0.32828 1
Water Content 0.133563 0.190597 0.367912 —0.55923 0.295186 1

The most interrelated parameters are tgd (Table 3). Water content is highly and
negatively correlated with dielectric strength and moderately related with the acidity.
Acidity influences also the color of in-service 0il, so as the acidity of the oil increases, the
color becomes darker and darker.No mutual relationship exists between viscosity and any
other parameter. The correlation among different variables in this dataset may help in
understanding how certain feature-engineering techniques such as, PCA or correlation-
based feature selection, can be used to manipulate data for extracting new informative
features or reducing irrelevant and misleading features.

3.2. Algorithms
3.2.1. J48 Decision Tree

Decision tree induction is a very popular and practical approach for pattern classifica-
tion. The decision tree is constructed generally in a greedy, top-down recursive manner.
The tree can be constructed in a breadth first manner or depth first manner. The decision
tree structure consists of a root node, internal nodes and leaf nodes. The classification rules
are derived from the decision tree in the form of [if ... then ... else ... ]. These rules are
used to classify the records with an unknown value for class label [31].

J48 is the final JAVA public version of the C4.5 decision tree [32]. C4.5 is a well-known
decision tree algorithm designed and implemented by Quinlan. Today, C4.5 has probably
become the most widely used and studied decision tree algorithm [33]. J48 builds decision
trees from training dataset by making use of the fact that each attribute of the data can
be used to make a decision by splitting it into smaller subsets. J48 uses the concept of
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information entropy and examines the difference in entropy; this difference in entropy
is called the normalized information gain. The attribute with the highest normalized
information gain is used to make the decision. J48 works well with both continuous and
discrete attributes and data with missing attribute values. It also gives an option for
pruning trees after creation [34]. Examples of decision trees can be seen in Figure 2. The
picture explains whether a customer will buy a laptop or not. From this decision tree,
one may observed that if a customer is young and a student, the likelihood that he will
purchase a laptop is high [35].

Age

Young senior

middle age

0 =

1 fair — jexcellent

11 ] — a5
l‘s‘

Figure 2. The typical decision tree model.

3.2.2. Random Forest

Substantial gains in classification and regression accuracy can be achieved by using
ensembles of trees, where each tree in the ensemble is grown in accordance with a random
parameter. Final predictions are obtained by aggregating over the ensemble. As the base
constituents of the ensemble are tree-structured predictors, and since each of these trees,
is constructed using an injection of randomness, these procedures are called “random
forests” [36].

The random forest model is created by a great number of decision trees. This method
simply averages the prediction result of trees, which is called a forest. In addition, this
model has three random concepts: randomly choosing training data when making trees,
selecting some subsets of features when splitting nodes, and considering only a subset of
all features for splitting each node in each simple decision tree. During the training of data
in a random forest, each tree learns from a random sample of the data points. A schematic
illustration of the random forest is indicated in Figure 3 [37].

The important advantages of the random forest method are its ability to handle a
numerous input attributes and its spontaneity [38].

First node
O O
oo ... OO0
ONONO® O OO

Tree | Treen

I |

Result 1 Result

Majority Voting and Making Decision

Figure 3. Schematic illustration of a random forest.
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3.3. Feature Extraction

Feature extraction is performed to obtain some transformation of original features
to generate other highly significant features [39]. The most popular feature extraction
approach is principal component analysis (PCA).

3.3.1. PCA

PCA was first proposed in [40]. As a linear unsupervised method, it is used to deter-
mine the optimum directions representing the variation in data. The original coordinates
do not necessarily represent the variation direction. The PCA is employed to find the or-
thogonal directions, which represent the data with the least error and convert the samples
of correlated variables into those of linearly uncorrelated features. Therefore, PCA can be
considered as a rotating coordinate system [41].

Another feature extraction technique tested was simple k-means.

3.3.2. K-Means Algorithm

The k-means algorithm is the most famous algorithm used to cluster data by sepa-
rating the samples into n groups of equal variances, which is achieved by minimizing
a criterion called the inertia or within-cluster sum of squares. This algorithm is used to
select the centroids that minimize the inertia or within-cluster sum of square criterion. It is
successfully used for multiclass classifications [42]

3.4. Feature Selection

Data usually comprise features that can be irrelevant, misleading, or redundant, which
increases the search space size rendering further data processing difficult and thus not
contributing to the learning process. Feature subset selection is the process of selecting
the optimum features that are useful to discriminate classes. A feature selection algorithm
(FSA) is a computational model provoked using a certain definition of relevance [38].
Correlation-based feature selection (CFsSubset) was adopted to select the most informative
features from the features acquired from the feature extraction process.

CFsSubset is used to evaluate the prediction of each attribute in terms of redundancy
and the relationship between them. It is used to select the features having a large correlation
with the class [43].

3.5. Validation of Classifiers

In ML, validation is a statistical method of evaluating and comparing learning algo-
rithms by dividing data into two segments: one is used to train a model and the other is
used to validate the model. Cross-validation (CV), especially k-fold CV, is a commonly
adopted technique when the data are insufficient [21]. In this method, the whole dataset
is divided into k equally sized parts. The k-1 parts are used to train the classifier, and the
remaining groups are utilized for testing in each step. This process is repeated k times.
Finally, the average of k results is calculated to determine classifier performance [44]. In
this study, k was selected as 10.

3.6. Evaluation Metrics

To assess the performance of the proposed approaches, two criteria were selected:
accuracy and areas under receiver operating characteristic (ROC). Accuracy refers to the
proportion of correctly classified samples over the total number of samples: 50% and 100%
represent random and perfect, respectively [45]. Accuracy is generally never reported,
and if solely used with unbalanced datasets (the number of data points vary greatly from
class to class), the result undergoes a severe distortion. The area under the ROC is a plot
of the true positive rate (TPR) against the false positive rate (FPR) obtained when the
discrimination threshold of the classifier varies. The area under the ROC provides values
between (0, 1). When discrimination performs relatively better, its value is 1, and a bad
classification causes values to be close to 0.5 [21].
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TPR is the ratio of actual positives correctly identified as positive.

TPR = (TP/(TP + FN)) 1)
FPR is the ratio of the negative samples incorrectly identified as positive.

FPR = (FP/(FP + EN)) 2)

True positive (TP)—when both the actual and predicted classes of the data point are 1.

True negative (TN)—when both the actual and predicted classes of the data point
are 0.

False positive (FP)—when the actual and predicted classes of data point are 0 and
1, respectively.

False negative (FN)—when the actual and predicted classes of data point are 1 and
0, respectively.

All the above terms can be extracted from the so-called confusion matrix. The confu-
sion matrices represent the counts of predicted and actual values for each class. The correct
prediction obtained by the appropriate classifier means the prediction is consistent with
the expert’s diagnosis.

4. Experiments and Discussion of Results

Figure 4 illustrates the flowchart and process of the proposed scheme for the clas-
sification of transformer oil based on the measurement of their aging parameters. The
data collected were first preprocessed to impute missing values and eliminate outliers.
Subsequently, to overcome the problem of insufficient data, the available data were split
into training and testing sets by using the principle of 10-fold CV techniques. Afterwards,
feature selection and extraction were performed through four substeps: the split data
were passed to the first filter named “k-means”, which resulted in new features acquired
from the original characteristics of the oil. The new features were then filtered using the
“CfsSubsetEval” algorithm to select the most appropriate attributes and eliminate the
irrelevant or unhelpful attributes. The two aforementioned steps were repeated to extract
and further select other features, but the principal component analysis was employed for
feature extraction instead of using “k-means”. The outcome of each step was evaluated on
two classifiers: the J48 decision tree and its improved version, random forest.

Figure 5 presents the results obtained after the implementation of the process pre-
sented in Figure 4 on Waikato’s environment for knowledge analysis software (University
of Waikato, New Zealand), a free and open-source data mining system [46]. The results
represent a comparative study between two well-known algorithms: J48, a basic representa-
tion of the decision tree, and random forest, which corresponds to a collection of combined
decision trees.

The random forest-based approach provided higher performance than J48 for global
accuracy or global AUC at all the stages, before and after the application of different filters
(Figure 5). The average differences between the two classifiers for accuracy and AUC are
5% and 10%, respectively. The application of feature extraction followed by the selection of
the most relevant features, from all the resulted features, boosts the performance of the two
classifiers, especially of random forest in the final two filters, where PCA followed by the
CfsSubsetEval feature selector overcomes the lack of Simple k-means with CfsSubsetEval.
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Figure 4. Flowchart of the proposed method.
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Figure 5. Comparison of accuracy and Area Under ROC Curve for different approaches.

To investigate strengths and weaknesses of the proposed classifiers on each category
of oil, a confusion matrix is provided and presented in Figure 6.



Energies 2021, 14, 1809 10 of 15

Keep | Reclaim | Filter | Discard Keep | Reclaim | Filter | Discard
43 0 2 0 Keep 43 0 2 0 Keep
95.6% 0% 0.4% 0% 95.6% 0% 0.4% 0%
4 12 2 0 Reclaim 0 16 2 0 Redaim
% 222% 67% 11% 0% % 0% 89% 11% 0%
o O
El 3 2 14 0 Filter E 2 3 14 0 Filter
Lo} C
< <
15.7% 10.5% | 73.7% 0% 10.5% | 15.7% | 73.7% 0%
1 0 0 8 Discard 0 0 0 9 Discard
11% 0% 0% 89% 0% 0% 0% 100%
Predicted Class Predicted Class
(a) (b)

Figure 6. Testing confusion matrix: (a) J48; (b) random forest.

According to the confusion matrix, the performance of the random forest was im-
proved compared to J48 decision tree by increasing the number of correctly classified cases,
especially for the “Reclaim” and “Discard” categories. In addition, although there are
misclassified cases, the algorithms have put them into the near class. For instance, in the
random forest confusion matrix, the two misclassified instances which in fact belong to the
class “keep”, were placed under the class “Filter”, which represents the nearest category
to “keep” class in terms of order of o0il quality and not classified them as “Reclaim” or
“Discard”. The same principle was followed in the other misclassified instances.

Usually, in studies in which machine-learning techniques are applied, it is preferable
to give examples of cases in which the performance of the approach adopted is compared
with the expert’s decision. Table 4 provides a comparison between the actual decision of
the expert and the prediction of the proposed classifiers on a dataset of 10 new samples.

Table 4. Comparison of actual decision and predicted classification for new data cases.

Test Item Colour Viscosity Acidity g;‘jﬁ;ﬁc Tgd C‘/::::; t Actual J48 Pre- RF Pre-
. Decision diction diction
Limit Values 2 10.5 0.1 40 0.3 30
1 0.7 10.23 0.012 57 0.072 16 Keep Keep Keep
2 2.3 10.87 0.091 22 0.019 40 Filter Filter Filter
3 45 11.19 0.42 30 0.55 42 Discard Discard Discard
4 29 10.97 0.021 65 0.018 7 Keep Keep Keep
Data instances 5 3.4 11.5 0.07 57 0.105 23 Reclaim Keep Reclaim
6 1 12.45 0.046 56 0.15 31 Keep Keep Keep
7 2 10 0.106 50 0.025 35 Filter Filter Filter
8 2 12.3 0.062 52 0.020 32 Keep Keep Keep
9 4 12 0.08 48 0.022 37 Reclaim Reclaim  Reclaim
10 4 12 0.3 30 0.6 42 Discard Discard  Discard

Both algorithms perform well on new entries, except for one case among 10 where the
J48 decision tree failed to predict the correct class.

Since some data are available and shown in Table 4, we tried to form an explanation
for how and why the expert made these decisions about the fate of these oils based on a
simple comparison between the real values of oil parameters and the limit values. The
decision is “Keep” for cases where the parameter values do not exceed or close the limit
values. For the cases, where the decision was to filter the oil, the expert saw that the water
content exceeded the limit value and that it needed drying, whether it affected dielectric
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strength or not. The origin of water content should be detected. The in-service oils fall
in the “Reclaim” category when color is considerably changed due to presence of acidity,
polar particles or dissolved contaminants. The characteristics of highly contaminated oils
are very far from the limit values recommended by standards. Their recovery is possible
but it would be more expensive than their replacement.

In such multivariate systems, there are inputs and outputs, such as in machine-learning
systems. There is usually a difference in the significance and influence of various inputs on
the prediction results. An additional study was conducted to observe the effect of removing
one parameter on the accuracy of prediction (Figure 7). The study was performed on the
two proposed algorithms using raw and filtered data.

95
90
85
80
75
70
65
60
55

None Color Viscosity Acid Dielectric  Tgb Water
Number Strength Content

==& --J48 with filters 148 without filters

—@— RF with filters RF without filters

Figure 7. Impact of each parameter on classification accuracy.

All parameters have an influence, but the dielectric strength, the acid number and the
color, respectively, are the most influential.

Obtaining a high classification performance is essential, and performance is related to
the amount of the available data that are similar as it is related to a well-selected classifier.
The learning curve, which describes the relationship between the training set size and
classifier performance [47], can provide a quantitative view on the benefits of adding the
training samples to the learning algorithm.

Figure 8 shows the learning curves for the two classifiers, 48 and random forest, with
all filtering stages. Random forest performs better than J48 irrespective of the data size
(Figure 8). In addition, random forest rapidly converges to good results. According to
curves presented in Figure 4, approximately only 30% of the available data are adequate to
achieve satisfactory results. However, the 48 algorithm requires a relatively larger amount
of data to attain a performance similar to the performance of random forest, and when the
data are added, the J48 algorithm continually improves.
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Figure 8. AUC learning curves for different approaches.

5. Conclusions

In addition to their primary functions as electric insulators and coolants and in arc dis-
charge extinction, dielectric fluids play a vital role in keeping electric power equipment in
a good condition. The quality control of these fluids provides a general idea about whether
the fluids can fulfil the aforementioned tasks. Usually, human experts perform the control,
which makes the process frustrating, costly, time consuming, and competitively ineffective,
especially with the emergence of the smart grid concept, growth of electrical networks, and
deregulation of the energy sector. Condition automation monitoring becomes a necessity,
and the evolution of the artificial intelligence and machine-learning techniques has helped
in this monitoring. The performance of two machine-learning algorithms (J48 decision tree
and random forest) in terms of classifying the maintenance actions that should be taken
for in-service transformer oils was compared. The conclusions drawn from the obtained
results are as follows:

- By exploring the used datasets, the change in the quality of oil is reflected in the
physicochemical parameters, except the viscosity, which is not affected. Oil parameters
influence each other, and acidity and water content are the most influential parameters.
Both observations are consistent with the finding of some studies [4,48,49], which
confirms that our data are actual and suitable for machine learning.

- Random forest is superior to the J48 algorithm for classification with an 89% accuracy
and 0.96 AUC. In the J48 algorithm, the accuracy and AUC do not exceed 83.3% and
0.83, respectively.

- The performance of the used classifier is not the only factor affecting the result quality;
the data preprocessing method also influences this quality. Two strategies of data
preprocessing are applied in the present paper through four steps, and a distinct im-
provement was achieved. In the first step, feature extraction was performed, where the
original features were transformed into new features by using the simple k-means
technique. Subsequently, the new features were filtered using the “CfsSubsetE-
val” algorithm to adopt only the relevant features in the second step. The same
steps were then repeated, but for feature extraction PCA was performed instead of
simple k-means.

- Random forest exhibits a better performance than J48 irrespective of the data size, and
it does not require large amounts of data to achieve relatively better results.
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The final overall conclusion is that this study could be expanded by enriching the
data used to build classification models and adding other parameters that may give an
insight into other aspects of the oil condition or oil/paper condition. Additionally, the
present work can be continued by associating the resulting model from this study with an
overall online monitoring system after accompanying transformers with online connected
field-test devices.
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