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Abstract: The usage of smart grids is growing steadily around the world. This technology has been
proposed as a promising solution to enhance energy efficiency and improve consumption manage-
ment in buildings. Such benefits are usually associated with the ability of accurately forecasting
energy demand. However, the energy consumption series forecasting is a challenge for statistical
linear and Machine Learning (ML) techniques due to temporal fluctuations and the presence of linear
and non-linear patterns. Traditional statistical techniques are able to model linear patterns, while
obtaining poor results in forecasting the non-linear component of the time series. ML techniques are
data-driven and can model non-linear patterns, but their feature selection process and parameter
specification are a complex task. This paper proposes an Evolutionary Hybrid System (EvoHyS)
which combines statistical and ML techniques through error series modeling. EvoHyS is composed
of three phases: (i) forecast of the linear and seasonal component of the time series using a Seasonal
Autoregressive Integrated Moving Average (SARIMA) model, (ii) forecast of the error series using an
ML technique, and (iii) combination of both linear and non-linear forecasts from (i) and (ii) using
a a secondary ML model. EvoHyS employs a Genetic Algorithm (GA) for feature selection and
hyperparameter optimization in phases (ii) and (iii) aiming to improve its accuracy. An experimental
evaluation was conducted using consumption energy data of a smart grid in a one-step-ahead sce-
nario. The proposed hybrid system reaches statistically significant improvements when compared to
other statistical, hybrid, and ML approaches from the literature utilizing well known metrics, such as
Mean Squared Error (MSE).

Keywords: smart metering; energy consumption; forecasting; time series; machine learning; hybrid
systems; statistical models

1. Introduction

The investigation of energy consumption in buildings is increasingly attracting atten-
tion due to its major economical and environmental effects [1]. The construction sector,
specifically, has shown to be responsible for approximately 40% of global energy con-
sumption and 30% of CO2 emissions [2], numbers which are continuously growing due
to urbanization [3]. Therefore, changes in energy consumption and energy efficiency on
buildings are prone to heavily impact current society, including on major socioeconomic
and ecological issues, such as global warming and climate change [4].

Smart metering has been proposed as an alternative to improve building energy
management and efficiency [5–7]. The concept of smart metering is usually related to
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intelligent meter devices, which can be remotely and locally accessed, and are able to
register, process and provide feedback regarding energy consumption of the household [8].

By allowing close monitoring of energy consumption on the demand side and greater
observability and controllability of the power grid, smart metering can be utilized as a tool
to gain efficiency in each step of the customer-provider relationship.

The straightforward availability of historical consumption data provided by smart
meters allows the consumer to extract insights regarding its behavior and evaluation of
consumption patterns.

On the supply side, energy providers may be able to use smart metering to have a more
in-depth and accurate overview of the energy consumption in each region. In addition, it
allows for better forecasting of energy demand, which results in better maintenance and
network planning [9].

Finally, the forecasting of energy demand allows the supplier to quickly react to
changes in any part of generation, transmission, and distribution process, being able
to identify suspicious energy consumption activity and detect fraud; see, for example,
References [8,10].

As a result, the task of forecasting energy consumption has shown to be of great value
to the efficiency gains from smart metering. The ability to accurately forecast the energy
consumption for each household allows better fraud detection and maintenance/network
planning. As a result, approaches based on statistical linear and Machine Learning (ML)
techniques have been widely employed in this task [11–13].

However, the ability to accurately forecast energy consumption represents a challeng-
ing task due to the fact that it follows linear and non-linear patterns [11]. The motivation
in utilizing statistical linear models is in part due to the existence of a well established
methodology for model construction, proposed by Box & Jenkins [14]. Among the linear
techniques, Seasonal Autoregressive Integrated Moving Average (SARIMA) is commonly
used because it can model the seasonality in time series [11].

Although statistical linear techniques are flexible, they have an underlying assumption
that the generating process of the time series is linear and, as a result, they do not perform
well with non-linear processes. While linearity is often a useful assumption, it has shown
to fail in many real-world problems since the early 1980’s [15].

On the other hand, ML techniques, such as Artificial Neural Networks (ANNs) [12,16]
and Support Vector Regression (SVR) [13,17], have been employed due to its data-driven
approach and ability to model non-linear patterns [18]. These techniques, however, do not
possess established methodologies for feature selection and are sensitive to hyperparameter
misspecification, which can degenerate their performance [19,20].

In this context, hybrid systems have been developed to combine the strengths of
statistical and ML techniques for modeling linear and non-linear components of a real-
world time series [19,21,22]. Zhang [19] proposed a hybrid system that supposes a linear
combination of the linear and non-linear patterns presents as follows:

Zt = Lt + Nt, (1)

where Zt is a real world time series, Lt is the linear component, and Nt is the non-linear
component. Based on Equation (1), the hybrid system proposed by Zhang [19] is composed
of three phases: modeling of the time series (L̂t) employing a statistical linear technique,
non-linear modeling of the residual series (N̂t) using an ML technique, and the combination
of the linear (L̂t) and non-linear (N̂t) forecasts using a simple sum. Several works followed
Zhang’s assumption in different applications [23–26]. However, hybrid systems that
suppose a linear combination can degrade the whole system’s performance once that the
relationship may not be additive [27].

Alternatively, Khashei and Bijari [20] proposed a non-linear combination (Equation (2))
of the linear and non-linear forecasts to overcome this limitation.

Zt = f (Lt, Nt), (2)



Energies 2021, 14, 1794 3 of 19

where f is a combination function generated by an ML technique. Khashei and Bijari’s
hybrid system has two phases: time series modeling using ARIMA; and non-linear mod-
eling of the linear forecast residuals, while utilizing an ML technique to generate the
final forecast.

Based on this assumption, Chou and Ngo [7,28] proposed a hybrid system that com-
bines the SARIMA with a Least Squares SVR (LSSVR) trained via metaheuristic Firefly
Algorithm (MetaFA) in a smart metering data forecast scenario. In this work, the hybrid
system SARIMA-MetaFA-LSSVR employs a SARIMA for linear modeling of the time series,
and posteriorly the LSSVR performs the final forecast from non-linear modeling of the resid-
uals, of the linear output, and exogenous data. The results obtained in References [4,28]
show that hybrid systems can be a promising approach in terms of accuracy when com-
pared with single statistical and ML techniques and other literature approaches.

However, hybrid systems are still affected by obstacles originated from ML modeling,
such as the lack of an established methodology for hyperparameter optimization and
feature selection. In order to overcome these limitations, this paper proposes a three-
phase hybrid system, which we name Evolutionary Hybrid System (EvoHyS), that non-
linearly combines statistical and ML techniques to forecast smart grid networks’ time series.
The proposed hybrid system is composed of three phases: (i) forecast of the linear and
seasonal component of the time series using a Seasonal Autoregressive Integrated Moving
Average (SARIMA) model, (ii) forecast of the error series using an ML technique, and (iii)
combination of both linear and non-linear forecasts from (i) and (ii) using a a secondary
ML model. A Genetic Algorithm (GA) is employed to find the best set of parameters and
input data for phases (ii) and (iii). An experimental evaluation in a 1-day-ahead forecast
scenario was performed with a data set of a smart grid network installed in a residential
building. EvoHyS attained the best overall performance considering five well-known
accuracy measures compared to the single, ensemble, and hybrid models of the literature.
These results indicate that EvoHyS is a promising strategy to support decisions aiming
to improve efficient energy usage in buildings that use smart metering. The EvoHyS is
innovative in the smart meter consumption forecasting area because:

• It is the first hybrid system that performs the forecasting employing three phases of
modeling;

• It employs an ML model in an exclusive phase to find the best combination between
linear and non-linear forecasts;

• It uses a GA to search for the best set of the ML models parameters in the residuals
and combination modeling phases;

• It is able to search for the set of linear and non-linear forecasts that maximize the
accuracy of the whole system.

The remaining of this paper is organized as follows: we will present related works
regarding the use of evolutionary algorithms for the combination of forecasting models
in Section 2. In Section 3, we will describe and discuss our methodology and evaluate
our technique for a energy consumption forecasting problem in Section 4. Finally, we will
compare our method with other works in the literature and provide direction on where
further research is warranted in Section 4.3.

2. Related Work

The development of systems based on ML models has been highlighted in the energy
forecasting area [29]. In this area, electricity load and energy consumption forecasts have
received great attention due to their relationship to demand, supply, and environmental
issues [30,31]. In general, electricity load forecasting tasks have a major impact on the
planning, operating, and monitoring power systems. The accuracy of the forecasts can
impact operation costs since an overestimation can increase the number of generators
employed and produce an unnecessary reserve of electricity. The underestimation of
electricity load can put at risk the system’s reliability due to insufficient load required to
attend the demanding market [32]. In the same way, electricity consumption forecasting
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models can improve energy efficiency and sustainability in diverse sectors, such as in
residential buildings [33–35] and in industry [36,37].

In order to achieve accurate electricity load forecasts several machine learning models
have been employed in this task [38–40]. Models, such as ANNs based on Wavelets [38], Long
Short-Term Memory (LSTM), Random Forests [39], and ensembles [40], have been investigated.

Likewise, energy consumption forecasting systems based on ML models have been
used in the literature. Culaba et al. [33] employed a hybrid system based on clustering
and forecasting using K-Means and SVR models, respectively. Deep learning models, such
as Convolution Neural Networks (CNN), were employed by Reference [34] for energy
consumption forecasts in the context of new buildings with few historical data. Pinto et
al. [35] used ensemble models to forecast energy consumption in office buildings. Walther
and Weigold [36] performed a systematic review of the literature on energy consumption
forecasting models in the industry.

Considering the literature of energy consumption forecasting on smart metering
data, several ML methods have been investigated. In this context, Gajowniczek and
Zabkowski [41] employed MLP and SVR models to forecast the consumption on individual
smart meters. For that, their solution extracts features related to the meter’s consumption
history (e.g., average, maximum and minimum load) and the temperature inside the house.
They argued that they do not perform a traditional time series modeling due to the high
volatility of their data.

Zhukov et al. [42] investigated the effects of concept drift in smart grid analysis. A
random forecast algorithm for concept drift was employed, and an ensemble using the
weighted majority vote rule was used to combine the outputs of individual learners. The
proposed method was compared to other algorithms in the concept drift detection context,
obtaining promising results.

Electricity pricing and load forecasting are important tasks in smart grid structures
due to the improvements of efficiency in the management of electric systems [31,43,44].
In this scenario, Heydari et al. [43] proposed a hybrid system based on variational mode
decomposition (VMD), gravitational search algorithm (GSA), and general regression neural
networks (GRNN). The VMD performs the series’s decomposition into several intrinsic
mode functions (IMFS), while the GSA performs a feature selection in the time series.
Furthermore, considering the importance of electricity load forecasting in electric systems,
this task can also be performed in individual households through the employment of
smart metering technologies [45,46]. In this way, Li et al. [47] employed a Convolutional
Long Short-Term Memory-based neural network with Selected Autoregressive Features to
improve forecasting accuracy. Fekri et al. [46] used deep learning models based on online
adaptive recurrent neural networks, considering that energy consumption patterns may
change over time. In addition, several load forecasting applications have been addressed,
such as peak alert systems [48], where a modified support vector regression is employed,
using smart meter data and weather data as input.

Another work that deals with smart metering forecast [49], investigated the effects of
factors, such as seasonality and weather condition for electricity consumption prediction,
using different machine learning algorithms: regression trees, MLP and SVR. Their findings
show that: regression trees obtain the lowest Root Mean Squared Error (RMSE) values in
almost all evaluated scenarios; adding weather data does not improve the results; and a
historical window of one year to train the models is enough to achieve low-error forecasts.

Sajjad et al. [50] propose a deep-learning model for hourly energy consumption fore-
cast of appliances and houses. The input data is processed using min-max normalization or
z-score standardization, which is fed into a Convolutional Neural Network (CNN) followed
by a Recurrent Neural Network (RNN), specifically a Gated Recurrent Unit (GRU). Finally,
a dense layer on top of the GRU outputs the prediction. They do not provide, however,
any details about their strategy of selecting the hyper-parameters of the network.

Similarly, Wang et al. [51] employ an Long Short-Term Memory (LSTM) model that
outputs quantile probabilistic forecasts. For training, the network minimizes the average
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quantile loss for all quantiles. The input of the network is composed of the historical
consumption, the day of the week and hour of the day of the data point to be predicted.
Similar to Reference [50], the process of selection of nodes and layers of the network is
not presented.

In addition, hybrid systems have gained attention due to their ability to increase
the accuracy of the single ML models [30,52]. These systems are developed aiming to
overcome the limitations of single ML models regarding misspecification, overfitting, and
underfitting [27]. In this sense, Somu et al. [53] employed the K-means clustering-based
convolutional neural networks and long short term memory (KCNN-LSTM) to forecast
energy consumption using data from smart meters. In this work, the K-means is employed
to identify tendency and seasonal patterns in the time series, while the CNN-LSTM is used
in the forecasting process.

Chou and Truong [54] proposed a hybrid system composed of four steps: linear time
series modeling, non-linear residual modeling, combination, and optimization. The param-
eter selection process for the models employed in the first three steps is performed through
a Jellyfish Search (JS) optimization algorithm [55]. Bouktif et al. [56] employed a Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO) to search for hyperparameters of
the LSTM in load forecasting tasks.

The proposed hybrid system differs from the hybrid systems proposed in the literature
since it employs a GA to perform the optimization of the residual forecasting model and
the combination model. Furthermore, the optimization also selects the most relevant lags
to reduce model complexity and enhance forecasting accuracy.

3. Evolutionary Hybrid System

The proposed Evolutionary Hybrid System (EvoHyS) can be better understood by
splitting into two steps: training and testing. Figures 1 and 2 show that each step is divided
into three phases. In the training step (Figure 1), the training set of the the time series
(Ztrain) is modeled by a linear model (MLZ), an ML model (MLR) is used in the modeling
of the residual series (Etrain), and the combination of the linear and non-linear estimates is
performed with an ML model ((MLC)). Figure 2 shows that the linear (MLZ) and ML (MLR)
models are employed in the test step to forecast the time series and respective residuals.
After that, the MLC model is used to combine these estimates, generating the final forecast.

Smart
Meter

Historical Energy
Consumption Data

MLZ model
estimation

(II) Residual Modeling (III) Combination Modeling

Ztrain

(I) Time Series Modeling

Residual Series
Calculation

Ztrain

Ltrain

MLR Model Training
for Residual

Modeling
Rtrain

MLC Model Training
for Combination

Modeling

Training Step

MLZ model MLR model MLC
 model

^

Ltrain
^

Ntrain
^

Figure 1. Diagram of the training step of the Evolutionary Hybrid System (EvoHyS).
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Zlagz
MLZ model

(II) Residual Forecast

(III) Combination

(I) Time Series Forecast

MLR model

MLC
 model

Test Step

Rlagr

Zt+1

Smart
Meter

Historical Energy
Consumption Data

Ltest
^

Ntest
^

^

Figure 2. Diagram of the test step of the EvoHyS.

For linear modeling, a Seasonal Autoregressive Integrated Moving Average (SARIMA)
model was chosen as MLZ due to its ability to model seasonal time series, such as historical
energy consumption data. The Box & Jenkins methodology [14] used in the design and
parameters adjust of the SARIMA model performs the modeling of the linear patterns
presented in the training data (Equation (3)).

L̂train = MLZ(Ztrain). (3)

After MLZ model estimation, the residual series (Rtrain) is calculated from the dif-
ference between the training data (Ztrain) and the linear forecast (L̂train) according to
Equation (4),

Rtrain = Ztrain − L̂train. (4)

Figure 1 shows that the outputs of Stage (I) of the training step are: the linear forecast
(L̂train), the residual series (Rtrain), and the estimated SARIMA model (MLZ). The SARIMA
model is used in the test step.

Figure 1 shows that Stage (II) of the training step receives the residual series (Rtrain)
as input data. In this stage, an ML technique (MLR) is trained to model the non-linear
patterns that were not modeled in Stage (I). In this stage, Rtrain is subdivided into training
and validation sets to MLR parameters estimation. The Support Vector Regression (SVR)
model was chosen to perform the non-linear modeling of the residual series. In contrast to
ML models, such as neural networks, the SVR performs a quadratic optimization which
yields a single minimal solution [57]. Furthermore, SVR models have shown accurate
results in residual modeling [21]. A Genetic Algorithm (GA) is employed to search the
SVR parameters and the best set of temporal lags. The objective is to improve the residual
modeling using the ability of exploration and exploitation of the GA. The forecast of the
non-linear patterns (N̂train) using the residual series (Rtrain) modeling is performed after
the GA finds the parameters and the set of temporal lags that maximizes the accuracy of
the SVR (Equation (5)).

N̂train = GA(MLR(Rtrain)). (5)

The outputs of Stage (II) of the training step are the trained MLR and the forecast of
the residuals (N̂train). The trained MLR is used in the Test Step.

Stage (III) of the training step employs an ML model (MLC) to search for the most
suitable combination between the linear and non-linear forecasts. An MLP neural network
was selected to perform the combination due to of its robustness against noise and the
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ability to approximate any non-linear function [58,59]. The definition of the inputs of the
MLC is an important task [21] since it is closely related to the accuracy of the system. Thus,
a GA is used to define the MLP parameters, such as the activation function, optimization
algorithm, and number of hidden neurons. Equation (6) shows the final forecast in the
training step of the EvoHyS.

Ẑtrain = GA(MLC(L̂train, N̂train)). (6)

Figure 1 shows that the output of the Stage (III) of the training step is the trained MLC
model. In Stages (II) and (III), a validation set is employed for: verifying the ability of
generalization of the ML models, avoiding the overfitting, and selecting the best hyper-
parameters setting. This validation set is a subset of the training set used in Stage (I) to
estimate the parameters of the SARIMA model.

In the test step, as presented in Figure 2, the Stages (I) and (II) receive the test patterns
of the time series (Zlagz) and residual series (Rlagr), respectively. The number of time lags
lagz and lagr used as inputs for the MLZ and MLR models were defined in the Stages (I)
and (II) of the training step. In Stage (I), the MLZ model generates the time series forecast
(L̂test), and in Stage (II) the MLR model generates the residual forecast (N̂test). Finally, in
Stage (III), the MLC model performs the final forecast from the combination of the outputs
of Stages (I) and (II) according to Equation (7).

Ẑt+1 = MLC(L̂l1, N̂l2), (7)

where L̂l1 and N̂l2 are the forecasts used in the combination stage defined by GA in Stage
(III) of the training step. Algorithms 1 and 2 summarize the description of the training and
test steps in algorithmic language.

Algorithm 1 Training Step

1: Input: Ztrain = [z1, z2, . . . , ztrain] . training vector of size train
2: Output: MLZ, MLR, MLC . trained models
3: MLZ ←modelTraining(Ztrain) . Stage (I)
4: L̂train ← forecast(MLZ, Ztrain)
5: Rtrain ← (Ztrain − L̂train)
6: MLR ←modelTraining(Rtrain) . Stage (II)
7: N̂train ← forecast(MLR, Rtrain)
8: MLC ←modelTraining(L̂train,N̂train) . Stage (II)
9: Ẑtrain ← forecast(MLC,L̂train,N̂train)

Algorithm 2 Testing Step

1: Input: Zlagz, Rlagr, MLZ, MLR, MLC

2: Output: Ẑt+1
3: L̂test ← forecast(MLZ, Zlagz) . Stage (I)
4: N̂test ← forecast(MLR, Rlagr) . Stage (I)
5: Ẑt+1 ← forecast(MLC,L̂l1,N̂l2) . Stage (I)

3.1. Genetic Algorithm

In a Genetic Algorithm (GA), a set of solutions (population) undergoes an evolutionary
process inspired by Charles Darwin’s theory of evolution [60]. The evolution consists of
changes in the characteristics of the population over generations guided by the fitness
function. The genetic characteristics are passed to the next generation from the genetic
operators (crossover and mutation). Natural selection (parent and survivor selection)
improves the fitness of the population’s individuals over generations. The EvoHyS uses a
GA in the Stages (II) and (III) of the training step (Figure 1). In Stages (II) and (III), the GA
optimizes the MLR and MLC models, respectively.
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The proposed GA can be described by defining four main components: Chromosome,
Fitness Function, Reproduction (Crossover and Mutation), and Survivor Selection. Each
one of these components will be described in the following sections.

3.1.1. Chromosome

In this work, the chromosome, or genotype, contains the models’ parameters to be
optimized in Stages (II) and (III) of the training step (Figure 1). Figure 3 shows the generic
representation of the chromosomes that codifies the MLR and MLC models. For both
individuals, the chromosome is a fixed-length vector that contains two distinct parts. In the
first block, there is information regarding lags that can be utilized as inputs for the model.
Its size corresponds to the maximum number of lags that can be used by the model. Each
position contains a binary value (0 or 1), which corresponds to a given lag’s absence or
presence. In the second block the information regarding the parameters of the model is
presented. A list of possible values is established for each model parameter, where each
parameter search space is defined through different orders of magnitude or according to
predefined choices present in popular machine learning libraries, such as scikit-learn [61].
The population is randomly generated in both Stages (II) and (III).

In Stage (II), the SVR model is used as MLR. For that, the chromosome’s first block is
composed of time lags used for residual modeling. The second block holds information
regarding the SVR parameters’ configuration, such as the kernel parameter gamma, the
regularization factor C, and the ε, which defines the ε-sensitive cost function [57].

In Stage (III), the MLP model is employed as the combination mode, and is repre-
sented as MLC. In the combination stage (Stage (III)), the first block consists of the input
data employed to perform the final forecasting. The second part comprises genes that
contain information regarding the hidden layer, activation function, and learning algo-
rithm. The maximum number of hidden layers is previously defined. The number of
neurons per layer, activation function, and learning algorithm are determined from a list of
possible values. For each hidden layer, there is a binary value (0/1) that corresponds to the
absence/presence of a given hidden layer.

Input #1
0/1

Input #2
0/1

Input #n
0/1... Activation

Layer #1
Neurons
Layer #1

Activation
Layer #n

Neurons
Layer #n... Activation

Function Optimizer

Inputs Parameters General
Structure

SVR

MLP

Input #1
0/1

Input #2
0/1

Input #n
0/1... Kernel Gamma C Epsilon

Figure 3. Chromossome of the individuals of the proposed algorithm.

3.1.2. Fitness Function

The fitness function used for the evaluation of each individual is given by Equation (8).

f itness =
1

1 + MSE
(8)

where
MSE =

1
n ∑(Zt − Ẑt)

2. (9)
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The Mean Squared Error (MSE) is obtained by the difference between the actual values
and the forecast of the model. The validation set is used to evaluate the generalization
ability of the forecasting model.

For the MLP model (Stage (III)), each individual is evaluated three times with different
initialization of weights due to its stochastic nature. From those three evaluations, the best
model is selected.

3.1.3. Reproduction

The next generation is created from current population from two ways. The first group
consists of copies of the current population that are chosen using the roulette wheel selection.
The process is performed with replacement, once the selected individual can be chosen again.
The first group is generated until (1− cr) · Psize, where cr and Psize are the crossover rate
previously defined in the interval [0, 1] and the size of the population, respectively.

Another group is created combining the genes of two parents chosen from roulette
wheel selection. Each one of the offspring is produced from single-point crossover between
selected two individuals. The process is performed with replacement until cr · Psize.

The objective of the adopted strategy in the crossover is to enhance the chance of the
fittest individuals remain in the population, accelerating the convergence of the algorithm.
In addition, this reproduction aims to balance the trade-off between exploration and
exploitation of the GA.

After crossover, all offspring is subject to mutations in their genes. The objective
of that is to explore the search space and to guarantee the variability in the population.
The number of mutations is chosen randomly for each individual of the offspring using a
uniform distribution for a specific range, which can be defined as [0, nmax]. The initial value
for the maximum number of mutations (nmax) is previously defined on the first iteration.
For later iterations, nmax increases one unit by epoch. As a result, while the population
convergences, the proposed GA increases nmax in order to keep adding variability, aiming
to avoid premature convergence.

For binary genes, the mutation performs a reversion of the current state (from 0 to 1
or vice-versa). In other genes, the mutation replaces the current state with a new option
chosen randomly from a list of possible states.

3.1.4. Survivor Selection

The offspring generated after the reproduction phase using genetic operators (crossover
and mutation) has the same quantity of individuals as the previous population. Thus, the
replacement of the population is performed without the need to have a survivor selection
operator based on fitness. This replacement strategy aims to escape local minima that may
occur in the previous iteration.

4. Experimental Evaluation
4.1. Setup

Data. Acquiring time series data is limited and challenging in the smart metering context
since applications are performed in real buildings. The proposed hybrid system is evaluated
taking into consideration the data collected by the smart grid infrastructure installed in
a residential building [28] regarding the total hourly energy consumption between 2015
June 22 to 2015 July 26, totaling 2879 points. This same data set was used in the time series
forecasting context by previous papers [4,7,28] for evaluation purposes.

The data set was split into training, validation, and testing samples following the
temporal order, each one comprising 1706, 442, and 671 data points, respectively. The
SARIMA model training was performed using the training and validation samples. The
performance analysis was performed in the whole testing set and for each day of the week
(Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday).
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Selection of Parameters. The parameter selection for the components of the proposed
hybrid system is performed in different ways for linear and non-linear models. SARIMA
model is defined using the Box & Jenkins methodology [14]. The parameters of the SVR
model are defined by GA according to the following value options described below:

• input_active = (0, 1)
• kernel = (linear, poly2, poly3, poly4, poly5, poly6, rbf, sigmoid)
• gamma = (scale, auto)
• C = (10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104)
• epsilon = (0.0, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101)

The input_active parameter assumes a binary value indicating the presence or absence
of a given input, according to Figure 3. The kernel represents eight possible kernel functions:
Linear, polynomial with degrees 2, 3, 4, 5, and 6; radial basis function (rbf) and sigmoid.
Parameter C is a regularization factor and ε is used in the calculation of the error function.

The value for gamma is calculated according to the implementation of the machine
learning library Scikit-learn [61] and SVR solver implementation libSVM [62] which allows
two predefined possibilities, which are discussed by Braga et al. [63]:

• if gamma = auto, then the chosen value of gamma is defined as 1/n f eatures, where
n f eatures represents the number of features in the input data,

• if gamma = scale, then the adopted value for gamma is 1/(n f eatures · σ2) where σ
represents the standard deviation of the input data.

Regarding the MLP network, the possible values in the search space are:

• input_active = (0, 1)
• activation = (identity, logistic, tanh, relu)
• solver = (sgd, adam, lbfgs)
• layer_active = (0, 1)
• layer_nodes = (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048)

The activation represents the activation function, and can assume function, such as
identity, logistic, hyperbolic tangent (tanh), and rectified linear unit (relu). The solver
represents the algorithm used in the training process of the MLP. The number of hidden
neurons of the MLP is defined through the layer_nodes parameter and each layer can be
activated using a binary value of variable layer_active.

Table 1 presents the selected models by GA from performance in the validation set.
SVR with Radial Basis Function (RBF) kernel was the chosen residual model and the MLP
used for the combination model only has 1 layer with 32 neurons. The column Lags
presents the number of lags used by the models.

Table 1. Selected models by Genetic Algorithm (GA).

Model Types Parameters Lags

MLR SVR C = 0.01, epsilon = 1 ×10−5, gamma = ‘scale’, kernel = ‘rbf’ 1,5,8,9

MLC MLP neurons = (32), activ. = ‘relu’,optim. = ‘adam’ Linear: 0,2,5,6,7; non-linear: 3,5,7,8

Baselines. The proposed hybrid system is compared with previous approaches, compris-
ing single methods, ensembles, and hybrid methods. EvoHyS is compared to the models
presented in the work of Chou and Tran [7]. For the single models, SARIMA, MLP, SVR,
Long Short-term Memory neural network (LSTM), Linear regression (LR), and Classifica-
tion and Regression Trees (C&R Tree) are considered. The ensemble methods employed
consist of bagging of MLPs and an ensemble based on SVR and LR methods (SVR+LR).
The hybrid systems used in the comparison are SARIMA-MetaFA-LSSVR and SARIMA-
PSO-LSSVR. In both hybrid systems, the linear SARIMA model is employed in the time
series forecasting. In SARIMA-MetaFA-LSSVR, the residual modeling is performed using
a MetaFA-LSSVR. This step is performed using the residual series and exogenous data
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(temperature, day of the week, and hour of the day) to generate the energy consumption
forecast [28]. The SARIMA-PSO-LSSVR system performs the residual modeling similarly to
the aforementioned hybrid system using a Particle Swarm Optimization (PSO) to optimize
the LSSVR parameters.

Evaluation Metrics. The models’ evaluation is performed with five error metrics: Cor-
relation Coefficient (R), Mean Absolute Percentage Error (MAPE), Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Maximum Absolute Error (MaxAE). The
correlation coefficient (R) described in Equation (10) measures the linear dependencies
between the actual (Zt) and forecast series (Ẑt); thus, values of R closer to 1 indicate more
accurate forecasts.

R =
∑(Zt − Z̄)(Ẑt − ¯̂Z)√
∑(Zt − Z̄)2 ∑(Ẑt − ¯̂Z)

. (10)

MAPE provides a percentage value over the errors in the forecasts. It has the advantage
of being scale independent and easy to interpret. However, it is an asymmetric measure,
showing a skewed distribution when Zt is close to zero. Furthermore, it penalizes forecasts
that exceed the actual value (Zt) [64]. MAPE is defined in Equation (11),

MAPE =
100
n ∑

∣∣∣∣Zt − Ẑt

Zt

∣∣∣∣, (11)

where n is the number of samples.
MAE, presented in Equation (12), offers an error evaluation in the same scale of the

data and is less sensitive to outliers than quadratic error based metrics.

MAE =
1
n ∑

∣∣Zt − Ẑt
∣∣. (12)

RMSE (Equation (13)) is an evaluation metric that promotes a heavier penalty on
higher errors. It also presents the results on the same scale as the data. However, it is more
sensitive to outliers than the MAE [64].

RMSE =

√
1
n ∑(Zt − Ẑt)2. (13)

MaxAE (Equation (14)) indicates the maximum error in the occurrence of energy
load peaks.

MaxAE = max(
∣∣Zt − Ẑt

∣∣). (14)

In order to directly compare the proposal with other methods, the percentage dif-
ference (PD) is calculated between the proposed hybrid system and literature models.
Equations (15) and (16) show the percentage difference for RMSE, MAE, MAPE, and
MaxAE measures (PD) and for R metric (PDR), respectively.

PD = 100× ModelLM −ModelPR
ModelLM

, (15)

PDR = 100× ModelPR −ModelLM
ModelLM

, (16)

where ModelPR and ModelLM are the metric of the EvoHyS and of the literature models,
respectively. Positive values of PD indicates an improvement of the proposed hybrid
system, while negative values indicate that the proposal got worse results.

To perform a statistical comparison of the previous models with the proposed hybrid
system, we apply the Diebold-Mariano hypothesis test [65]. The null hypothesis is that
there is no significant difference with respect to the RMSE mean between the evaluated
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models. We consider a significance level of 0.05, which means that for p-values lower than
0.05 the null hypothesis is rejected.

4.2. Results

Table 2 presents the results for the five evaluation metrics for each day of the week
attained by the proposed and literature methods. In general, the proposed hybrid system
(EvoHyS) outperformed the previous approaches in several metrics for this scenario. More
specifically, EvoHyS obtained the best values in 20 out of 35 cases, and the majority of
them is on the RMSE, MAE, and MAPE metrics. This behavior is related to the MSE metric,
which was used as a target function for the training of the proposed hybrid system.

Table 2 also shows the maximum and minimum values of the metrics over all data sets.
EvoHyS achieved the best overall maximum values (Max), while the SARIMA-MetaFA-
LSSVR obtained the overall best minimum values (Min).

Figure 4 shows the forecasting for the test set of the seven days of the week of the
EvoHyS and SARIMA model. It can be seen that the EvoHyS was able to correct the
SARIMA forecast for all cases of study.

Table 3 shows the average values regarding all days of the week for the evaluation
metrics. The results are calculated taking into consideration the values presented in Table 2.
The proposed hybrid system achieved the best average results regarding all metrics except
the MaxAE. The best average MaxAE was achieved by the SARIMA-MetaFA-LSSVR.

Table 4 shows the percentage difference between the proposed hybrid system and
the literature models for all evaluation metrics of the the average values shown in Table 3.
For R, RMSE, MAE, MAPE, and MAxAE metrics, the greatest percentage differences were
124.25%, 74.51%, 75.63%, 78.95%, and 50.67% in relation to C&R Tree, SARIMA-PSO-LSSVR,
SVR + LR, SARIMA, and SVR + LR, respectively. Only for the MaxAE metric, the proposed
hybrid system obtained a negative percentage of −55.43% and −26.46% in comparison to
the hybrid systems SARIMA-MetaFA-LSSVR and SARIMA- PSO-LSSVR, respectively. For
R, RMSE, MAE, MAPE, and MAxAE metrics, the lowest percentage differences were 7.34%
for SARIMA-MetaFA-LSSVR, 49.58% for MLP, 9.49% for SARIMA-MetaFA-LSSVR, 18.63%
for SARIMA-MetaFA-LSSVR, and 13.33% for SARIMA.

In order to perform a more robust comparison of the proposed hybrid system with the
literature models, the Diebold-Mariano hypothesis test [66] was employed based on RMSE
shown in Table 3. The hypothesis testing results are presented in Table 5, where p-values
less than 0.05 indicate a statistical difference between the methods at 95% confidence. The
results show that the proposed hybrid system outperformed all the literature models,
obtaining a statistically significant accuracy values.
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Table 2. The performance of the EvoHyS and literature models in terms of Correlation Coefficient (R), Mean Absolute
Percentage Error (MAPE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Maximum Absolute Error
(MaxAE) for each day of the week. The best values are highlighted in bold.

Approach Model Measure Mon. Tue. Wed. Thur. Fri. Sat. Sun. Max Min

R 0.192 0.519 0.332 0.602 0.733 0.527 0.138 0.733 0.138
RMSE (kWh) 0.146 0.081 0.176 0.109 0.074 0.129 0.098 0.176 0.074

SARIMA MAE (kWh) 0.103 0.058 0.161 0.073 0.055 0.102 0.085 0.161 0.055
MAPE (%) 49.79 26.23 103.20 47.52 34.01 80.35 82.53 103.20 26.23

MaxAE (kWh) 0.180 0.226 0.983 0.265 0.178 0.204 0.213 0.983 0.178

R 0.373 0.729 0.518 0.697 0.645 0.651 0.276 0.729 0.276
RMSE (kWh) 0.097 0.068 0.116 0.105 0.073 0.068 0.116 0.116 0.068

MLP MAE (kWh) 0.058 0.045 0.068 0.083 0.051 0.052 0.044 0.083 0.044
MAPE (%) 35.06 19.04 34.95 56.69 29.29 40.82 41.99 56.69 19.04

MaxAE (kWh) 0.340 0.360 0.529 0.375 0.226 0.177 0.464 0.529 0.177

R 0.339 0.371 0.345 0.725 0.535 0.584 0.19 0.725 0.19
RMSE (kWh) 0.094 0.109 0.134 0.089 0.077 0.095 0.108 0.134 0.077

Single SVR MAE (kWh) 0.064 0.082 0.085 0.062 0.058 0.065 0.072 0.085 0.058
Model MAPE (%) 34.78 37.25 34.53 36.96 34.76 49.67 74.62 74.62 34.53

MaxAE (kWh) 0.308 0.371 0.526 0.335 0.215 0.279 0.276 0.526 0.215

R 0.745 0.839 0.874 0.751 0.825 0.879 0.911 0.911 0.745
RMSE (kWh) 0.052 0.050 0.058 0.052 0.042 0.044 0.047 0.058 0.042

LSTM MAE (kWh) 0.030 0.033 0.037 0.032 0.020 0.028 0.022 0.037 0.020
MAPE (%) 14.18 13.74 16.71 16.81 11.65 14.84 12.28 16.81 11.65

MaxAE (kWh) 0.307 0.239 0.308 0.289 0.310 0.166 0.318 0.318 0.166

R 0.296 0.326 0.525 0.593 0.57 0.563 0.239 0.593 0.239
RMSE (kWh) 0.099 0.103 0.109 0.111 0.105 0.063 0.119 0.119 0.063

LR MAE (kWh) 0.069 0.068 0.069 0.064 0.076 0.039 0.046 0.076 0.039
MAPE (%) 42.62 28.15 37.32 42.89 51.92 22.79 43.93 51.92 22.79

MaxAE (kWh) 0.348 0.363 0.390 0.390 0.355 0.264 0.655 0.655 0.264

R 0.392 0.519 0.381 0.355 0.425 0.512 0.080 0.519 0.080
RMSE (kWh) 0.097 0.103 0.125 0.116 0.099 0.124 0.087 0.125 0.087

C&R Tree MAE (kWh) 0.058 0.083 0.068 0.089 0.078 0.085 0.056 0.089 0.056
MAPE (%) 35.06 40.41 26.47 65.49 48.96 63.43 57.61 65.49 26.47

MaxAE (kWh) 0.409 0.262 0.538 0.347 0.327 0.346 0.305 0.538 0.262

R 0.545 0.573 0.528 0.363 0.535 0.658 0.384 0.658 0.363
RMSE (kWh) 0.087 0.131 0.126 0.167 0.362 0.101 0.174 0.362 0.087

Voting SVR + LR MAE (kWh) 0.048 0.064 0.058 0.056 0.178 0.171 0.153 0.178 0.048
MAPE (%) 38.76 45.89 34.65 35.36 47.25 43.58 53.74 53.74 34.65

MaxAE (kWh) 0.215 0.391 0.429 0.534 0.641 0.486 1.253 1.253 0.215

R 0.551 0.616 0.658 0.623 0.734 0.651 0.416 0.734 0.416
RMSE (kWh) 0.058 0.016 0.072 0.171 0.125 0.149 0.067 0.171 0.016

Bagging MLP MAE (kWh) 0.042 0.068 0.031 0.061 0.034 0.039 0.069 0.069 0.031
MAPE (%) 34.82 54.95 38.19 35.31 28.07 42.62 62.19 62.19 28.07

MaxAE (kWh) 0.277 0.549 0.157 0.232 0.451 0.381 0.319 0.549 0.157

R 0.817 0.855 0.910 0.813 0.867 0.820 0.492 0.910 0.492
RMSE (kWh) 0.179 0.180 0.180 0.170 0.172 0.168 0.100 0.180 0.100

SARIMA-MetaFA-LSSVR MAE (kWh) 0.032 0.032 0.032 0.029 0.030 0.028 0.010 0.032 0.010
MAPE (%) 16.56 13.98 14.93 16.55 18.42 18.97 10.19 18.97 10.19

MaxAE (kWh) 0.182 0.213 0.249 0.261 0.151 0.166 0.033 0.261 0.033

R 0.731 0.632 0.845 0.908 0.867 0.825 0.493 0.908 0.493
Hybrid RMSE (kWh) 0.240 0.239 0.182 0.180 0.171 0.162 0.100 0.240 0.100
System SARIMA-PSO-LSSVR MAE (kWh) 0.057 0.057 0.033 0.032 0.029 0.026 0.010 0.057 0.010

MAPE (%) 33.85 22.45 14.28 14.95 18.00 17.40 10.20 33.85 10.20
MaxAE (kWh) 0.240 0.458 0.234 0.244 0.151 0.182 0.033 0.458 0.033

R 0.773 0.856 0.880 0.842 0.819 0.892 0.919 0.919 0.773
RMSE (kWh) 0.049 0.048 0.056 0.042 0.042 0.043 0.045 0.056 0.042

EvoHyS MAE (kWh) 0.028 0.030 0.031 0.024 0.019 0.026 0.020 0.031 0.019
MAPE (%) 14.36 13.12 13.99 12.60 11.80 12.04 11.27 14.36 11.27

MaxAE (kWh) 0.326 0.236 0.302 0.277 0.315 0.190 0.302 0.326 0.190
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Figure 4. Forecasting for the test set of each day of the week with Seasonal Autoregressive Integrated
Moving Average (SARIMA) and EvoHyS.
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Table 3. The average values in terms of R, RMSE, MAE, MAPE, and MaxAE for EvoHyS and literature models. The best
values are highlighted in bold.

Model R RMSE (kWh) MAE (kWh) MAPE (%) MaxAE (kWh)

SARIMA 0.435 0.116 0.091 60.52 0.321
MLP 0.556 0.092 0.057 36.83 0.353
SVR 0.441 0.101 0.070 43.22 0.330

LSTM 0.832 0.049 0.029 14.32 0.277
LR 0.445 0.101 0.062 38.52 0.395

C&R Tree 0.381 0.107 0.074 48.20 0.362
SVR + LR 0.512 0.164 0.104 42.75 0.564

Bagging with MLPs 0.607 0.094 0.049 42.31 0.338
SARIMA-MetaFA-LSSVR 0.796 0.164 0.028 15.66 0.179

SARIMA-PSO-LSSVR 0.757 0.182 0.035 16.19 0.220
EvoHyS 0.854 0.046 0.025 12.74 0.278

Table 4. The percentage difference (%) between the proposed hybrid system (EvoHyS) and literature models according to
Equations (15) and (16).

Model R RMSE (kWh) MAE (kWh) MAPE (%) MaxAE (kWh)

SARIMA 96.41 60.01 72.15 78.95 13.33
MLP 53.67 49.58 55.54 65.41 21.18
SVR 93.74 54.07 63.79 70.53 15.69
LR 92.00 54.07 59.12 66.92 29.56

C&R Tree 124.25 56.64 65.75 73.57 23.14
SVR + LR 66.88 71.71 75.63 70.20 50.67

Bagging with MLPs 40.76 50.65 48.28 69.89 17.69
SARIMA-MetaFA-LSSVR 7.34 71.71 9.49 18.63 −55.43

SARIMA-PSO-LSSVR 12.87 74.51 27.59 21.30 −26.46

Table 5. p-values of the Diebold-Mariano statistical test comparing the proposed hybrid system with
the literature models.

Models p-Value

SARIMA 7.9× 10−5

MLP 1.6× 10−6

SVR 1.4× 10−10

LSTM 0.0087
LR 1.2× 10−12

C&R Tree 5.8× 10−17

SVR + LR 0.0259
Bagging with MLPs 0.0149

SARIMA-MetaFA-LSSVR 3.9× 10−18

SARIMA-PSO-LSSVR 1.2× 10−7

4.3. Discussion

In summary, the proposed hybrid system was compared with the single, ensembles,
and hybrid models of the literature based on different error metrics in the context of energy
consumption. The results presented in Table 2 show that the hybrid models achieved the
best results in the energy consumption data sets for all days of the week, followed by
ensemble models, such as Bagging, and single models, respectively.

Taking into consideration that traditional statistical models, such as SARIMA, present
limited performance in the presence of non-linear patterns, and that non-linear models
may not deal with linear and non-linear patterns equally well, the evaluation results show
that hybrid systems in general outperformed single models. In Table 3, where the average
values are compared, hybrid systems obtained the best overall values.

Among hybrid systems several strategies have been adopted. The proposed model is
based on a three-stage architecture, where second and third stages are optimized by a Genetic
Algorithm. The compared hybrid systems from the literature, namely the SARIMA-MetaFA-
LSSVR and SARIMA-PSO-LSSVR which present a two-stage architecture, where the first
performs linear modeling of the time series with the SARIMA model, and the second stage
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performs the non-linear modeling and combination together. The results obtained in Table 4
show that the proposed three-stage hybrid system could improve the results obtained by the
other methods in most of the metrics, with the exception of the MaxAE.

The difference between accuracy of the models can be observed in Table 5, where the
Diebold-Mariano hypothesis test was employed. The hypothesis test confirmed significant
difference between the proposed model and the compared models.

5. Conclusions

The employment of smart meters has become an important alternative in monitoring
energy consumption and efficiency, allowing better management and network planning.
Forecasting energy consumption in smart meters have become an important tool for
maintenance planning and fraud detection. However, achieving accurate forecasts may be
a challenging task, since energy consumption data is likely to present linear and non-linear
patterns [11].

In this work, an evolutionary hybrid system is proposed to forecast energy consump-
tion in smart meters. In order to improve forecast accuracy, the proposed system (EvoHyS)
is composed of three stages. First stage performs linear modeling through the employment
of a SARIMA model. In the second stage, an evolutionary optimization based on a genetic
algorithm is employed to find the best hyper-parameter of the SVR model, as well as to
perform input selection. In the third and last stage, a combination of linear and non-linear
models is performed using an MLP optimized by a genetic algorithm.

The experiments were conducted on data set of a smart grid network installed in a
residential building. The simulations were carried considering the consumption per day of
the week using several single and hybrid models proposed in the literature. In general, the
EvoHyS achieved the best overall results, demonstrating good generalization performance
on different days of the week.

The superior performance attained by EvoHyS compared with single models corrobo-
rates with previous studies [7,26,55] that show the benefits of using hybrid systems that
combine statistical and ML models. The modeling of linear and non-linear patterns sepa-
rately enables generating specialist models that combined achieve higher accuracy than
single models. In comparison with literature hybrid systems (SARIMA-MetaFA-LSSVR
and SARIMA-PSO-LSSVR), EvoHyS outperformed them in most evaluation measures. This
result shows that employing an exclusive phase to combine linear and non-linear forecasts
can improve hybrid systems’ accuracy in the smart meter consumption forecasting area.

The overall run-time complexity of the EvoHyS is the sum of the complexity of the
three models used to perform the final prediction: SARIMA for time series forecast (linear
on the number of lags), SVR with RBF kernel for the residual forecast (quadratic: number
of lags times number of support vectors) and MLP (linear on the number of lags).

For future directions, an investigation of the influence on external variables, such as
temperature, precipitation in energy consumption will be considered. The employment of
deep learning forecasting methods in the proposed hybrid system architecture also may
be analyzed. Furthermore, EvoHyS should be evaluated in other energy consumption
scenarios that involve smart meters time series.
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ADAM Adaptive Moment Estimation
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
C&R Tree Classification and Regression Tree
MLC Combination Model
CNN Convolutional Neural Network
R Correlation Coefficient
EvoHys Evolutionary Hybrid System
GRU Gated Recurrent Unit
GA Genetic Algorithm
tanh Hyperbolic Tangent
LSSVR Least Squares Support Vector Regression
LBFGS Limited Memory Broyden–Fletcher–Goldfarb–Shanno Algorithm
LR Linear Regression
LSTM Long Short-Term Memory
ML Machine Learning
MaxAE Maximum Absolute Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MSE Mean Squared Error
MetaFA Metaheuristic Firefly Algorithm
MLP Multilayer Perceptron
PSO Particle Swarm Optimization
PD Percentage Difference
RBF Radial Basis Function
RELU Rectified Linear Unit
RNN Recurrent Neural Network
MLR Residual Model
RMSE Root Mean Squared Error
SARIMA Seasonal Autoregressive Integrated Moving Average
SGD Stochastic Gradient Descent
SVM Support Vector Machine
SVR Support Vector Regression
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