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Abstract: With the popularity of electric vehicles (EV), the charging technology has become one
of the bottleneck problems that limit the large-scale deployment of EVs. In this paper, a charging
method using multi-stage constant current based on SOC (MCCS) is proposed, and then the charging
time, charging capacity and temperature increase of the battery are optimized by multi-objective
particle swarm optimization (MOPSO) algorithm. The influence of the number of charging stages, the
cut-off voltage, the combination of different target weight factors and the ambient temperature on the
charging strategy is further compared and discussed. Finally, according to the ambient temperature
and users’ requirements of charging time, a charging strategy suitable for the specific situation is
obtained by adjusting the weight factors, and the results are analyzed and justified on the basis of the
experiments. The results show that the proposed strategy can intelligently make more reasonable
adjustments according to the ambient temperature on the basis of meeting the charging demands
of users.

Keywords: electric vehicles; multi-objective charging; lithium-ion battery; variable weight factor;
PSO algorithm; ambient temperature

1. Introduction

Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been greatly
developed in recent years, because they are environmentally friendly, non-polluting, quiet
and less expensive to charge than traditional internal-combustion vehicles [1,2]. However,
due to the electrochemical characteristics determined by the structure and material of the
battery, there are also many shortcomings, limiting its wide range of applications, one of
which is the battery charging control problem [3,4].

Compared with the traditional internal combustion engine, which can be refueled
quickly, battery charging requires a longer time and an appropriate operating temperature.
To overcome these shortcomings, on the one hand, new materials and structures need to be
developed for the batteries; on the other hand, appropriate battery management systems
and strategies could also play a crucial role in the improvement and protection of the
battery [5]. To improve the charging speed, it is necessary to increase the charging current,
leading to the inevitable increase of battery temperature. When the battery temperature
is too high and the generated heat cannot be dissipated effectively, there will be a great
impact on battery life. On the contrary, when the ambient temperature is low, the excessive
charging current will also cause irreversible damage to the battery because of lack of activity.
Many studies on optimizing the charging strategy have been carried out on how to improve
the charging performance, such as shortening the charging time, reducing energy con-
sumption and temperature increase during the charging process, etc. One of the traditional
charging methods is constant current constant voltage (CCCV) [6], in which the battery is
first charged using a constant current, and when the preset voltage is reached, the battery is
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charged by a constant voltage until the current reaches the threshold value. Optimization
of CCCV has been studied in many works in the literature [5,7,8]. Abdollahi et al. proposed
that CCCV optimization is the minimum problem of the weighted sum of charging time
and energy loss, and obtained the analytical solution for the optimal charging time [9].
Hu et al. also set battery charging as an optimization problem of charging time and energy
consumption [10]. Unlike Abdollahi, Hu’s solution was numerical. Chen and Xu et al.
used dynamic programming (DP) to obtain the optimal charging curve of CCCV [11,12].
Then the charging time of CCCV can be reduced, as well as the temperature. The CCCV
method is simple and easy to implement, but it is essentially open-loop control and does not
consider the effects of charging time and battery temperature. Pulse charging charges the
battery intermittently at a preset value and frequency, and the charging speed is improved
by eliminating the polarization effect to some extent through the static time or reverse
discharge current between the two pulses [13,14]. However, the control process of pulse
charging is complex, the cost of the equipment is high, and the influence on battery life still
needs further study, so it is difficult to apply in a wide range in the short term. Multi-stage
constant current (MCC) is also a widely studied charging method, in which better charging
performance can be achieved by optimizing the current at each stage [15–18]. Multi-stage
constant current charging method can be divided into multi-stage constant current based
on voltage (MCCV) [19,20] and multi-stage constant current based on SOC (MCCS) [17]
according to the judgment conditions of current variation. The main purpose of these
methods is to achieve optimal current combination through a certain algorithm, improving
the charging speed or reducing the temperature and energy consumption. However, in
these articles the impact of ambient temperature on the charging process is not considered
either and the uncharged capacity caused by the constant current is also ignored. The
search for the optimal battery charging strategy can be regarded as a comprehensive opti-
mization problem and it is difficult to solve by using traditional methods [20]. Therefore,
some papers use swarm intelligence algorithms, such as genetic algorithm [17,21], particle
swarm algorithm [20], ant colony algorithm [22], Taguchi’s method and the continuous
orthogonal array technique [23,24], which have been successfully used to improve the
performance of charging time, life and energy consumption of batteries. In other papers,
more complex intelligent control strategies such as neural network [25] and grey prediction
theory [26] have also been proposed and applied. Although these strategies are relatively
accurate, they need a lot of experimental data as support, otherwise their accuracy cannot
be guaranteed, which limits their practical application.

Temperature also plays an important role in the performance and life of batter-
ies [27,28]. Generally, when temperature increases, the lithium-ion battery becomes more
active and will be more effective to electrochemical reaction, so the maximum charging
current also increases with the increase of temperature. However, when the operating
temperature is higher than the limit, the reaction kinetics will be inhibited due to the loss
of active substances in the electrode and the failure of solid electrolyte interphase (SEI)
film [29], and even the risk of thermal runaway will occur. At the same time, when charging
below the operating temperature range, lithium may deposit on the anode surface rather
than embedded in the anode particles. This so-called lithium coating can lead to capacity
loss, which greatly affects service life [30]. Therefore, when the ambient temperature is low,
it is necessary to speed up the temperature increase to improve the battery charging and
discharging activity. On the contrary, when the ambient temperature is high, reducing the
temperature increase as much as possible will be helpful to avoid the danger or damage
caused by overheating.

To the best of our knowledge, regardless of the use of traditional CCCV or other afore-
mentioned charging methods, usually, only a certain preset or optimized fixed optimal
charging selection is given, and the influence of ambient temperature on battery perfor-
mance in the charging process is rarely considered. However, the parameter characteristics
of the battery will change with temperature, and this cannot be ignored. At the same
time, in the daily use of EV, people will put forward different requirements for charging
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strategies according to different situations. Therefore, the specific optimal charging method
may not be the optimal strategy under different requirements. The purpose of this article is
to put forward constraint analysis for the charging time, battery temperature increase and
charging capacity through an algorithm for multi-objective particle swarm optimization
(MOPSO). Under the limitation of battery charging current, the strategy of fast charging
and normal charging is obtained according to the weight factor allocation. Furthermore,
the weight factor of normal charging is adjusted by monitoring the ambient temperature to
adapt to the current temperature. Therefore, the charging strategy proposed in this paper
can further optimize the battery charging strategy by intelligently adjusting the charging
weighting factors according to the ambient temperature based on the user’s choice of
fast charging and normal charging according to their demand, and finally achieve a good
tradeoff between the convenience of the user’s choice and the proper temperature control
of charging strategy.

The rest of this paper is organized as follows: in Section 2, the equivalent circuit and
thermal models of battery are presented, then the multi-objective problem of charging
is formulated. In Section 3, the experimental setup is presented, and model parameter
estimation is carried out. In Section 4, the charging stages number and cur-off voltage are
analyzed and selected for further analysis. In Section 5, the simulation results are compared
and discussed, then the charging strategy based on variable weighting factors is given.
Finally, the conclusions are drawn in Section 6.

2. Study of Battery Multi-Objective Charging Optimization
2.1. Simulation Model Building
2.1.1. Equivalent Circuit Model

To optimize the charging current, a suitable battery model is needed. At present, the
common method for studying battery characteristics is to establish a battery equivalent
circuit model (ECM) or an electrochemical one. The electrochemical model is much more
accurate, but it is so complex and computationally intensive that it is often used in battery
designs, so ECM is adopted. Depending on the characteristics of the problem, the number
of Resistor-Capacitance (RC) links is usually set to one or two. Further increasing the
number of RC links increases the computational load without significantly improving the
accuracy. In this paper, a first-order RC model was selected to achieve a good balance
between model accuracy and computational complexity, as shown in Figure 1. Uoc is the
battery open circuit voltage (OCV); Ut is the battery terminal voltage; IL is the battery load
current (assumed to be negative for discharging and positive for charging); and IP is the
outflow current of Cp. Rr is the ohmic resistance; Rp is the polarization resistance; and Cp
is the polarization capacity. The RC network consisting of Rp and Cp describes the mass
transportation effects and dynamic voltage performance of the battery. The polarization
voltage on Rr and Cp is represented as Up.

.
UP = − 1

CPRP
UP + 1

CP
IL

UOC = Ut − ILRr −UP

(1)

Figure 1. Equivalent circuit model [18].
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By discretizing (1) we can get the following results{
UP(k) = exp(−∆t

τ )×UP(k− 1) + (1− exp(−∆t
τ ))× IL(k− 1)Rr

Ut = UOC + ILRr + UP
(2)

where Up(k) represents the value of UP at time k, and I(k) represents the value of IL at time
k, τ = Cp·Rp is the time constant of the equivalent circuit, and ∆t is the sampling time.

All battery parameters are functions of SOC and temperature T, where SOC is de-
fined as

SOCt = SOCini −
∫ t

0
η IL(t)dt/QC (3)

where SOCt represents the SOC of the battery at time t, SOCini represents the initial value
of the SOC of the battery (set as 0 in this paper), η is the current efficiency (set as 1 in this
paper), and QC is the rated capacity of the battery.

2.1.2. Battery Thermal Model

According to [31], the temperature of the battery surface can be assumed to be uni-
formly distributed, so that battery can be regarded as a particle for thermal modeling. The
battery thermal model can be expressed as

Cbatt
dTbatt

dt
= QR + QL −QT (4)

where Cbatt is the specific heat capacity of the battery, Tbatt is the temperature of the
battery, QR is the reversible heat caused by entropy change, QL is the heat generated by
overpotential during charging, and QT represents convective heat dissipation.

QR = T∆S
I

eF
(5)

∆S = nF
dUOCV
dTbatt

(6)

QT = hA(T − Tamb) (7)

where ∆S is the entropy change, n is the number of electrons per reaction (n = 1 in this
paper), F is the Faraday constant, UOCV is the open circuit voltage of the battery, Tamb is the
ambient temperature controlled by the incubator, h is the thermal conductivity coefficient,
and A is the total surface area of the battery.

According to [17], overpotential heat can be expressed as follows:

QL = QP + QJ (8)

QP = IUP (9)

QJ = I2Rr (10)

where QP is the energy loss caused by polarization, UP is the polarization voltage of the
battery, and QJ is the energy loss caused by ohmic heating. By discretizing (4), we can get
the following equation:

Tbatt,k = Tbatt,k−1 +
I2
k−1Rr +

U2
P

RP
+ Tbatt,k−1 Ik−1

dUOCV
dTbatt

− Ah(Tbatt,k−1 − Tamb)

mCbatt
(11)

where m is the mass of the battery.
In this paper, the maximum temperature increase of the battery in the charging process

is the main research object, and the maximum temperature increase corresponds to the high
current fast charging process. In the case of high current charging, the order of magnitude,
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Qr = T∆S I
eF , is very small and can be ignored. Therefore, we can get the conclusion by

omitting Qr to speed up the calculation without affecting the calculation accuracy:

Tbatt,k = Tbatt,k−1 +
I2
k−1Rr +

U2
P

RP
− Ah(Tbatt,k−1 − Tamb)

mCbatt
(12)

The equation is further simplified:

Tbatt,k = Tbatt,k−1 − α(Tbatt,k−1 − Tamb) + βI2
k−1 + γ

U2
P

RP
(13)

α =
Ah

mCbatt
(14)

β =
Rr

mCbatt
(15)

γ =
1

mCbatt
(16)

It is assumed that Tbatt,k=0 = Tamb, and the change of battery temperature during
charging can be obtained by Equation (13).

2.2. Theoretical Analysis

The charging process can be viewed as the process of charging from the initial SOC to
the target SOC. In this paper, we adopt the multi-stage constant current charging strategy,
which can be divided into multi-stage charging based on SOC (MCCS) and multi-stage
charging based on voltage (MCCV) according to the different charging cut-off conditions.
MCCV uses the charging voltage as the cut-off condition of each stage. When the voltage
reaches a preset value, the charging current is changed to enable the charging to enter the
next stage. However, MCCV is still essentially a CCCV charging method that splits the CV
phase into several CC phases, which may affect the optimization and improvement of the
charging effect. Here, MCCS is adopted, in which SOC is used as the judgment standard of
current change.

The initial SOC is expressed as SOCini, and the charging target SOC is SOCtar. The
charging interval from SOCini to SOCtar is divided into N stages, and each current corre-
sponding to the charging interval needs to be optimized according to the objectives (time,
temperature increase, capacity). The change of SOC in each stage is set as ∆SOC, then the
relationship between N and SOC can be expressed as N = (SOCtar − SOCini)/∆SOC. The
charging time required in stage n can be described as

tn = Qn/In = ∆SOC ·Q/In (17)

where In is the current in the n-th stage, and Q is the target charging capacity of the battery.
The total charging time of all stages can be obtained by the following equation:

t =
N−1

∑
n=1

tn + tN (18)

At the same time, the total charging battery capacity can be obtained

Qchar = (SOCini + (N − 1) · ∆SOC + ∆SOCN) ·Q (19)

The last charging stage, the Nth stage, is considered separately here, because the
charging capacity at this stage may not reach the theoretical value ∆SOC ·Q. Q is obtained
when the final charging current is 0.05 C, so exceeding this current in the Nth stage may



Energies 2021, 14, 1776 6 of 21

cause the charging process to end prematurely. The charging cutoff voltage is 3.65 V, and
the open-circuit voltage OCV at the end of the Nth stage of charging can be described as

OCVN = 3.65−Ur −UP (20)

According to the SOC-OCV mapping curve, the SOC at the end of the Nth stage can
be expressed as

SOCN = f−1(3.65−Ur −UP) (21)

Therefore, the charged capacity can be expressed as

QN = Q · [SOCN − ∆SOC · (N − 1)] (22)

and the charging time is obtained as follows

tN = QN/IN (23)

Based on Equation (13), the temperature increase at time k during the charging process
is given by

∆Tk = Tend
k − Tini

k = β
∫ tk

0
I2
k dt + γ

∫ tk

0

U2
P

RP
dt− α

∫ tk

0
(Tbatt − Tamb)dt (24)

∆Tmax = Tmax − Tamb (25)

Tmax is the highest temperature of the whole charging process.
The purpose of this paper is to seek a balance among charging time, maximum

temperature increase and charging capacity, so as to get the charging strategy most needed
by users. In the process of charging, we will assign weights to the three charging objectives.
The increase of weight factors means that the charging time will be reduced, the temperature
increase will be reduced, and the charged capacity will be increased respectively. To unify
the optimization problems of the three objectives and facilitate understanding, the concept
of uncharged capacity Qunc, namely the difference between the current charged capacity
and the rated capacity, is proposed here, which is defined as follows

Qunc = QC −Qchar (26)

Qchar is calculated by Equation (19).
Therefore, the multi-objective problem in this paper can be described as

Minimizing J = {tchar(I), ∆Tmax(I), Qunc(I)} (27)

2.3. Constraint Conditions

The objective of multi-stage charging optimization is to enhance the charging perfor-
mance, the process of which is constrained by current, voltage, charging time and SOC
limits. According to the maximum charging current provided by the battery manufacturer,
the charging current differs with different battery temperature Tbatt. At the same time, the
charging current in different stages also needs to be restricted according to the SOC range.
Based on the polarization characteristics of the battery, the acceptable charging current is
relatively high when the SOC is low, and gradually decreases with increasing SOC [32].
Therefore, in this paper, the charging current of the next stage was set to be less than or
equal to the current of the previous stage. During charging, the battery voltage should not
exceed the cut-off voltage Ucuto f f , that is U ≤ Ucuto f f ; by synthesizing Formula (2), we can

get I ≤
(

Ucuto f f −Uoc −UP

)
/Rr. The charging current interval is set to 0.01 C, and the

minimum charging current is set to 0.1 C. Considering the actual use of overnight charging,
the charging time is limited to less than 8 h. It is assumed that SOCini = 0, SOCtar = 90%,
and the ambient temperature is equal to the initial battery temperature. Therefore, the
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constraint conditions are listed in (28). The other simulation parameters, such as cut-off
voltage and stage number, will be discussed in detail in Section 4.

Tchar(I) ≤ 8h
0.1C ≤ I ≤ Imax

char (Tbatt)

I ≥
(

Ucuto f f −Uoc −UP

)
/Rr

Ij ≤ Ik, i f j ≤ k; j, k = 1, 2, . . . , nstage

(28)

where, when 0 ◦C < Tbatt < 10 ◦C, Imax
char = 0.8 C; when 10 ◦C < Tbatt < 25 ◦C, Imax

char = 1.5 C;
when 25 ◦C < Tbatt < 40 ◦C, Imax

char = 2 C.

2.4. Optimal Charging Current Calculation by MOPSO

For multi-objective optimization, the optimization objectives are often contradictory
to each other, so there is no unique solution that meets all the optimization objectives.
There may be many solutions that cannot be governed by each other, and these solutions
are called Pareto optimal solution sets. Many researchers have studied multi-objective
optimization algorithms, among which the particle swarm optimization algorithm (PSO) is
an optimization algorithm based on the bird flock model. It has the advantages of a simple
principle, fast convergence, and so on, so the particle swarm optimization algorithm is
widely used in the optimization field [33,34]. In this paper, Coello’s multi-objective particle
swarm optimization algorithm [35], based on the external archiving idea and the basic
principle of Pareto domination, is adopted.

The detailed optimization procedures of MOPSO are as follows:

1. Particle population initialization and velocity initialization of each particle. Firstly,
the population with random position, zero velocity and m number of individuals is
generated. The position of the i-th particle is xi = [x1

i , x2
i . . . xn

i ] the velocity of the i-th
particle is vi = [v1

i , v2
i . . . vn

i ], where n represents the dimension of the search space.
2. The fitness of each particle in the population is evaluated according to the charg-

ing theory.
3. The positions of particles representing nondominated particles are stored in rep and

the rep is updated.
4. Update the position and velocity of each particle according to the following formula:

vn
i (k + 1) = ωvn

i (k) + Λ1R1(Pn
best.i − xn

i (k)) + Λ2R2(REP(h)− xn
i (k)) (29)

xn
i (k + 1) = xn

i (k) + vn
i (k + 1) (30)

vn
i (k + 1) and vn

i (k) represents the current and previous velocities of particle i in n-
dimensional space, respectively. xn

i (k + 1) and xn
i (k) represent the current and previous

positions of particle i in n-dimensional space, respectively. ω is the inertia factor. Λ1 is
the individual learning factor and Λ2 is the social learning factor, R1 and R2 are random
numbers in the range of [0,1]. Pn

best.i is the best position of particle i at time t, which is called
the “self-knowledge part” of the learning sample of particles. REP(h) is the best particle in
the group at time t, which is called the “social part” of the learning sample of particles.

To determine REP(h), the research object is meshed with hypercube, and a fitness
value is specified for the hypercube containing multiple particles by using the following
function:

f itness[i] =
ni
10

(31)

ni is the number of particles in the i-th hypercube. Then, REP(h) is chosen through roulette.

5. Convergence determination. The current particle swarm fitness value is compared
with the previous particle swarm fitness value. If the difference is less than the
threshold α, the search procedure will be terminated.

6. Repeat steps 2 to 5 until the best value is reached or the number of iterations reaches
the set value.
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In this paper, the number of particle swarm is set to 100 to ensure better convergence
and accuracy. The number of iterations is set to 200. The inertia factor is set to 0.7; Λ1 and Λ2
are set to 1.6 and 1.5, respectively, and the number of grids is set to 10.

2.5. Multi-Objective Decision Making Evaluation Method

Although the three optimization objectives are contradictory to each other and there
is no absolute optimal solution, in order to get a specific charging strategy according to
the demands of users, we can choose the most suitable solution in the Pareto solution
set. This paper uses the weighted measurement method to solve this problem. Since the
three optimization objectives have different orders of magnitude, we normalize the three
optimization objectives by Equation (32), so that the values of the three objectives are all
limited in the range of [0, 1], and their sum is set as 1.

f ′k(X) =
fk(X)− fkmin(X)

fkmax(X)− fkmin(X)
(32)

fk(X) is the value of the k-th objective. f ′k(X) is the normalized value. fkmin(X) and
fkmax(X) are the minimum value and maximum value of the k-th objective respectively.
Then the evaluation index Jϕ can be calculated by the weight factor:

Jϕ = ϕ1tchar(I) + ϕ2∆Tmax(I) + ϕ3Qunc(I) (33)

ϕ1 + ϕ2 + ϕ3 = 1 (34)

0 ≤ ϕ1, ϕ1, ϕ1 ≤ 1 (35)

ϕ1 is the weight factor of the charging time, ϕ2 is the weight factor of the maximum
temperature increase, and ϕ3 is the weight factor of the uncharged capacity.

3. Experimental Setup and Parameter Estimation
3.1. Experimental Setup

The experimental equipment included: (1) A Lithium-ion phosphate battery with
parameters as listed in Table 1; (2) Chroma battery cell charge and discharge test system
model 17,011 (Taoyuan, China); (3) A host computer; (4) Data logger. The Chroma 72,001
battery is used to charge and discharge the battery with a maximum voltage of 5 V and
a maximum current of 20 A with an accuracy of 1 mV voltage and 10 mA current. It has
eight independent testing channels as well as eight temperature acquisition sensors. The
current, voltage are saved in real time by the host computer through TCP/IP interface and
temperature data is saved by the data logger. The experimental setup is shown in Figure 2.

Table 1. Sample battery parameters.

Capacity
(Ah) Weight (kg) Size

(mm)
Average Heat Capacity

(J/kg·k)
Charge Voltage Limit

(V)
Discharge Voltage

Limit (V)

20 0.512 225 × 162 × 7 810.53 3.65 2.0

3.2. Model Parameter Estimation

The four parameters in the equivalent circuit diagram, UOC, Rr, RP, CP, are all func-
tions of SOC and temperature:

UOC = UOC(SOC, T)
Rr = Rr(SOC, T)
RP = RP(SOC, T)
CP = CP(SOC, T)

(36)
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Figure 2. Experimental setup.

In this paper, the voltage and current changes of the battery during the charging
process were obtained by pulse charging. The battery was emptied at 25 ◦C, and then
the partial charge–rest phase cycle was carried out at five different ambient temperatures
(0 ◦C, 5 ◦C, 15 ◦C, 25 ◦C, 40 ◦C). At the end of each 1.5 h rest period, the voltage can be
regarded as the estimation of OCV, and SOC is calculated by Colombo counting method
of current. Then the parameters of ECM are estimated by the algorithm of nonlinear least
squares. The parameter estimation steps are shown in Figure 3. It is assumed that the
change of cell impedance with current amplitude can be ignored [36].

Figure 3. Parameter estimation steps.

Figure 4 shows the parameter estimation results when the ambient temperature is
25 ◦C. Figure 4a,c show that the simulation reproduced the 10 charge pulses and was able
to keep track of the increasing in OCV as the battery charged. Figure 4b,d show that the
first-order RC equivalent circuit model can simulate the actual performance of the battery
accurately. Furthermore, the two-dimensional table of battery parameters can be obtained
through nonlinear least squares, as shown in Figure 5.
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Figure 4. Results of parameter estimation: (a) Profile of input pulse charging current; (b) Comparison
between experimental and simulated voltages output; (c) Change of SOC; (d) Voltage error between
experimental and simulated voltages output.

Figure 5. Result of parameter estimation: (a) Open circuit voltage UOC; (b) Polarization Capacity CP;
(c) Polarization resistance RP; (d) Ohmic resistance Rr.

4. Parameters Selection

The number of charging stages and cut-off voltages are important parameters in
charging optimization. In this section we will compare and analyze them in detail and
select suitable ones for the final charging strategy decision.

4.1. Charging Stage Numbers

In this section, the effect of the number of charging stages on the charging performance
at 25 ◦C is studied. It is assumed that SOCini = 0% and SOCtar = 90%, then the charging
interval from SOCini to SOCtar is divided into 6, 9 and 12 stages, respectively. Accord-
ing to N = (SOCtar − SOCini)/∆SOC, the corresponding ∆SOC is 15%, 10% and 7.5%,
respectively. Figure 6 shows the simulation results of the three different stages.
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Figure 6. Simulation results of different charging stages. (a) Pareto solution of charging time, un-
charged capacity and temperature increase; (b) Pareto solution set of charging time and temperature
increase; (c) Pareto solution set of charging time and uncharged capacity; (d) Pareto solution set of
uncharged capacity and temperature increase.

In Figure 6a, it can be clearly seen that the Pareto solution set consists of many three-
dimensional scattered points, and there is no absolute optimal solution that enables the
three optimization objectives to reach their minimum values simultaneously. To facilitate
the analysis, the three-dimensional point cloud is projected onto the three coordinate planes,
respectively, and the optimal Pareto solution in the two-dimensional plane is selected for
further study. In Figure 6b,c, it can be seen that there are contradictions between the
charging time and the maximum temperature increase, as well as the charging time and the
uncharged capacity, which cannot be optimized at the same time. Meanwhile, in Figure 6d,
both the uncharged capacity and the temperature increase can reach the optimal value at the
same time. In Figure 6b, it can be seen that the temperature increase of stage 6 and stage 9 is
similar, but are closer to the origin than stage 12, that is, the maximum temperature increase
is lower during the same charging time. It can be seen from Figure 6c that the last stage may
not be fully charged. Since the ∆SOC of stage 6 is larger, the maximum uncharged capacity
is larger than the others, followed by stage 9, and the smallest is stage 12. At the same
time, the Pareto solution of stage 9 is closer to the origin, which means closer to the optimal
value, so more capacity is charged during the same charging time. In Figure 6d, there is
little difference in capacity performance of the three stages with the best performance, and
temperature performance of stages 9 and 12 is slightly better than that of stage 6. Above
all, the charging performance of stage 9 and stage 12 is better than that of stage 6, but
the charging performance of stage 12 is not significantly improved compared with that of
stage 9. At the same time, too many segmentations of charging stages will increase the
complexity of calculation and the loss of charging equipment. Therefore, the number of
charging segments in this paper is set to nine.

4.2. Cut-Off Voltage

In this section, the influence of cut-off voltage on charging performance is ana-
lyzed, and the ambient temperature is set as 25 ◦C. To charge the battery to capacity
of ∆SOC · (N − 1) at least, the cut-off voltage needs to be higher than the battery open



Energies 2021, 14, 1776 12 of 21

circuit voltage at the beginning of charging stage N. Therefore, the lowest candidate cut-off
voltage is set as 3.45 V, the highest candidate cut-off voltage is 3.65 V recommended by the
battery manufacturer, and the middle candidate cut-off voltage is 3.55 V.

Figure 7a shows a scatter cloud of Pareto sets of the three optimization objectives. It
can be seen that the temperature increase distribution of 3.65 V charging cut-off voltage
is higher, and its Pareto set can provide a shorter charging time. This can be seen more
clearly in Figure 7b. The temperature increase of the corresponding Pareto sets of the three
cut-off voltages during the same charging time is almost the same. With increasing cut-off
voltage, the shortest charging time can be further decreased, because higher cut-off voltage
can provide greater charging current. It can be seen from Figure 7c that the Pareto set of
3.65 V cut-off voltage is closer to the origin than that of 3.55 V and 3.45 V, and the charging
time is significantly shortened under the same uncharged capacity. In Figure 7d, the cut-off
voltages of 3.65 V and 3.55 V are similar in capacity and temperature increase, and much
better than 3.45 V. Based on the above analysis, this paper selects the 3.65 V charging cut-off
voltage recommended by the battery manufacturer.

Figure 7. Simulation results of different cut-off voltages. (a) Pareto solution set of charging time, un-
charged capacity and temperature increase; (b) Pareto solution set of charging time and temperature
increase; (c) Pareto solution set of charging time and uncharged capacity; (d) Pareto solution set of
uncharged capacity and temperature increase.

5. Results and Discussion

For EV users, in most cases, the charging demand is divided into fast charging
and normal charging. When the charging time is sufficient and the charging position
is abundant, the normal charging can charge battery to the target power in relatively long
time, which can well meet the needs of users. At this time, there is no need for the thermal
management system to intervene, so the energy consumption of the charging system can be
reduced. Meanwhile, in scenarios requiring high charging speed, such as highway charging
stations, fast charging can be achieved by increasing the charging current, sacrificing part of
the charging capacity. However, the large amount of heat generated will require a thermal
management system to dissipate it in a timely fashion, which will also inevitably increase
the energy consumption of the charging system.

Within the safe range, the higher the temperature, the higher the capacity that can
be discharged [37]. Therefore, in the charging process, we hope that when the ambient
temperature is low, the battery temperature can be increased to the most appropriate range
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through its internal resistance heat generation, so as to improve the capacity that can be
discharged in the subsequent usage. However, when the ambient temperature is high, the
battery is prone to accumulate heat, which may lead to the decrease of battery life and even
the risk of thermal runaway. In this situation, it is necessary to reduce the charging current
or activate thermal management.

In this paper, we will choose the optimal charging solution from the Pareto sets by
adjusting the weighting factors ratio of the three optimization objectives, according to
different charging demand and ambient temperatures. Therefore, it is necessary to discuss
the influence of weight factors and ambient temperatures on the charging performance in
detail, as follows.

5.1. Effect of Weight Factors

This section will analyze the influence of weight factor on charging performance, and
the ambient temperature is 25 ◦C. The results of charging optimization based on 3.65 V
and nine charging stages are shown in Figure 8. It can be seen that the fastest charging
time is 0.592 h (“F” mark point), the corresponding uncharged capacity is 3.96 Ah, and
the temperature increase is 8.55 ◦C. The minimum uncharged capacity is 2.02 Ah, the
corresponding temperature increase is 8.3 ◦C (“�” mark point). The minimum temperature
increase is 0.22 ◦C (“•” mark point).

Figure 8. Simulation results of different weight factors of charging time. (a) Nine-stage Pareto
solution set (b) Charging current curve; (c) Charging SOC performance; (d) Charging temperature
increase performance.

Figure 8a shows the overall Pareto solution sets of nine-stage charging strategies. In
the daily use of EVs, according to the users’ different needs, an optimal solution under
the specific requirements can be dertermined. To reflect the specific requirements in the
selection of Pareto solution, this paper uses the method of weight metric factor. Since the
charging time is an objective that users usually pay more attention to, the weight factor of
charging time ϕ1 is set from 0.1 to 1 to study the effect, and the interval is 0.1. The weight
factors of uncharged capacity ϕ2 and temperature increase ϕ3 are set to be equal, and can
be obtained using Equation (34).
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Figure 9 shows the charging current curves of ϕ1 from 0.1 to 1, respectively. It can
be seen that the larger the weight factor of charging time, the larger the charging current
is in each stage, especially in the stage with lower SOC, because higher ϕ1 means higher
requirements for charging time and the charging strategy will focus on reducing the
charging time, and vice versa. To further analyze the performance of temperature increase
and uncharged capacity, we choose the cases of ϕ1 = 0.1, 0.5 and 0.9 for detailed study.
Figure 8b shows the charging current curves of these three conditions, corresponding to
Figure 9, which can provide reference for temperature increase and SOC change. Figure 8c
shows the change of SOC during charging. When ϕ2 is increased, more weight is given
to the uncharged capacity, so the final SOC is also increased. It should be noted that as
ϕ2 is increased, SOC does not increase all the time since it has reached the preset value.
Figure 8d shows the change of the battery temperature with the charging time. It can be
seen that the temperature increase increases when ϕ1 increases. The reason for this is
that charging time is shortened by increasing the charging current, and the large current
corresponds to a higher temperature increase. When the current gradually decreases with
increasing SOC, the battery temperature also decreases, closer to the ambient temperature,
because the rate of heat generation of the battery is less than the rate of heat dissipation.

Figure 9. Comparison of charging current curves for different weighting factors of charging time.

5.2. Effect of Ambient Temperatures

Based on the parameters decided previously, this section will discuss the influence of
different ambient temperatures on charging performance. The ambient temperature was set
as Tamb = 0 ◦C, 10 ◦C and 25 ◦C, respectively. According to the constraints, the maximum
charging current at each ambient temperature is Imax

char = 0.8 C, 1.5 C and 2 C, respectively.
Figure 10a presents the simulation results at different ambient temperatures. It can be
seen that the distribution of Pareto solution at different temperatures is quite different.
Higher ambient temperature leads to a higher overall temperature increase distribution.
Figure 10b clearly shows the relationship between temperature increase and time. Higher
ambient temperature will allow greater maximum charging current, resulting in a higher
temperature increase. However, at the same charging time, the temperature increase in
the low temperature environment is higher, because the internal resistance of the battery
becomes larger at low temperature, so that the same current will generate more heat. In
Figure 10c, the higher the ambient temperature is, the closer the Pareto solution set is to
the origin, and the same uncharged capacity corresponds to shorter charging time. The
overall analysis shows that higher temperature can achieve a better optimization in the
three optimization objectives, but the temperature should be limited in the safe range.
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Figure 10. Simulation results of different ambient temperatures. (a) Pareto solution set for charging
time, uncharged capacity and temperature increase; (b) Pareto solution set of charging time and
temperature increase; (c) Pareto solution set of charging time and uncharged capacity; (d) Pareto
solution sets of uncharged capacity and temperature increase.

5.3. Optimal Charging Strategy and Verification Based on Temperature

In Sections 4.1 and 4.2, the parameter selection of the SOC-based multi-stage constant
current charging strategy was described. In Sections 5.1 and 5.2, the influence of weight
factor selection and ambient temperature on charging strategy was analyzed. This section
will adjust the weight factors according to the ambient temperature to cause the battery to
be charged in a more appropriate temperature range in order to meet the user’s needs.

In this paper, charging methods are divided into fast charging and normal charging
by different weight factor combinations, and a more reasonable classification of normal
charging based on ambient temperature is proposed. For normal charging, it is necessary to
meet the requirements of capacity and temperature: the capacity needs to be fully charged
to the target capacity within a limited time, and the temperature needs to be as close as
possible to the optimal charging temperature under the condition of ensuring the battery
life and safety. The target SOC is 90%, i.e., 18 Ah, and the optimal operating temperature is
10–25 ◦C. To meet these requirements, the weight factor is set according to the following
rules: the uncharged capacity weight factor is set to 0.3 so that the battery is fully charged
to the target capacity, and the adaption to different ambient temperatures is realized
by changing the weight factor ratio between charging time and temperature increase.
Specifically, when the ambient temperature is within [25 ◦C, 40 ◦C], ϕ = [0.4 0.3 0.3]; when
the ambient temperature is within [10 ◦C, 25 ◦C], ϕ = [0.5 0.3 0.2]; when the ambient
temperature is within [0 ◦C, 10 ◦C], ϕ = [0.6 0.3 0.1]. By changing the weight factors,
the charging current will be adjusted for different ambient temperature ranges as well as
temperature ranges. Figure 11 shows the charging current curves of different weight factor
combinations for normal charging at 0 ◦C, 10 ◦C and 25 ◦C and their locations in the Pareto
solution set.
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Figure 11. Simulation results of normal charging at different ambient temperatures. (a) Pareto solu-
tion set of charging time, uncharged capacity and temperature increase; (b) Normal charging current
curve at ambient temperature of 0 ◦C; (c) Normal charging current curve at ambient temperature
of 10 ◦C; (d) Normal charging current curve at ambient temperature of 25 ◦C.

In previous studies, an optimized solution with a fixed proportion of weight fac-
tors is always proposed regardless of the ambient temperature and users’ demands.
Zhang et al. [17] set the ratio of charging time to temperature increase ϕ as 7:3 to speed up
the charging process and to minimize battery life degradation. Sun et al. [18] used the TOP-
SIS method to determine the optimal ratio ϕ, which was 1:1. Based on their research, the
fixed weight factor method was used for comparison in this paper. The fixed weight factor
of the optimal charging was set as ϕ = [0.5 0.3 0.2], regardless of the ambient temperature,
the same as that of the moderate temperature range, in order to seek a balance among the
three objectives. Then the charging performance of the fixed and variable factor method
under ambient temperatures of 0 ◦C, 10 ◦C and 25 ◦C were compared. As shown in Table 2,
it can be seen that compared with the fixed factor method, when the ambient temperature
is 0 ◦C, the variable factor method increases the temperature increase by 1.56 ◦C, reducing
the charging time, and the charging capacity is the same, thus achieving the purpose of
increasing the temperature increase at low temperature.

Table 2. Comparison of normal charging.

Tamb
Charging Time (h) Temperature

Rise (◦C)
Uncharged

Capacity (Ah)

Fixed Variable Fixed Variable Fixed Variable

0 ◦C 2.311 1.829 1.53 3.09 2 2

10 ◦C 1.873 1.873 2.65 2.65 2 2

25 ◦C 1.01 1.763 4.81 1.36 2 2

When the ambient temperature is 25 ◦C, compared with the fixed factor method,
the temperature of the variable factor method is reduced by 3.45 ◦C, the charging time
is extended, and the charging capacity is the same, which also reduces the possibility of
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battery life decay at high temperature. Charging time is not the main focus under the
normal charging condition, so this method achieves the purpose of temperature control,
especially when the vehicle power battery pack is densely arranged and heat accumulation
is easily generated, the lower temperature increase will help keeping the battery pack in
the safe working temperature range. Therefore, in environments with different ambient
temperature ranges, the proposed charging strategy makes the charging temperature as
close to the optimal charging temperature range as possible by changing the weight factors.
When ambient temperature is lower than the optimal temperature, the current is increased
as much as possible within the charging current limit, so as to raise the battery temperature;
when within the optimal temperature range, a balance should be achieved between the
temperature increase and the charging time under the condition of ensuring the charging
capacity. In the case of high temperature, it is necessary to keep a low charging rate, which
can ensure that the temperature of charging process is kept in the safe range.

For fast charging, this paper selects the weight factor as [1 0 0] under three tempera-
ture conditions, so that the charging strategy will focus on shortening the charging time.
The simulation results are shown in Figure 12.

Figure 12. Simulation results of fast charging at different ambient temperatures. (a) Pareto solution
set of charging time, uncharged capacity and temperature increase; (b) Fast charging current curve
at ambient temperature of 0 ◦C; (c) Fast charging current curve at ambient temperature of 10 ◦C;
(d) Fast charging current curve at ambient temperature of 25 ◦C.

It can be seen from Figure 12b–d that in order to improve the charging speed, the final
SOC is between 80% and 90% because of the constraint aforementioned. The charging
strategy achieves the goal of fast charging by increasing the current and sacrificing part
of the capacity. Table 3 shows the fast charging performance of variable and fixed weight
factor. It can be seen that compared with fixed weight factor charging, the fast charging
time of variable factor is significantly shortened of all the three ambient temperatures
(e.g., charging time is reduced by 1.1 h when the ambient temperature is 10 ◦C), and
the corresponding temperature increase also increases sharply. During the last stage of
charging, due to the large current, the cut-off voltage of charging will be reached quickly,
so the corresponding uncharged capacity of fast charging is larger. It is worth noting that
in the case of high ambient temperature and if there is need for fast charging, the vehicle
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thermal management system is needed to monitor and timely cool the battery. At this time,
the natural heat dissipation rate of the battery may not be enough for the large amount of
heat generated by fast charging.

Table 3. Comparison of fast charging.

Tamb
Charging Time (h) Temperature

Rise (◦C)
Uncharged

Capacity (Ah)

Fixed Variable Fixed Variable Fixed Variable

0 ◦C 2.311 1.317 1.53 3.25 2 3.56

10 ◦C 1.873 0.778 2.65 5.56 2 4

25 ◦C 1.01 0.592 4.81 8.55 2 3.96

Finally, in order to verify the effectiveness of the strategy, experiments were carried
out according to the current obtained at 10 ◦C. The temperature of the environmental
chamber was set at 10 ◦C, and the surface of the battery was wrapped in foam and placed
in a thermostat to keep it in a quasi-adiabatic state. The simulation and experimental
results of fast charging and normal charging are shown in Figures 13 and 14.

Figure 13. The validation of normal charging in the proposed strategy.

Figure 14. The validation of fast charging in the proposed strategy.



Energies 2021, 14, 1776 19 of 21

It can be seen from Figures 13 and 14 that in the S1–S6 stage, when SOC is low, the
charging current is large, so the initial temperature of battery temperature increases rapidly.
Then, in S7–S9 stage, the current decreases and the heat dissipation rate is greater than the
heat generation rate, so the battery temperature gradually decreases. The temperature error
between simulation and experimental measurement is less than 1 ◦C and the maximum
temperature increase error is less than 0.5 ◦C in the charging process, and the simulation
curve can follow the actual temperature trend. For the normal charging in Figure 13, the
uncharged capacity is 2 Ah, which is consistent with the simulation results. The charging
time (6836 s) is only 1.3% longer than the simulation time (6743 s). In Figure 14, the
uncharged capacity of fast charging is 3.5 Ah, which is 0.5 Ah less than the simulation
results. This is because the actual charging process reaches the cut-off voltage in stage 9,
later than the simulation due to the parameter estimation error. The charging time is
2963 s, which is only 5.7% more than the result in simulation (2803 s). Therefore, the
experimental results show that the simulation results can accurately predict and follow the
actual performance of three optimization objectives, and further verify the feasibility and
effectiveness of the proposed strategy.

6. Conclusions

According to the different charging requirements of EV users under different condi-
tions, this paper proposes an MCCV charging method based on variable weight factors.
Firstly, the equivalent circuit model and thermal model are constructed, and the parameters
of the model are identified by the data of pulse charging experiment and the least square
method. Then, the charging time, charging capacity and maximum temperature increase
are optimized based on MOSPO algorithm, and the Pareto solution sets under different
simulation parameters are obtained. Then different weight factor proportions and charging
environment temperatures are analyzed in detail. The analysis of the weight factor shows
that the performance of charging target can be changed by adjusting the charging current
according to the user’s demand by controlling the proportion of the factors, which provides
a reference for the final strategy decision. The Pareto solution sets under different ambient
temperatures show that higher temperature can achieve a better effect among the three
optimization objectives. However, it is important that the charging temperature is within
the safe range, so the temperature should be as close to the optimal temperature range as
possible. By changing the ratio of weight factors, this paper puts forward normal charging
and fast charging according to different needs of users. In normal charging, we further
adjust the weight factors to adapt to the ambient temperature, which can achieve safe and
efficient charging without the intervention of thermal management system. For the normal
charging, compared with the strategy with fixed weight factors, the strategy with variable
weight factors can improve the charging temperature by 1.56 ◦C when ambient temperature
is 0 ◦C (increasing) and reduce the temperature by 3.45 ◦C when ambient temperature is
25 ◦C, making the temperature as close as possible to the optimal charging temperature
range. For fast charging, charging time is reduced significantly under different ambient
temperature ranges (e.g., charging time is reduced by 1.1 h when ambient temperature is
10 ◦C). Finally, the effectiveness of the strategy is further verified by experiments at 10 ◦C.
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