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Abstract: Increasing the unplanned penetration of Distributed Generators (DGs) has spurred active
and reactive power losses in the distribution system. This article suggests using a novel Strawberry
Plant Propagation Algorithm (SPPA) for planning the placement of the DGs with the aim of reducing
the network (active) power losses and improving the overall voltage profile. The proposed method
(SPPA) has been tested on 33 and 69 node radial systems in MATLAB. A cost analysis was also
performed and compared with other contemporary methods. The results for the considered variables
show the significance of the proposed method in comparison to various other counterparts, including
the Mine Blast Algorithm and Particle Swarm Optimization.

Keywords: power loss minimization; DG placement; renewable energy systems; Strawberry Plant
Propagation Algorithm

1. Introduction

The exponential increase in world population has resulted in a high consumption of
electricity through industrial and domestic load [1]. Due to the high power density demand
and high stress on the power system, it faces challenges such as energy loss, low voltage
profile, and the low efficiency of the system. The optimal strategy for a conventional power
system is to keep the voltage and frequency within the prescribed limits. State variables
such as voltage or frequency usually exceed the prescribed limits due to rapid changes in
loads or generations.

Consequent to the increasing investment in (renewable) distributed generation due
to incentivizing drives led by various governments, Distributed Generators (DGs) are
popping-up very rapidly. The lack of planning and the limited control of Distribution
Network Operators (DNOs) in the placement of DGs are seen as major challenges in modern
power distribution networks [2]. The need for detailed planning while considering all
factors (such as the availability of primary energy for renewable DGs, land, and connection
requirement to the main grid) affecting the optimal locations and sizing of DGs is suggested.
It is also noteworthy that DG placement results in a completely different scenario of
operation and control of distribution networks. Due to the installation of DGs, whether
planned or unplanned, DNOs and DISCOsface numerous challenges. The controlling
of power systems with DGs; the modeling and design of microgrid/multi-microgrids—
e.g., [3,4]; and the trading in and operation of electricity markets—e.g., [5]—are also crucial
factors that need to be included in planning. If such factors can also be included in the
comprehensive planning of active distribution networks, the operation can be further
facilitated. Optimally planned DG systems usually remain in order and do not exceed the
prescribed limits [6].
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Power systems usually have lagging power factors due to the inductive nature of
most loads. With a lagging power factor, an increase in the flow of reactive currents
occurs in conductors, leading to the rise of total power losses and deteriorated voltage
profiles. Reducing the active power losses in distribution networks is an inspiring job
for many utilities around the world [7]. DGs are extensively used due to their ability to
improve the voltage profile, reduce active power loss, compensate for the reactive power,
correct the power factor, and increase the feeder capacity in distribution systems [8]. The
reduction in power losses occurs due to minimized current flow in the conductors [9]. To
obtain this and numerous other related benefits including deferring the investment on grid
reinforcement, improved hosting capacity, reducing continuous investment on transmission
lines, system reliability and loadability enhancement, and the better controlling of the
grid, the optimal placement of DGs in electrical distribution networks uses a widely
studied technique [10,11]. To minimize the losses effectively, the appropriate size and
location of DGs to be placed within the allowable limits of operational constraints must be
determined [12]. Based on the output power, DGs can be classified into four types:

Type 1: Injects active power into the system;
Type 2: Injects both active and reactive power into the system;
Type 3: Injects active power but absorbs reactive power;
Type 4: Injects reactive power only.

Transmission network congestion and technical performance deterioration are the
basic motivation behind the integration and consideration of the DG-Type 1 considered in
this work.

Solving this optimization problem involves power flow solutions, which are nonlin-
ear in nature. This causes the DG planning problem to be a non-convex combinatorial
optimization problem, despite the fact that the planning variables (size and location) are
discrete in nature [13]. There can be several local optima and a single global optimal solu-
tion [12]. Such non-convex, nonlinear, and combinatorial problems are not easily solved
using conventional mathematical methods [13]. It also noteworthy that there can be several
pros and cons related to any meta-heuristic optimization algorithm; hence, looking for the
best algorithm may be considered pointless [14]. The efficacy of any algorithm depends
on the nature of the problem being solved. Due to these reasons, optimization problems
are usually solved with number of algorithms in order to find the method with the best
efficacy [15].

In the recent past, numerous studies have attempted to achieve loss mitigation using
optimal DG placement. A comprehensive list of studies considering power loss minimiza-
tion as a planning objective is given in [16]. In all the listed methods, the minimization of
losses has been achieved through the selection of the optimal size and site of DGs—i.e., the
planning variables. The optimization techniques applied to this problem are broadly classi-
fied as analytical, classical, artificial intelligence (AI), and metaheuristic techniques [17].
A comprehensive review of the methodologies and techniques which are implemented,
along with their classification and pros and cons, is given in [17,18].

The optimal placement of DGs is achieved using load concentration factor (LCF) and
the optimal number of DGs and their sizes using an exact loss formula through analytical
expression is executed in [10]. In [19], it is stated that resistance to reactance ratio escalates in
a distribution network and thus paves the way for losses. Multiple optimization techniques
have also been used to execute the optimal siting and sizing of DGs. The optimal placement
of DGs and sizing has been solved by a simulated annealing algorithm (SA) [20] and
genetic algorithm (GA) [21], but with a higher convergence time and less accuracy when
high-quality results are required. The particle swarm optimization algorithm (PSO) [22]
suffers from partial optimization, due to which its velocity and direction is not maintained
and it is inefficient for large and complex systems. In the firefly algorithm (FA) [23],
cuckoo search algorithm (CSA) [24], and bat algorithm (BA) [25], the convergence rate
is very much affected by the adjustment of parameters, which is always needed in such
problems. The local convergence and speed are lethargic in algorithms such as the flower



Energies 2021, 14, 1744 3 of 13

pollination algorithm [26], the bacterial foraging optimization algorithm (BFOA) [27],
the ant lion optimizer (ALO) [28,29], the Grey Wolf Optimizer (GWO) [30], the whale
optimization algorithm (WOA) [31,32], and the harmony search algorithm (HSO) [33]. In
the backtracking search optimization algorithm (BSOA) [34], difficulty is faced in global
convergence. The MINLP, introduced in [35], is easy to implement; however, it is very
difficult to reduce models into set of linear equations. In [36] parallel population based
incremental learning (PPBIL) and particle swarm optimization (PSO) has been implemented
in particular problems. During implementation, it was observed that the computation
time of the PPBIL algorithm is closely related to the number of workers, which increased
the computation time. Moreover, a recent article was published [37] with the objective to
achieve the optimal placement and sizing of DG in an AC distribution network. This article
uses a hybrid approach of second-order cone programming and discrete sine cos algorithm.
However, the computation time taken by the novel approach to solve the problem is higher,
and will further increase in complex models.

The Strawberry Plant Propagation Algorithm (SPPA) is a nature-inspired optimiza-
tion technique. The effectiveness and superiority of SPPA is studied in several engineer-
ing problems in terms of function evaluation and found to be better than contemporary
methods [15]. The SPPA, being a new method, has not been used in optimal DG placement
problems. However, based on its promising results for nonlinear, mixed, and multimodal
problems [38], SPPA is preferred for optimizing the placement of DGs in this work.

The article is organized as: A brief literature survey and explanation of the work
is given in Section 1, followed by the explanation of the problem, its formulation, the
optimization technique (SPPA), and the methodology in Section 2. The results are discussed
in Section 3, and the work is concluded in Section 4.

2. Power Loss Reduction and Cost Analysis Formulation
2.1. Power Loss Reduction

The main objective of research is to minimize the total power loss in radial distribution
system through optimal placement and sizing of DGs. Hence, the objective function is
formulated as:

OF = minimize(PLoss) = minimize
n

∑
i=1

PiLoss (1)

where PiLoss is the real power loss in ith branch and n is total number of branches. The real
power loss for any given branch is calculated as follows:

PiLoss = I2
i Ri (2)

where Ii is current magnitude in ampere and Ri is resistance at branch i in ohm.
It is noteworthy that the losses depend upon the line current flows, which, in turn, are

dependent upon the power injection (Pinj) over the nodes connected to the lines. Therefore,
the target in this study is to choose the values of Pinj—i.e., DG size (PDG)—at given number
of buses, such that the least PLoss is achieved. As a matter of fact, if the whole of a load
connected to a certain node is fulfilled by a DG of equal size at the same node—i.e., site—
the loss in the network would be zero. However, this is not practically feasible. Therefore,
in order to improve the system performance and hosting capacity and achieve various
technical benefits by reducing the network power losses, an optimal site and size need to
be found. Hence, these are the target variables in this study. To evaluate the impact of site
and size of DGs, the Power Loss Reduction (%PLR) is utilized and is given as:

%PLR = (PLoss − PDG
Loss)/PLoss (3)
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where, PLoss and PDG
Loss are system losses before and after DG installation. The operation

constraints are prescribed as:

n

∑
DG=1

PDG ≤
N

∑
i=1

PDi (4)

n

∑
DG=1

QDG ≤
N

∑
i=1

QDi (5)

vmin
i < vi < vmax

i (6)

Ii < Imax (7)

PDG and QDG are the real and reactive power output from DGs; n is the total number of
DGs to be installed; PDi and QDi are the active and reactive power demands on ith node; N
is the total number of nodes in the system; vmin

i and vmax
i are the lower and upper node

voltage bounds; vi is the ith node voltage; Ii is the flow on ith line; Imax is the maximum
loading limit of ith line.

2.2. Cost Analysis

The major objective of implementing SPPA for the optimal siting and sizing of DGs
is to minimize power losses, which ultimately reduces the operational cost as well as
helpsthe grid reinforcement. The installation of DGs helps to reduce the energy intake from
external grid, which, in turn, reduces the cost of energy. Moreover, the minimized losses
also translates into monetary savings given by Equation (11). The relationships for the
input power from the main grid (PIN), the total input energy in one year (EIN measured in
KWH), the annual cost of energy (KEIN), and the percentage of cost reduced (KGE(%)) are
given by the Equations (8)–(11). Here, PLOSS is the total loss in electrical network, PLOAD is
the total load connected, PDG is the power injected by DG, and GT is the cost per KWH.

PIN = PLOSS + PLOAD − PDG (8)

EIN = PIN ∗ 8760h (9)

KEIN = EIN ∗ GT (10)

KGE(%) = (KGEWITHOUTDGs − KGEWITHDGs)/KGEWITHOUTDGs) ∗ 100 (11)

3. Optimization Using Strawberry Plant Propagation Algorithm

It is fact that pure plants propagate through seeds appearing on their fruits, whereas
hybrid plants are mostly infertile in nature. The most common practice in the propagation
of hybrid plants is that they send runners. These runners, upon touching the ground,
generate new roots, leading to the growth of daughter plant [38]. This process continues
and generates new daughter plants where there is available moisture.

As with other techniques, SPPA is also a nature-inspired optimization technique that
proceeds in three major steps: initialization, duplication, and elimination. The effectiveness
and superiority of SPPA is studied in several engineering problems in terms of function
evaluation and found to be better than contemporary methods [15]. It is observed that,
due to the similarity in the nature of problem, SPPA offers the best result for particular
problems (Optimal Sitting and Sizing of DGs). Analogously to that, each mother plant is
randomly generated within the search space. Similarly, the objective function has dedicated
constraints in our problem for the optimal siting and sizing of DG. The number of DGs to
be installed in a vicinity to minimize losses is randomly placed on nodes. The Strawberry
mother plant then generates runners and roots in search of minerals [38]. Similarly, load
flow analysis is carried out in given node system to find the losses on each node. Fitness
is calculated by each runner and root. Half of the runner and roots vanish due to the
non-availability of minerals at their location. Similarly, half of the nodes becomes ineligible
for hosting DG, as they are less prone with objective function. Process continues through
iterations till the optimal location and size of DG is achieved.
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Optimal Placement of DGs Using SPPA

The complete set of steps involved in implementing and solving the optimization
problem for optimal DG placement by SPPA is given below:

1. Take network input from user and read system data.
2. Initialize the algorithm parameters (iter, itermax, population size ns, network size, DG

type, and variable I to store the results of each iteration).
3. Calculate P, Q, V, Ploss, and Qloss.
4. Rank nodes with respect to power losses in descending order.
5. Randomly, the number of runners, nr (i.e., DG Size) generated by a solution should

be proportional to its fitness, given as:

nr = [nmax Nir] (12)

where nmax is the maximum number of runners that can be generated, r is the binary
variable, and Ni is the mapped fitness of the solution.

6. Distance covered (Loss) by each runner—i.e., dxi
j—will be given as:

dxi
j = 2(1 − Ni)(r − 0.5) (13)

7. The placement of DG is performed through an equation, given as:

Yj = xj + (bj − aj)dxi
j (14)

The Yj values are then adjusted to ensure that new points generated are within the
bounds aj and bj; the distance calculated will be used to update the solution i based
on the bounds in xj.

8. Calculate Ploss and Qloss.
9. Compare if Ploss is less than the previous iteration.
10. Update the results stored in variable I (step 2).
11. Else existing placement of DG will be remaining stored in variable I.
12. Check if iter = itermax, then go to step 13; otherwise, go to step 3.
13. Print results, the global optima is found.

4. Results and Discussion

The proposed algorithm is executed for two standard radial test systems (IEEE 33-node
and 69-node). The test systems have a standard line configuration with a balanced load
connection. It is worth mentioning here that Mine Blast Algorithm is the latest optimization
technique and has proved its superiority in efficiently solving the complex optimization
problems. Therefore, it is implemented as a part of this work for the comparison of various
results. The results for various other optimization techniques have also been taken from
recent literature for comparison and validation purposes. The analysis case of the networks
without any compensatory devices is termed as the base case.

The introduced SPPA is coded in MATLAB 2017 version. All the simulations are
executed on laptop computer with Intel Core i5 4th Generation 2.50 GHz processor, 8 GB
RAM, SSD Drive, and a 64-bit operating system.

4.1. 33-Node System

The 33-node radial balanced network, termed as NW-1 and given in Figure 1, has
an existing rated load of 3.715 MW and 2.3 MVArs. A step-down transformer connected
to node 1 provides 12.66 kV to the network. The feeder characteristics and line data are
taken from [39] for NW-1. The power of 100 MVA and voltage of 12.66 kV are considered
as base values in network. For NW-1, the losses are 210.99 kW and 143.12 kVAr, and the
minimum voltage of 0.9038 pu is observed at node 18 in base case. The computation time
for 30 iterations is 54.22 s.
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Figure 1. IEEE 33-node test system—NW-1.

Voltage profile for DG-Type 1 has been compared between SPPA, MBA, and without
DG. In this study, the external grid is connected to node 1, which is considered as the
reference, and the voltage at node 1 is taken as 1 pu. After the optimal placement of DG
with the SPPA technique, a significant improvement in the voltage profile is observed.
After the optimal placement, the minimum voltage of 0.9929 pu occurs at Bus 18. These
results are shown in Figure 2.
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Figure 2. Bus voltage profile of NW-1.

Active Power Losses have also been considerably decreased after the optimal siting
and sizing of DG with SPPA. Cumulative active power loss for system without DGs is
208.45 kW, whereas after DG-Type 1 placement with MBA the cumulative active power
loss is observed to be 64.34 kW. The active power loss is reduced to 63.74 kW for DG-Type
1 with the proposed method. The highest active losses occur at node number 27 which
are 11.14 kW, 10.28 kW and 10.27 kW before DG placement, with MBA and with SPPA,
respectively. The active power loss results are shown in Figure 3.

The convergence of both SPPA and MBA is compared for NW-1. It is observed for
100 iterations. Both techniques converge for the problem smoothly. However, it can be seen
in Figure 4 that SPPA converges earlier than MBA. At the 6th iteration, the convergence is
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not stable (i.e., premature convergence), and it oscillates significantly, leading to a different
solution in the next iteration, whereas in statistical analysis the repeated occurrence of
an event is considered as the actual yield [40]. For that reason, there is a check set in the
algorithm that if three consecutive iterations provide a similar result, then it is considered
as a global optima; otherwise, although a better value is achieved for 1 iteration only, it is
not treated as a stable solution and, hence, is discarded.
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Figure 3. Active power loss results of NW-1.
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Figure 4. Algorithm convergence for NW-1.

4.2. 69-Node System

The proposed algorithm is executed for 69-node standard IEEE radial distribution
networks. The test system has standard line configuration with balanced load connection.
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The 69-node radial balanced network, termed as NW-2 and given in Figure 5, has the
rated load of 3.8021 MW and 2.6947 MVArs. A step-down transformer is connected before
node 1, providing 12.66 kV to the network. The feeder characteristics and line data are
taken from [41] for NW-2.

Figure 5. IEEE 69-node test system–NW-2.

The total power of 100 MVA and voltage of 12.66 kV are considered as base values in
the network. For NW-2 the losses are 224.9 kW and 102.17 kVAr, and the minimum voltage
of 0.9092 pu appears at node 65 in base case. The computation time taken for 30 iterations
is 70.18 s.

For IEEE, a 69-node radial network voltage profile after DG placement with MBA and
SPPA is compared with the base case. SPPA showed better results than other two. After the
optimal placement of DG with the SPPA technique, a significant improvement in voltage
profile was observed and the minimum voltage occurs at node 28, which is 0.9782 pu, and
after MBA the minimum voltage is 0.978 pu. Graphical representation is shown in Figure 6.
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Figure 6. Bus voltage profile of NW-2.

Active power losses for NW-2 are also reduced considerably by using SPPA for optimal
siting and sizing of DG. Cumulative active power loss in the base case is 225 kW, with



Energies 2021, 14, 1744 9 of 13

MBA it is 47.69 kW, and with the proposed technique it is 46.023 kW for DG-Type 1. The
highest active losses occur at node number 60 and are 12.04 kW and 12.0 kW for MBA and
SPPA, respectively. This is shown in Figure 7.

Convergence of both SPPA and MBA is compared for NW-2. It is observed for
100 iterations. Both techniques converge for the problem smoothly. However, it can be
seen in Figure 8 that the SPPA converges earlier and more smoothly than MBA.
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Figure 7. Active power loss results of NW-2.
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Figure 8. Algorithm convergence for NW-2.

4.3. Results Comparison with Other Optimization Techniques

The proposed algorithm is further compared with other optimization techniques.
These techniques include ALO (Ant Lion Algorithm), FPO (Flower Pollination Algorithm),
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PSO (Particle Swarm Optimization), GA (Genetic Algorithm), WOA (Whale optimization
algorithm) PPBIL and PSO (Parallel Population Based Incremental Learning and Particle
Swarm Optimization), IHHO (Improved Harris Hawks Optimizer), DSCA-SOCP (Discrete
Sine Cos Algorithm-Second Order Cone Programming), GAMS (General Algebric Mod-
elling System), and CBGA-VSA (Vertex Search and Chu-Beasley Genetic Algorithm). It
is noteworthy that these techniques are not simulated as a part of this work. However,
as the systems considered in this work as well as in the reference literature used for the
mentioned techniques are standard IEEE systems with standard network data, their results
are directly utilized for comparison purposes. Comparative results show that SPPA has
most reduced power losses in both the IEEE 33- and 69-node systems. Tables 1 and 2
explain these results in detail.

Table 1. Comparison and performance analysis of NW-1.

Technique Optimal Size (kW) Optimal
Location

PInjected
(kW)

PLoss
(kW)

PLR
(%)

Vmin
(pu) Ref.

BFOA 779, 880, 1083 14, 25, 30 2742 73.53 65.1 – [27]
WOA 1072.8, 772.5, 856.7 30, 25, 13 2702 73.75 65.1 0.97 [31]

PPBIL& PSO 403, 524, 642 12, 15, 31 1569 91.5 56.6 0.96 [36]
DSCA-SOCP 801, 1091, 1053 13, 24, 30 2945 72.8 65.5 – [37]

SPSO 640, 740, 420 16, 30, 32 1800 74 64.5 0.97 [42]
ALO 850, 1191 13, 30 2041 82.6 60.8 0.97 [43]
FPA 1039, 1086 12, 30 2125 89.2 57.7 0.97 [44]
GA 1323, 867 30, 13 2190 81.75 61.1 0.97 [45]

IHHO 775.5, 1080.8, 1066.7 14, 24, 30 2923 72.8 65.5 – [46]
GAMS 770, 1096, 1065 14, 24, 30 2931 72.8 65.5 – [47]

CBGA-VSA 801, 1091, 1053 13, 24, 30 2945 72.8 65.5 0.97 [48]
SPPA 1270, 2225 3, 6 3495 63.74 69.4 0.99 Proposed

Table 2. Comparison and performance analysis of NW-2.

Technique Optimal Size (kW) Optimal
Location

PInjected
(kW)

PLoss
(kW)

PLR
(%)

Vmin
(pu) Ref.

WOA 489, 476, 1680 11, 18, 61 2645 69.72 69 0.98 [31]
PPBIL& PSO 178 ,1053, 420 26, 61, 66 1651 86.9 64.1 0.96 [36]
DSCA-SOCP 526, 380, 1719 11, 18, 61 2625 69.41 69.2 – [37]

SPSO 1360, 520 61, 64 1880 81 64 0.98 [42]
ALO 538, 1700 17, 61 2238 70.75 68.6 0.98 [43]
FPA 463, 1771 17, 61 2234 71.7 68.1 0.97 [44]

IHHO 527.2, 382.5, 1719.4 11, 17, 61 2629.1 69.41 69.2 – [46]
GAMS 813, 1444, 289 12, 61, 64 2546 72.09 68 – [47]

CBGA-VSA 526, 380, 1719 11, 18, 61 2625 69.41 69.2 0.98 [48]
PSO 1293, 673, 868 61, 17, 50 2834 87.48 61.1 0.98 [49]

SPPA 42.8, 995, 102.1, 1768 57, 7, 6, 58 2907.9 46.89 79.2 0.98 Proposed

For NW-1, it can be seen that the highest power loss reduction PLR (%) of 69.4% is
achieved with SPPA, whereas the nearest competitors are GAMS and CBGA-VSA, with a
PLR (%) of 65.5%. Similarly, the best network voltage is also achieved with the SPPA, which
is approximately 0.993 pu. For NW-2, the proposed SPPA outperformed other counterparts
significantly. In this case, the PLR (%) is even better than that of NW-1, which is 79.1% as
compared to the nearest competitor, CBGA-VSA, which has a 69.15% power loss reduction.

Tables 3 and 4 summarize the results of the reduction in cost due to savings from
reduced power as well as energy losses. As before, various techniques have been used for
comparison purposes from the mentioned literature. Cost reductions of approximately
93.5% and 76.6% were observed in the cases of NW-1 and NW-2, respectively.
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Table 3. Cost reduction comparison of NW-1.

Technique PLOSS
(kW)

PDG
(kW)

PIN
(kW)

EIN
(kWh)

KEIN
(kWh)

Cost
Reduction Ref.

BFOA 73.53 2742 1046.5 9,167,603 1,672,171 73.1 [27]
WOA 73.75 2702 1086.8 9,520,315 1,736,505 72.3 [31]
PPBIL& PSO 91.5 1569 2237.5 19,600,500 3,575,131 42.9 [36]
DSCA-SOCP 72.8 2945 842.8 7,382,799 1,346,623 78.5 [37]
SPSO 74 1800 1989 17,423,640 3,178,072 49.3 [42]
ALO 82.6 2041 1756.6 15,387,816 2,806,738 55.2 [43]
FPA 89.2 2125 1679.2 14,709,792 2,683,066 57.2 [44]
GA 81.75 2190 1606.7 14,075,130 2,567,304 59.0 [45]
IHHO 72.79 2923 864.7 7,575,035 1,381,686 77.9 [46]
GAMS 72.01 2931 856.0 7,498,648 1,367,753 78.1 [47]
CBGA-VSA 72.09 2945 842.1 7,376,708 1,345,512 78.5 [48]
SPPA 63.74 3495 251.7 2,205,242 402,236 93.5 Proposed
WITHOUT 208.5 0 3923.5 34,369,503 6,268,997

Table 4. Cost reduction comparison of NW-2.

Technique PLOSS
(kW)

PDG
(kW)

PIN
(kW)

EIN
(kWh)

KEIN
(kWh)

Cost
Reduction Ref.

WOA 69.7 2645 1226.7 10,746,067 1,960,083 69.5 [31]
PPBIL& PSO 86.9 2028 1860.9 16,301,484 2,973,391 53.8 [36]
DSCA-SOCP 69.4 2625 1246.4 10,918,552 1,991,544 69.1 [37]
SPSO 36 1880 1958 17,152,080 3,128,539 51.3 [42]
ALO 70.8 2238 1634.8 14,320,410 2,612,048 59.4 [43]
FPA 71.7 2234 1639.7 14,363,772 2,619,952 59.2 [44]
IHHO 69.4 2629 1242.3 10,882,636 1,984,993 69.1 [46]
GAMS 72.1 2546 1328.1 11,634,068 2,122,054 67.0 [47]
CBGA-VSA 69.4 2625 1246.4 10,918,464 1,991,528 69.0 [48]
PSO 87.5 2835 1054.5 9,237,245 1,684,873 73.8 [49]
SPPA 46.9 2907 941.9 8,250,956 1,504,974 76.6 Proposed
WITHOUT 225 0 4026.9 35,275,644 6,434,277

5. Conclusions

This work presents the DG placement problem in radial distribution networks for the
minimization of active power losses using the Strawberry Plant Propagation Algorithm
(SPPA). It is observed that the optimal DG placement reduced the active power losses along
with improving the voltage profile for both the considered networks—i.e., IEEE 33- and
69- node radial networks. The active power loss is reduced 69.4% in the 33-node network
and 79.2% in the 69-node network with SPPA. The voltage profile is also improved and
the minimum voltages of 0.9929 pu and 0.98 pu in are observed in the 33- and 69-node
networks, respectively. The reduction in cost is also calculated and compared with various
contemporary methods. It is observed that the cost is reduced significantly as well. The
comparison with several DG placement techniques also highlights the effectiveness of the
proposed method.
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