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Abstract: This paper investigates the sensitivity (resistance) of a quadcopter on-board gyroscope
system for the observation and tracking of a moving ground target to changing parameters of its
regulator under interference conditions. It was shown that the gain in matrix elements is most
sensitive, and even their slightest deviation from optimal values can lead to reduced target tracking
efficiency and even loss of control system stability. Furthermore, the authors studied the energy
expenditure at various gyroscope system control parameter values, while homing a quadcopter onto
a ground target. A Matlab/Simulink environment was used to conduct simulations of the controlled
gyroscope system dynamics. Selected test results are shown in graphic form.

Keywords: gyroscope system; sensitivity; optimal regulator; quadcopter

1. Introduction

Currently, one of the most important elements in the equipment of a quadcopter
unmanned aerial vehicle (QUAV) is its observation and tracking head. It is used to
automatically search and track ground targets, both moving and stationary. Its objective
is to determine the position of target line of sight (TLOS) [1,2]. A Gyroscope System (GS)
was suggested as a device to control and stabilize TLOS. A relevant issue in terms of such
devices is their control under conditions of disturbance induced by the QUAV maneuvering
deck.

Previous studies on the dynamics of unmanned aerial vehicles, including a quad-
copter, indicated that external disturbance acting on them led to significant errors in the
tracking, laser illumination and homing onto both a moving and stationary target [3,4]. In
particular, the control system onboard the aforementioned aerial vehicles, did not provide
sufficient resistance to vibrations [5–7]. A head with controlled gyroscope (its drive) pa-
rameters selected optimally for homing precision, should be chosen in order to minimize
the aforementioned error.

Such parameters can change in the course of gyroscopic system operation, and the
system’s sensitivity to their modification should be tested. This is mainly about determining
the scope of change within which the tracking and illumination of a ground target is still
sufficiently accurate.

This paper discusses an example of a quadcopter equipped with an EFP (Explosively
Formed Projectile) shaped charge that can attack tanks or armored vehicles from the upper
ceiling, i.e., from an altitude of several dozen meters, in which an observation and tracking
head scans the surface of the Earth from onboard the drone, searching for an object emitting
infrared radiation. Upon detecting a target, the QUAV enters the self-homing phase using
the proportional navigation method. The target can be simultaneously illuminated with a
laser beam enabling it to be attacked, with other external means of precise striking (antitank
missile or a bomb homing onto a reflected laser beam). It is also possible for an ultralight
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drone to land directly on a tank in order to emit signals that can be intercepted by the heads
of other means of attack, e.g., rocket missiles on ground launchers or fixed under the wings
of flying vehicles (helicopters, aircraft or unmanned aerial vehicles).

In the source literature, there are many examples of the widespread use of drones in
various areas of today’s life, such as in [8,9]. It should be noted that the proposed system
in this paper differs significantly from the above-mentioned works and the those discussed
in [10,11], mainly due to the use of an original gyro guidance head. Also, many algorithms
and onboard systems have already been developed for quadcopter stabilization and motion
control. Most of them use sensors to measure the position of the copter, such as gyroscopes,
accelerometers or IMU/MEMS units [12,13] but lack information on conducted studies
involving the use of a mechatronic controller gyroscope onboard a quadcopter. It should be
stressed that one of the major advantages of such a gyroscope is its resistance to vibrations
and random interference, including noise. Furthermore, the authors propose gyroscope
system controls, optimal in terms of precision and energy expenditure, ensuring the most
stable and effective homing of the drone onto a target.

The parts of this publication have been organized as follows: Section 2 discusses
a method for the determination of optimal parameters for the controlled GS. Section 3
includes the results of an analysis covering the simulation tests of the gyroscope system
sensitivity to changing its regulator parameters under the conditions of interference, when
illuminating a ground target with a QUAV onboard laser. It also contains the results of
simulation tests regarding GS control energy expenditure within the process of homing a
quadcopter onto a moving ground target. Section 4 summarizes the study and presents the
final conclusions.

2. Determining Optimal Parameters for a Controlled Gyroscope System

A linearized model of a controlled gyroscope system is expressed in the following
form [14–16]:

dxg

dt
= Agxg − Bgug, (1)

where:

xg =
[

ϑg
.
ϑg ψg

.
ψg

]T
—state vector, ug =

[
Mb Mc

]T—control vector,

Ag =


0 1 0 0
0 −bb 0 −1
0 0 0 1
0 1 0 −bc

—state matrix, Bg =


0 0
cb 0
0 0
0 cc

—control matrix,

bb = ηb
JgkΩ , bc =

ηc
JgkΩ , cb = cc =

1
JgkΩ2 , Ω =

Jgong
Jgk

,

ϑg, ψg—angles defining the position of the GS axis in space,
Mb, Mc—control moments,
ηb, ηc—damping coefficients in GS frame suspension bearings,
Jgo—moment of inertia of a GS rotor relative to the longitudinal axis,
Jgk—moment of inertia of a GS rotor relative to the transverse axis,
ng—rotary speed of the GS rotor.

In order to provide the controlled gyroscope, described by Equation (1), with the
stability and shortest decay time of transition to a set value, let us introduce optimal control
in the form:

ug = −Kgxg, (2)

where:

Kg =

[
k11 k12 k13 k14
k21 k22 k23 k24

]
—gain matrix.
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After taking into account the above assumptions using the LQR method and analytical
solution of the Riccati equation, individual elements of the gain matrix Kg for the analysed
gyroscope system satisfy the following relationship [14]:

k11 = k23 = kb, k12 = k14 = k22 = k24 = hg, k21 = −k13 = kc. (3)

After substituting gain coefficient (3) to (2), correction controls will be expressed in
the following form:

Mb = −kbϑg + kcψg − hg
dϑg

dt
, (4)

Mc = −kcϑg − kbψg − hg
dψg

dt
, (5)

where:

kb =
kb

JgkΩ2 , kc =
kc

JgkΩ2 , hg =
hg

JgkΩ
. (6)

Therefore, the open-system gyroscope system (1), taking into account (4), i.e., after
substituting Mb and Mc in the control vector ug, is reduced to a new form (closed-system):

dxg

dt
= A∗gxg, (7)

where:

A∗g =


0 1 0 0
−kb −hg − bb +kc 1

0 0 0 1
−kc −1 −kb −hg − bc

.

Further, let us assume that friction in the gyroscope suspension bearings is negligible
i.e., bb = bc = 0. For such a described gyroscope system, let us additionally look for such
parameters and inter-relations, which guarantee the shortest transient process damping
time. In this case let us also use a modified method of the Golubientsev optimization
method, which consists in ensuring the fastest disappearance of transient processes that
appear after switching on the control, or a sudden operation of a disturbance. The algorithm
of this method is presented in [14].

Using the Hurwitz stability criterion and the modified Golubientsev optimization
method [14,17], we obtain the following system of equations and inequalities:

kb > 0, kc > 0, hg > 0, (8)

2kb −
1
2

h
2
g + 1 > 0, (9)

kc =
1
2

hg, (10)

1
16

h
4
g +

1
4

h
2
g −

1
2

h
2
gkb − hgkc + k

2
b + k

2
c > 0. (11)

Taking into account the maximization condition for the absolute trace value of matrix
A∗g ∣∣∣TrA∗g

∣∣∣→ max, (12)

Using inequality (9) we obtain the following value of the damping coefficient:

hg =

√
2 + 4kb. (13)
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Substituting (13) to the Equation (10) we get:

kc =
1
2

√
2 + 4kb. (14)

Whereas, after taking into account (6) we get:

hg =
√

2J2
gon2

g + 4Jgkkb , (15)

kc =
1
2

J2
gon2

g

Jgk

√
2J2

gon2
g + 4Jgkkb. (16)

Thus, coefficients hg and kc are explicitly defined as the gyroscope parameter functions
Jgo, Jgk and ng of the coefficient kb, which should satisfy the stability criteria as well as the
technical restrictions arising from the strength of the gyroscope structure itself.

The obtained relationships can be used for controlling the gyroscope under conditions
of changing specific rotation angular velocity (e.g., in certain drones with a limited and
unstable power source). In such a case, one should measure the ng(t) values on an
ongoing basis and updated the hg and kc regulator coefficient values in accordance with
the relationships (15) and (16). Coefficient kb is set through software. This enables adaptive
gyroscope control. The adaptive control algorithm described in [14] should be used for
cases of numerous other parameters of the gyroscope changing over time. Figures 1 and 2
graphically characterize the relationships between individual parameters of the gyroscope
and its regulator. In order to obtain the aforementioned relationships, it was assumed that
Jgk = Jgo/2.

Figure 1. Graph of optimal inter-relations between the regulator damping coefficient hg, angular
velocity ng and the gain coefficient kb.

Figure 2. Graph of optimal inter-relations between the regulator gain coefficient kc, angular velocity
ng and the gain coefficient kb.
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Therefore, if the system of terms (8)–(11) is satisfied, the gyroscope system transient
process induced by external disturbance (1) is damped first.

3. Test Results

This section presents the results and analysis of the tests covering the dynamics of the
controlled gyroscope system with the following parameters [2,18]:

Jx1 = 2.5·10−5 kgm2, Jy1 = Jx1 , Jz1 = Jx1 ,

Jx2 = 5·10−5 kgm2, Jy2 = Jx2 , Jz2 = Jx2 ,

Jx3 = Jgo = 5·10−4 kgm2, Jy3 = Jgk = 2.5·10−4 kgm2,

Jz3 = Jx3 , m2 = 0.1 kg, m3 = 0.14 kg, mg = m2 + m3,

ng = 600 rad/s; ηb = ηc = 0.05 Nm/s.

The kinematic excitations acting on the gyroscope system were assumed to be har-
monic forms with an amplitude equal to 0.5 rad/s and frequency equal to 15 rad/s.

The simulation testing was conducted in the Matlab/Simulink environment (Version
R2020a, MathWorks, Natick, MA, USA), with an integration step of dt = 0.00001 s [19].

3.1. Test Results Regarding the Sensitivity of a Gyroscope System during Tracking and Laser
Illumination of a Ground Target

Let us assume that the initial conditions do not match set conditions:

ψgo 6= ψgzo, ϑgo 6= ϑgzo,
.
ψgo 6=

.
ψgzo,

.
ϑgo 6=

.
ϑgzo,

and are equal:
ψgo = 5 deg, ϑgo = −5 deg,

.
ψgo = 0,

.
ϑgo = 0.

Control moments were adopted in the following form:

Mb = −kbeϑ + kceψ − hg
.
eϑ, Mc = −kceϑ − kbeψ − hg

.
eψ,

where:
eϑ = ϑg − ϑgz,

.
eϑ =

.
ϑg −

.
ϑgz, eψ = ψg − ψgz,

.
eψ =

.
ψg −

.
ψgz.

It was also assumed that the task of gyroscope system control was displacement over a
minimum time and maintaining the gyroscope axis in a position consistent with the target
line of sight position, with an error below 0.5 degrees, i.e., 0.0087 rad. After satisfying this
condition, it activates only the laser system to illuminate the target. The target should be
steadily illuminated, with preset precision, regardless of the drone maneuvers, vibrations of
its deck and other external disturbances, such as wind gusts [20,21] or projectile explosion.
Such disturbances appeared within the simulation in question, in the period between 15 to
20 s.

Figures 3–6 contain simulation results for nonoptimal regulator coefficients:

kb = 10, kc = 100, hg = 100.

The simulation results presented in Figures 3–6 clearly show that the controller pa-
rameters are chosen incorrectly. There are significant deviations of the actual values of the
position angles of the GS axis ψg, ϑg from the pre-set values ψgz, ϑgz (Figures 3 and 4).
Consequently, the control error reaches large values (Figure 6). The kinematic excitations
occurring after 15 s of motion have a very negative effect on the motion of the gyroscope
system, which can also be seen in Figure 5.
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Figure 3. Real and set angle of gyroscope system (GS) deflection and inclination as a function of time.

Figure 4. Real and desired motion trajectory.

Figure 5. Control moments as a function of time.

Figure 6. Total error as a function of time.
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Figures 7–10 show simulation results for other nonoptimal values of regulator coeffi-
cients of

kb = 10, kc = 10, hg = 10.

Figure 7. Real and set angle of GS deflection and inclination as a function of time.

Figure 8. Real and desired motion trajectory.

Figure 9. Control moments as a function of time.
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Figure 10. Total error as a function of time.

From the simulation results shown in Figures 7–10, it can be seen that the motion of
the gyroscope system is more stable. The deviations from the set values are smaller than
for the case shown in Figures 3–6. However, the control error is still too large, whereas
Figures 11–14 contain test results for a regulator coefficient of kb = 10, while kc and hg are
determined based on relationships (13)–(14) (i.e., optimal).

Figure 11. Real and set angle of GS deflection and inclination as a function of time.

Figure 12. Real and desired motion trajectory.
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Figure 13. Control moments as a function of time.

Figure 14. Total error as a function of time.

The results presented in Figures 11–14 show that the controller with the optimal
parameters work properly. The trajectory of the actual motion almost coincides with the
desired trajectory. The total control error for the steady-state motion oscillates around a
value equal to 1 degree.

Figures 15–18 shows the test results for optimal regulator coefficients of kb = 348 and
kc and hg determined based on relationships (13)–(14).

Figure 15. Real and set angle of GS deflection and inclination as a function of time.
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Figure 16. Real and desired motion trajectory.

Figure 17. Control moments as a function of time.

Figure 18. Total error as a function of time.

Such a selection of control coefficients causes the changes over time of the actual
angles of GS axis position and the set angles to coincide almost perfectly, which can also be
seen in Figure 16. The influence of kinematic excitations on GS motion is imperceptible.
The total control error is close to zero.
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Some selected test results shown in Figures 3–18 indicate that the most important
regulator parameter is the kb coefficient, which was ultimately selected so that the control
moments did not exceed the permissible absolute values of 0.5 Nm on one hand, and the
total error between the set and implemented gyroscope axis position was below 0.5 degrees
(0.0087 rad) on the other. Other coefficients were determined based on the relationships
(7)–(15). Numerous tests involving gyroscope system sensitivity indicated that with an
optimally selected kb coefficients, other coefficients, namely kc and hg, varying within
30% of the optimum values, did not cause significant errors in maintaining the gyroscope
axis in accordance with the target line of sight. Errors exceeding permissible values,
i.e., axis deviation from the set value higher than 0.0087 rad appeared after leaving the
aforementioned change range of the coefficients. At the same time, the control moments
reached unacceptable values.

3.2. Simulation Studies Involving the Control over an Optimum Gyroscope System for Homing
onto a Ground Target from Onboard a Quadcopter

In order to test the operating effectiveness of a gyroscope system with optimally
selected parameters when homing a quadcopter onto a moving ground target under
conditions of external disturbance, the following controls, quality indicators and initial
conditions of drone and target motion were adopted.

GS axis control moments:

Mb = −kbeϑ + kceψ − hg
.
eϑ, Mc = −kceϑ − kbeψ − hg

.
eψ

where:
eϑ = ϑg − ε;

.
eϑ =

.
ϑg −

.
ε; eψ = ψg − σ;

.
eψ =

.
ψg −

.
σ

ε, σ—deflection and inclination angles of the target line of sight, determined from homing
kinematics equations.

In terms of selecting the optimum parameters for the gyroscope system in question,
the following two quality indicators were adopted:

1. IAE (Integral Absolute Error) quality indicator:

IAE =

∞∫
0

|ec|dt

where:

ec =
√

e2
ϑ + e2

ψ—total error.

2. ISSC (Integral Square State and Control) quality indicator:

ISSC =

∞∫
0

(
xTx

)
dt +

∞∫
0

(
uTu

)
dt

where:
x =

[
ϑg ψg

.
ϑg

.
ψg

]
, u =

[
Mb Mc

]
.

Initial positions and angular velocities of gyroscope system axis position:

ψg = σ + 0.2 rad, ϑg = ε + 0.2 rad,
.
ψg = 0;

.
ϑg = 0.

Initial ground target movement conditions:

xc = 150 m, yc = 50 m, zc = 0.

Vc = 25 m/s, γc = 0, χc = 0.
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Initial drone flight parameters:

xs = 0, ys = 0, zs = 500 m.

Vs = 75
m
s

, γs = ε, χs = σ.

Coefficient kb is selected heuristically, while the optimum PD regulator gain coeffi-
cients is calculated from relationships (13)–(14).

The analysis involved six variants with two GS control parameter values.
The test results shown in Figures 19–48 and determined quality indicator values in

Table 1 indicate that effective control over a gyroscope system when homing a quadcopter
onto a moving ground target under external disturbance conditions requires the application
of optimum regulator parameters, with values from a range determined based on the tests
discussed in Section 3.1.

Table 1. Quality indicators.

Variant Regulator Parameters ISSC IAE

1 kb = 10, kc = 10, hg = 10 9.2403 × 108 5.3726 × 103

2 kb = 10, kc = 100, hg = 100 9.6861 × 108 7.2331 × 103

3 kb = 10, kc, hg − optimum 1.1070 × 109 4.3352 × 103

4 kb = 348, kc, hg − optimum 1.6691 × 109 1.7290 × 103

5 kb = 348, kc, hg = 0.7 ∗ optimum 1.6845 × 109 1.8137 × 103

6 kb = 348, kc, hg = 1.3 ∗ optimum 1.6263 × 109 1.9237 × 103

The tests also indicated that with an optimally selected coefficient kb, the values of
coefficients kc and hg can change over a broad range but cannot exceed 30% of the optimum
values. Figures 36 and 46 clearly show that a gyroscope system in variant 6 was faster in
“entering” the set trajectory but the IAE indicator reached a much higher value relative to
variant 4, with comparable values of the ISSC indicator for both variants.

A similar situation applies to variant 5. The value of coefficients kc and hg were
30% lower than the optimum values, which significantly increased the gyroscope system
homing error. This is particularly visible when comparing Figures 36 and 41.

In conclusion, it should be stated that the assumed homing accuracy is achieved for
optimum gyroscope control system regulator values adopted in variant 4.

Variant 1.
kb = 10; kc = 10; hg = 10.

Figure 19. Trajectories of unmanned aerial vehicle (UAV) and target flight.
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Figure 20. Changes of realizing and pre-set deflection and inclination angles of GS as a time function.

Figure 21. Trajectories of the real and desired motion.

Figure 22. Control moments as a function of time.
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Figure 23. Total error as a function of time.

Variant 2.
kb = 10; kc = 100; hg = 100.

Figure 24. Trajectories of UAV and target flight.

Figure 25. Changes of realizing and pre-set deflection and inclination angles of GS as a time function.
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Figure 26. Trajectories of the real and desired motion.

Figure 27. Control moments as a function of time.

Figure 28. Total error as a function of time.

Variant 3.
kb = 10, whereas kc, hg are adopted optimum values.
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Figure 29. Trajectories of UAV and target flight.

Figure 30. Changes of realizing and pre-set deflection and inclination angles of GS as a time function.

Figure 31. Trajectories of the real and desired motion.
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Figure 32. Control moments as a function of time.

Figure 33. Total error as a function of time.

Variant 4.
kb = 348, whereas kc, hg adopted optimum values.

Figure 34. Trajectories of UAV and target flight.
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Figure 35. Changes of realizing and preset deflection and inclination angles of GS as a time function.

Figure 36. Trajectories of the real and desired motion.

Figure 37. Control moments as a function of time.
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Figure 38. Total error as a function of time.

Variant 5.
kb = 348, whereas kc, hg are adopted values 30% lower than optimum.

Figure 39. Trajectories of UAV and target flight.

Figure 40. Changes of realizing and pre-set deflection and inclination angles of GS as a time function.
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Figure 41. Trajectories of the real and desired motion.

Figure 42. Control moments as a function of time.

Figure 43. Total error as a function of time.

Variant 6.
kb = 348, whereas kc, hg are adopted values 30% higher than optimum.
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Figure 44. Trajectories of UAV and target flight.

Figure 45. Changes of realizing and preset deflection and inclination angles of GS as a time function.

Figure 46. Trajectories of the real and desired motion.
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Figure 47. Control moments as a function of time.

Figure 48. Total error as a function of time.

Table 1 shows the values of determined quality indicators.
The data presented in Table 1 show that the IAE indicator is the decisive criterion

for the selection of regulator parameters. The ISSC does not give unambiguous answers.
The lowest value of the IAE indicator was achieved for variant 4. The parameters of the
regulator determined in this variant made it possible to obtain the highest accuracy of
guiding the quadcopter to the moving target.

4. Conclusions

The optimum parameters for controlling the gyroscope axis position presented herein
minimize the error between the set and desired movements to acceptable values and reduce
the impact of kinematic excitation of the QUAV base and external disturbance acting on
the drone. The authors studied sensitivity and determined the optimum parameter change
ranges for stable, precise tracking, laser illumination and homing onto a moving ground
target from onboard a drone.

Due to a minimum offset between the set and implemented gyroscope axis position,
a specific optimum coefficient kb was determined for the controlled gyroscope system in
question. The GS is very sensitive to changes in this coefficient. Other coefficients, kc and
hg, are functions of kb and the GS is not really sensitive to changes in their values, since they
can vary by up to 30% of optimum values without a significant impact on the precision of
ground target tracking and laser illumination.
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Summing up, it can be concluded that the application of a gyroscope system with
optimally selected parameters ensures stable and precise QUAV homing onto a moving
ground target under external disturbance.

The next stage of the research will be the application of the optimal parameters set out
in this paper for the experimental verification of the operation of the gyro system guiding
the quadcopter onto a moving ground target to prove ground conditions.
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