
energies

Article

Examining the Linkages among Carbon Dioxide Emissions,
Electricity Production and Economic Growth in Different
Income Levels

George E. Halkos * and Eleni-Christina Gkampoura

����������
�������

Citation: Halkos, G.E.; Gkampoura,

E.-C. Examining the Linkages among

Carbon Dioxide Emissions, Electricity

Production and Economic Growth in

Different Income Levels. Energies

2021, 14, 1682. https://doi.org/

10.3390/en14061682

Academic Editor: Wing-Keung Wong

Received: 26 February 2021

Accepted: 16 March 2021

Published: 18 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Economics, University of Thessaly, 38333 Volos, Greece; egkampoura@uth.gr
* Correspondence: halkos@econ.uth.gr

Abstract: Our industrialized world highly depends on fossil fuels to cover its energy needs. Although
fossil fuels have been linked with economic growth, their use has also been found to have severe
impacts on the environment. The linkages among carbon dioxide emissions, energy consumption and
economic growth have been extensively examined in the current literature. The present study focuses
on electricity production from fossil fuels, as well as from renewable sources and examines their
linkages with CO2 emissions and economic growth in 119 world countries of different income levels,
by assessing Granger causality. In addition, the Environmental Kuznets Curve (EKC) hypothesis
is tested, in order to evaluate whether economic growth and carbon dioxide emissions are linked
with an inverse U-shaped relationship and with an N-shape relationship in higher income levels.
The EKC hypothesis is confirmed for high income and upper-middle income countries, but not for
lower-middle and low income levels and a bidirectional Granger causality is found between GDP
per capita and CO2 per capita in all income levels.

Keywords: CO2 emissions; electricity production; Environmental Kuznets Curve; fossil fuels; renew-
ables; economic growth; income levels

1. Introduction

The rapid economic growth that followed the industrial revolution had a major impact
on the environment. Fossil fuels were the core of the new industrialized world and their
use started growing rapidly, reaching millions of tons of oil equivalents by today [1].
This excessive use and burning led to the emission of greenhouse gases (GHG) into the
atmosphere which, in large amounts, contribute to global warming and climate change [2].

Carbon dioxide (CO2) emissions are the number one anthropogenic contributor to
climate change, since they constitute 81% of total GHG emissions for 2018. At the same
time, CO2 emissions that come from fossil fuel and industrial processes constitute 65% of
total GHG emissions (according to 2010 data) [3]. These emissions are expected to increase
even more: global population is expected to rise to approximately 9 billion by 2050 [4] and,
therefore, world energy consumption is expected to rise nearly 50% between 2018–2050 [5].

In 1992, the United Nations Framework Convention on Climate Change (UNFCCC)
and the Kyoto Protocol in 1997, made it obvious that, in order to avoid a disastrous effect
on the environment, it is essential to reduce the world’s GHG emissions to a large extent [2].
Even so, according to recent data, there seems to be a 61.62% increase of total CO2 emissions
(kt) in the world from 1990 until 2016 [6]. At the same time, fossil fuel energy consumption,
as a percentage of total energy use, has not changed significantly and energy use (kg of oil
equivalent per capita) has increased by 15.6% in the period 1990–2014 [7]. All these data
emphasize the urgent need to implement CO2 emissions reduction measures, by limiting
the use of fossil fuels and switching to renewable energy sources instead [8].

Energy consumption seems to be the main cause of the large CO2 emissions. At
the same time, higher energy consumption leads to higher economic development [9].
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According to Adams et al. [10], if non-renewable energy consumption increases by 10%,
economic growth will increase by 2.11%, but if renewable energy consumption increases
by 10%, economic growth will increase by 0.27%. This is why many scientists argue that a
reduction in CO2 would have a negative outcome for economic growth, something that
would be an undesired result in developed and, especially, in developing countries [9].
The links and the relationship between energy consumption, CO2 emissions and economic
development have been intensively studied in the last decades [11].

The linkages among CO2 emissions and electricity production have not been widely
examined in the current literature. This study aims to contribute to the existing literature
and examines the causality among economic growth, electricity production and CO2
emissions in 119 world countries, categorized by income status (high, upper-middle, and
lower-middle and low income), over the period of 2000–2018. Countries of different
income levels are expected to have substantial differences regarding the relationships that
exist among these factors and their identification is significantly important, since it can
provide a better understanding and important knowledge for policy makers, in order to
implement targeted measures for an efficient energy transition and the achievement of
global sustainability. This study examines and assesses all these different linkages, for a
large number of world countries classified by income with recent data, something that
has not been widely investigated in the current literature. To achieve that, panel data
are collected and the linkages between CO2 emissions, electricity production from fossil
fuels, electricity production from renewable sources and GDP per capita are investigated,
while taking into consideration population density as well. Static and dynamic regression
models are constructed, an in-depth econometric analysis is conducted, the Environmental
Kuznets Curve is assessed for each income level and Granger causality is tested.

The paper is organized as follows: Section 2 presents recent economic and energy data,
as well as data regarding CO2 emissions that come from different energy sources. Section 3
includes an in-depth literature review on the examined field and Section 4 presents used
data and methodology. In Section 5, the results are presented and in Section 6 the results
are discussed. Section 7 concludes the paper.

2. Recent World Data

The world’s GDP has increased rapidly over the last twenty years, from $33.624 trillion
in 2000 to $87.799 trillion in 2019 (Figure 1), according to the World Bank database [12].
Over the same time period, global population increased from 6.114 billion in 2000 to
7.674 billion in 2019 [13], meaning that GDP per capita increased from $5499.151 in 2000 to
$11,441.733 in 2019 [14].
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Focusing on the energy sector, world’s total final energy consumption reached
9,937,702 kilotonnes of oil equivalent in 2018 [15]. The industrial sector and the trans-
portation sector were the highest consumers of world’s total energy supply (Figure 2) and
fossil fuels were energy’s main provider. According to IEA data [16], in 2017, the share of
renewables in world’s final energy consumption was estimated at 17.3%. The residential
sector was the highest consumer of renewable energy supply (Figure 3).
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World’s total CO2 emissions reached 33,513.3 Mt of CO2 in 2018 [17], estimating thus
the per capita emissions at 4.4 tonnes CO2 [18]). Coal was the energy source that was
responsible for most of energy-related CO2 emissions in the world, while oil followed [19]
(Figure 4). In addition, world’s total forest area has decreased over the last two decades;
from 40,556,022.3 km2 in 2000, it decreased to 39,958,245.9 km2 in 2016, according to the
World Bank database [20].
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3. Literature Review

The existing literature about links and relationships between energy consumption,
environmental pollution and economic growth is divided into three categories. The first
category concerns the investigation of the CO2 Environmental Kuznets Curve hypothesis.
According to the EKC hypothesis, environmental pressure in an economy starts growing
as the income grows, reaches a peak and, after a certain level of income, starts reduc-
ing [21]. This happens because, as a nation tries to develop, uses its natural resources
with no concerning on the environmental degradation; after a certain income level, and
since environmental degradation can lead to various problems, nations focus on improving
environmental quality and protecting the environment [22]. Based on the EKC hypothesis,
an inverted U-shaped relationship exists between economic development and environ-
mental degradation. For high income countries, the EKC hypothesis has a cubic and not a
quadratic form and an N-type curve is observed, indicating that even higher levels of GDP
per capita lead to an increase of environmental degradation [23]. The EKC has significant
implications for sustainability [24].

A plethora of studies have been carried out in which this hypothesis is tested, starting
from 1991 and the empirical study by Grossman and Krueger [9]. A variety of recent
studies have examined and evidenced the CO2 EKC hypothesis for various different
regions [25–30]; in contrast, some recent studies that have found that the EKC hypothesis
wasn’t valid for certain regions also exist in the literature [31–34].

The second category concerns the research of causality among economic growth and
energy consumption. These studies examine the hypothesis that growth in economy is
related to growth in energy use and they test that relationship using time series models,
usually with Granger causality and cointegration models. Mehrara [35], Narayan and
Smyth [36], Apergis and Payne [37], Ozturk et al. [38] and Apergis and Payne [39], among
others, have examined this hypothesis.

The third category combines the previous two categories by examining the relationship
among economic growth, energy consumption (renewable and non-renewable), CO2 emis-
sions and other variables (urbanization, trade, etc.). These studies examine the argument
that economic growth has a long-term influence on energy consumption and pollution
growth [9]. Wang et al. [40] have found a bidirectional causality between CO2 emissions
and energy consumption and between economic growth and energy consumption among
28 provinces in China, while energy consumption and economic growth are found to be
the cause for CO2 emissions in the long run. Lu [41] has also reached the same results in
his study for 24 Asian countries. Lin and Moubarak [42], in their study for China, have
found a bidirectional causality between renewable energy consumption and economic
growth, although they found no causality between carbon emissions and renewable energy
consumption. Pao and Tsai [43] have evidenced a bidirectional causality between income,
energy consumption and emissions in Brazil, while Pao et al. [44] have found the same
results for Russia. In contrast, Lotfalipour et al. [9] in their study on Iran, found a unidirec-
tional causality from economic growth to CO2 emissions and no causality from fossil fuels
consumption to CO2 emissions. Also, Soytas et al. [45] in their study for the United States,
found no Granger causality between income and CO2 emissions and between energy use
and income.

Some recent studies have been focusing specifically on European countries and the
relationship between economic growth, energy consumption and carbon emissions that
exists. Examples of those studies include the following: Acaravci and Ozturk [46] examined
these relationships for 19 European countries and found a long run relationship between
CO2 emissions, energy consumption and economic growth only for specific countries.
They also confirmed the EKC hypothesis in Denmark and Italy. Pirlogea and Cicea [47]
also examined the links between energy consumption and economic growth and found
that there is a unidirectional causality from renewable energy consumption to economic
growth in Romania and from energy consumption (natural gas) to economic growth in
Spain on short-run, concluding that there is a long run equilibrium between economic
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growth and energy consumption in every EU country. Bölük and Mert [11] have tested
the EKC hypothesis in 16 EU countries and they concluded that the EKC hypothesis was
not valid in these countries. Kasman and Duman [48] examined the causality among
energy consumption, economic growth, CO2 emissions, taking also into consideration the
trade openness and urbanization, for 15 European countries. They provided evidence
that support the EKC hypothesis and they found a unidirectional causality from energy
consumption, trade openness and urbanization to CO2 emissions, among others. Alper
and Oguz [49] examined the relationship between economic growth, renewable energy
consumption, capital and labor for six EU countries and concluded that renewable energy
consumption has a positive impact on economic growth for all 6 countries.

The examination of the Energy-Environmental Kuznets Curve (EEKC) has also been a
topic of interest in the literature and has been assessed on a global and regional scale. More
specifically, various studies have been focusing on the examination of the linkages that
exist between economic growth and energy consumption. Some studies have managed
to confirm the existence of the EEKC globally and regionally [50–52], while a plethora of
studies exist that could not confirm the hypothesis [53–55].

Regarding the linkages that exist among CO2 emissions, electricity production and
economic growth, fewer studies have been focusing on that. For instance, in a recent study
for Ghana, it was found that a bidirectional causality exists from hydroelectric sources’
electricity production to CO2 emissions, while a unidirectional causality is found from
CO2 emissions to renewables and waste energy production, as well as from CO2 emissions
to fossil fuels electricity production (oil, gas and coal), among others [56]. For the case
of Pakistan, it was found that, among others, a weak unidirectional causality exists from
CO2 emissions to electricity production, both from natural gas and oil [57]. Focusing on
Europe, and more specifically on the case of Italy, the EKC hypothesis has been validated,
while it has been found that in fact electricity production per capita that comes from
renewable sources can lead to a reduction of CO2 emissions per capita, both short-term
and long-term [58].

Only a few studies in the literature have studied these linkages and have tested the
EKC hypothesis for different income levels. For example, Al-Mulali et al. [59] investigated
the EKC hypothesis for different income groups, while taking into consideration the
Ecological Footprint instead of CO2 emissions to stand for environmental degradation. The
authors confirmed the EKC hypothesis only for high income and upper-middle income
countries, while the hypothesis was not valid for lower-middle and low incomes. Similarly,
Ulucak and Bilgili [60] followed a similar approach, using the Ecological Footprint and
classifying the studied countries by income. The authors confirmed the EKC hypothesis for
all income levels. In addition, Aruga [52] examined the EEKC hypothesis for 19 Asia-Pacific
countries, depending on income, and the results indicated that the EEKC hypothesis was
confirmed only for high income countries, and not for low and middle income.

As it is highlighted, there is a plethora of studies that examine the causality among
economic growth, energy consumption and carbon dioxide emissions, using different
econometric procedures and techniques and their results differ substantially. This study
aims to provide a comprehensive approach with recent data, focusing specifically on
electricity production and including 119 world countries categorized by income level,
assessing thus the different relationships that exist among these factors in different income
groups. The study contributes to the existing literature, by combining all the above elements
with an in-depth econometric analysis that is followed.

4. Materials and Methods
4.1. Data

Panel data were collected from the International Energy Agency (IEA) and the World
Bank Database for 119 world countries and for the period 2000–2018. These countries
were categorized based on their income level, as it has been identified by the World Bank,
that takes into consideration GNI per capita (current USD) to divide the countries to
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four different income groups. The newest classifications were set on July 2020 and the
thresholds are presented in Table 1 [61]. The 119 countries for which data were collected
and that were included in the analysis are presented in Figure 5, classified by income level:
47 countries are identified as high income countries, 33 as upper-middle income countries,
32 as lower-middle income countries and 7 as low income countries. The indicators for
which data were extracted are presented in Table 2.

Table 1. Income classification thresholds, as set by the World Bank.

Income Level Threshold (July 2020)

High income >12,535
Upper-middle income 4046–12,535
Lower-middle income 1036–4045

Low income <1036
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Table 2. Extracted indicators and data sources.

Source Indicator Measurement

1 IEA [62] Total electricity production GWh
2 WB [13] Population total
3 WB [63] Electricity production from oil, gas and coal sources % of total
4 WB [64] Electricity production from renewable sources, excluding hydroelectric % of total
5 WB [65] Electricity production from hydroelectric sources % of total
6 WB [66] CO2 emissions Metric tons per capita
7 WB [14] GDP per capita Current US$
8 WB [67] Population density People per sq. km of land area

Indicators 4&5 were combined, in order to create a variable that refers to electricity
production from renewable sources, including hydroelectric. Indicators 1&2 were used
to estimate electricity production per capita, so that electricity production from fossil
fuels (EPFpc) and renewable sources (including hydroelectric) per capita (EPRpc) will be
estimated, based on the indicators 3&4. Forecasts were provided, relying on exponential
smoothing, in order to complete the missing data for the last few years wherever it was
necessary. To achieve that, various forecast accuracy measures were examined, such as
Mean Absolute Percentage Error—MAPE, Mean Square Deviation—MSD, etc.
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4.2. Econometric Methodology

The EKC curve and the relationship and causality between CO2 emissions and GDP,
electricity production from fossil fuels per capita, electricity production from renew-
able sources per capita and population density were examined, based on the following
methodology.

Before performing the regression analysis, several econometric tests are conducted to
address different problems that might occur. A usual problem when working with panel
data is variables’ correlation; in order to determine if the time-series are cross-sectional
independent, Pesaran’s cross-section dependence test is used. OLS Dummy estimator
(FEM) allowing for individual fixed effects with Driscoll-Kraay standard errors can assist
in the correction of the variance-covariance matrix, in cases where the time series are found
to be cross-sectional dependent. For Random Effects, Breusch-Pagan LM test for individual
effects is applied and robust standard errors are required.

In cases where cross-section dependence is evidenced, unit root tests are performed.
Dickey-Fuller and Augmented Dickey-Fuller tests can be performed when analyzing panel
data, with the issue of homogeneity in the autoregressive parameter. Fisher type tests do
not adopt this restrictive assumption and they don’t require strongly balanced panels. The
asymptotic behavior of the time series (T) and the cross-section dimensions (N) should be
taken into consideration when performing unit root tests. Fisher type tests can be used in
cases where T and N tend to infinity, but the number of panels with no unit root must raise
at the same rate as N.

In cases of non-stationarity, panel cointegration tests are performed: more specifically,
Westerlund test are performed to check for panel cointegration, based on the significance of
the error correction term in the error correction model. Westerlund proposed four cointegra-
tion tests: the Gt and Ga statistics, which test the null hypothesis of no cointegration for all
cross-sectional units, rejecting the hypothesis in cases of cointegration for at least one unit,
and the Pt and the Pa statistics, which reject the hypothesis in cases of cointegration of the
panel in total. In addition, the causal relationships among the studied factors are examined
by conducting Granger causality tests. Granger causality can help identify whether the
relationship between two variables is unidirectional, bidirectional or if no causality exists
between them [68,69].

Three different data sets are constructed: one for high income countries (47 countries),
one for upper-middle income countries (33 countries) and one for lower-middle & low
income countries (39 countries). After the data collection, their combination and the extrac-
tion of the necessary variables, Box-Cox tests have been used, in order to test linear against
logarithmic forms. Quadratic regression models, as well as a cubic regression model were
constructed, in order to examine the linkages among the studied variables, considering
CO2 emissions per capita as a dependent variable and GDP per capita, per capita elec-
tricity production from fossil fuels, per capita electricity production from renewables and
population density as independent variables. The general forms of these models are:

Yit = a + Xitβit + X2
itβit + δi + γi + εit (1)

Yit = a + Xitβit + X2
itβit + X3

itβit + δi + γi + εit (2)

where Yit is the dependent variable, Xit an independent variables’ k-vector, δi and γi
the cross-section and period specific effects, that can be either fixed or random, and εit
the disturbance terms. After modification, the proposed models that include only the
statistically significant variables, become:

CO2pcit = a + β1itGDPpcit + β2itGDPpc2
it + β3itEPFpcit + β4itEPRpcit + β5itDensit + δi + γi + εit (3)

CO2pcit = a + β1itGDPpcit + β2itGDPpc2
it + β3itGDPpc3

it + β4itEPFpcit + β5itEPRpcit + β6itDensit + δi + γi + εit (4)
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In Equations (3) and (4), CO2pc stands for CO2 emissions per capita, GDPpc for GDP
per capita, EPFpc for electricity production from fossil fuels (oil, gas and coal) per capita,
EPRpc for electricity production from renewable sources per capita (including hydroelectric)
and Dens for population density.

To estimate the panel data models, the ordinary least squares (OLS) method was
chosen and Fixed and Random Effects methods were applied; the choice of the appropriate
method depends on the way that ai is handled (fixed predefined number or random
expulsion from a particular distribution). In the case of Random Effects, Hausman tests are
also conducted, in order to check for inconsistencies in the RE estimations. The literature
also suggests the use of fully modified ordinary least squares (FMOLS), a reliable non-
parametric method that assists in tackling problems related to variables’ endogeneity and
serial correlation [70,71]. FMOLS estimators seem to perform significantly well in cases
where the time series dimension is bigger than the cross sectional dimension [70]. In the
present study, and since the cross sectional dimension is significantly bigger than the time
series dimension, Fixed Effects with Driscoll-Kraay standard errors were chosen to be used,
when modeling the static analysis. This way, the problem of cross-section dependence is
prioritized and addressed.

In addition to the OLS method, and in order to capture the dynamic nature of the
model, Generalized Method of Moments (GMM) was used for estimation, in terms of
Orthogonal Deviations. GMM is used in statistical models in order to provide estimators
for the parameters that are consistent, as well as asymptotically normally distributed [72]. It
is a significantly important method for econometrics and is widely used in economics, since
it can be applied in various models (linear/non-linear, cross-section, time series and panel
data, etc.) [73]. In cases where moment conditions can be obtained, while the likelihood
function cannot, GMM combines the moments and provides efficient estimators [74].
GMM assists in avoiding endogeneity, since it extends the static model, by including
lagged variables that help control the problem, as well as in avoiding the problems of
autocorrelation and reverse causation [75,76]. Due to the many advantages that come with
its use, Generalized Method of Moments was chosen over dynamic ordinary least squares
(DOLS), a parametric method that uses lagged terms and assists in endogeneity and serial
correlation problems [77,78].

GMM minimizes the following Equation (5), regarding β:

M (β) =

(
N

∑
i=1

Ψ′i ui(β)

)
W

(
N

∑
i=1

Ψ′i ui(β)

)
= ζ(β)′Wζ(β) (5)

In this equation, W is a pxp weighting matrix, Ψi is a Tixp instruments matrix for cross
section i and ui(β) = (Υi − f (Xit, β)). White robust covariances are used to calculate the
weighting of matrix W and the coefficient covariance estimates are:

(
M∗

M∗ − k∗

)(
∑

t
X′tXt

)−1(
∑

t
X′tûtût

′Xt

)(
∑

t
X′tXt

)−1

(6)

In Equation (6), M* is the total number of stacked observations and k* equals to the
number of estimated parameters. According to Arellano and Bond [79], in orthogonal
deviations each observation is seen as a deviation from the average of future observations
and each deviation is weighted, in order to standardize the variance:

x∗it =
[

xit −
(

xi(t+1) + . . . + xiT

)
/(T − t)

]√
(T − t)/

√
T − t + 1 (7)

The (Ti-q) equations for individual unit (i) are:

Yi = δwi + diηi + νi (8)
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5. Results
5.1. Descriptive Statistical Analysis

The indicators presented in Table 2 were analyzed and combined, so that the necessary
variables could be extracted, such as per capita electricity production from fossil fuels and
from renewable sources. Table 3 presents the descriptive statistics of the indicators that
were used in the analysis for high income countries.

Table 3. Descriptive Statistics of High income countries.

EPFpc EPRpc CO2pc GDPpc Dens

Mean 0.004684 0.003144 10.39119 32,195.14 336.1680
Median 0.003691 0.000939 8.072146 27,729.19 109.5809

Maximum 0.021955 0.056814 67.31050 118,823.6 7952.998
Minimum 0.00000331 0 0.251345 1659.908 2.493134
Std. Dev. 0.004552 0.007736 8.274268 21,106.53 1028.928
Skewness 1.748568 4.755374 2.960003 1.164747 5.988748
Kurtosis 5.968018 28.28739 15.53083 4.738511 39.83826

Jarque-Bera 782.8296 27158.6 7146.537 314.3716 55,831.77
Prob. 0.0000 0.0000 0.0000 0.0000 0.0000

The highest levels of electricity production from fossil fuels, throughout the studied
time-period and among the 47 high income countries that were examined, were observed in
Bahrain (0.021955 GWh/capita in 2006), while the lowest levels were observed in Uruguay
(0.00000331 GWh/capita in 2003). Respectively, the highest levels regarding electricity
production from renewable sources were observed in Iceland (0.0568 GWh/capita in 2015),
while zero levels were observed in various countries throughout the studied time-period.

Qatar was the country with the highest levels of CO2 emissions per capita for the
whole time-period, with the highest being observed in 2001 (67.31 metric tons per capita);
some of the lowest levels of CO2 emissions per capita were observed in Malta and Uruguay.
At the same time, in Luxembourg were observed the highest levels of GDP per capita,
reaching $118,823.65 in 2014, while the lowest GDP per capita levels were observed in
Romania ($1659.9 in 2000). The highest population density was observed in Singapore
for the whole time-period (7952.998 people/sq.km in 2018), while the lowest population
density was observed in Australia (2.49 people/sq.km in 2000).

Similarly, Table 4 presents the descriptive statistics for upper-middle income countries
and Table 5 for lower-middle and low income countries. The highest levels of electricity
production from fossil fuels, among the 33 upper-middle income countries were observed
in Libya (0.005999 GWh/capita in 2013), while zero levels were observed in Paraguay
and Albania for various years. Similarly, the highest levels of electricity production from
renewable sources were observed in Paraguay (0.010049 GWh/capita in 2000), while zero
levels were observed in Libya for the whole time period and in Botswana for the years
2000–2012.

Table 4. Descriptive Statistics of Upper-middle income countries.

EPFpc EPRpc CO2pc GDPpc Dens

Mean 0.001757 0.000913 4.215383 5545.145 72.05436
Median 0.001421 0.000494 3.306489 4986.676 65.22279

Maximum 0.005999 0.010049 15.6463 19288.6 270.9931
Minimum 0 0 0.657959 622.7421 2.179756
Std. Dev. 0.001496 0.001577 3.090284 3226.249 58.80999
Skewness 0.751483 4.073107 1.262113 1.008053 1.092193
Kurtosis 2.593474 20.94012 4.227859 4.117945 4.357204

Jarque-Bera 63.3315 10141.95 205.8481 138.8408 172.7788
Prob. 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 5. Descriptive Statistics of Lower-middle and Low income countries.

EPFpc EPRpc CO2pc GDPpc Dens

Mean 0.000432 0.000232 1.139077 1470.063 134.9511
Median 0.000188 0.000133 0.611946 1133.186 73.57522

Maximum 0.002133 0.002499 15.1386 5591.212 1239.579
Minimum 0 0 0.01628 111.9272 1.543177
Std. Dev. 0.000575 0.000372 1.584955 1133.959 192.4295
Skewness 1.481985 4.07663 3.406818 1.232556 3.601976
Kurtosis 3.86273 22.02623 19.41762 3.9178 18.42611

Jarque-Bera 294.221 13229.1 9755.384 213.6282 8949.486
Prob. 0.0000 0.0000 0.0000 0.0000 0.0000

The highest levels of CO2 emissions were observed in Kazakhstan for the whole
time period (15.65 metric tons per capita in 2011) and high levels were observed in the
Russian Federation as well; the lowest levels of carbon dioxide emissions were observed in
Paraguay for most of the studied years (0.658 metric tons per capita in 2005). Among the
studied upper-middle income countries, Venezuela had the highest GDP per capita and
Armenia had the lowest. Population density was higher in Jamaica for the whole studied
time period (270.99 people/sq.km in 2018) and lower in Namibia for the whole time period
(2.18 people/sq.km in 2000).

In the case of lower-middle & low income countries, the highest levels of electricity
production from fossil fuels were observed in Ukraine (0.00213 GWh/capita in 2012), while
zero levels were observed in Nepal, Ghana and the Republic of the Congo in various
years. The highest levels of electricity production from renewable sources were observed in
Tajikistan (0.0025 GWh/capita in 2005), while zero levels were observed in Niger, Mongolia
and Benin for various years.

Mongolia presented the highest levels of CO2 emissions for various years (15.14 metric
tons per capita in 2013), while the Democratic Republic of the Congo presented the lowest
levels for the whole time period (0.016 metric tons per capita in 2001). The highest GDP
per capita was observed in Algeria ($5591.2 in 2012), while the lowest levels of GDP per
capita were observed in Ethiopia ($111.93 in 2002). The highest levels of population density
were observed in Bangladesh throughout the whole time period (1239.56 people/sq.km in
2018), while the lowest levels of population density were observed in Mongolia through
the whole time period (1.54 people/sq.km in 2000).

By comparing the means, it can be observed that the highest levels of per capita
electricity production from fossil fuels, as well as from renewable sources, were found in
high income countries, while lower-middle & low income countries had significantly lower
levels. The same can be concluded regarding CO2 per capita levels: there are obvious
differences in the levels of high income, upper-middle income and lower-middle & low
income countries, with high income countries being those who pollute more. Population
density was, on average, higher in high income countries and lower in upper-middle
income countries.

5.2. Cross-Section Dependence and Unit Roots

Pesaran CD test is performed for each different data set, in order to test for cross-
section dependence. The results reject the null hypothesis in all cases and suggest the
existence of cross-section dependence (Table 6), indicating that unit root tests should be
conducted. In addition, these results suggest the use of Driscoll-Kraay standard errors in
the static regression models, in order to correct the variance-covariance matrix.



Energies 2021, 14, 1682 11 of 24

Table 6. Cross-section dependence (Pesaran CD test).

Variables High Income Upper-Middle Income Lower-Middle
& Low Income

EPFpc 23.065 ***
[0.0000]

36.613 ***
[0.0000]

31.038 ***
[0.0000]

EPRpc 5.98 ***
[0.0000]

6.94 ***
[0.0000]

6.639 ***
[0.0000]

CO2pc 40.812 ***
[0.0000]

22.051 ***
[0.0000]

54.969 ***
[0.0000]

GDPpc 118.973 ***
[0.0000]

85.592 ***
[0.0000]

102.98 ***
[0.0000]

Dens 46.212 ***
[0.0000]

35.446 ***
[0.0000]

94.99 ***
[0.0000]

Note: The null hypothesis assumes that there exists no cross-section dependence (correlation). Significance at
*** 1%.

Unit root tests are performed for each data set separately (Tables 7–9). The performed
unit root tests (Fisher-ADF and Fisher PP) indicate that the examined variables are I(1) and
evidence of stationarity exist in first differences.

Table 7. Fisher-ADF & Fisher-PP panel unit root test for high income countries.

Variables Fisher—ADF Fisher—PP Fisher—ADF Fisher—PP

Levels First Differences

EPFpc 55.3359
[0.9995]

66.67
[0.9853] EPFpc 335.237 ***

[0.0000]
871.135 ***

[0.0000]

EPRpc 40.692
[1.0000]

705398
[0.8861] EPRpc 308.303 ***

[0.0000]
1128.62 ***

[0.0000]

CO2pc 51.7633
[0.9999]

66.174
[0.9869] CO2pc 336.321 ***

[0.0000]
1207.49 ***

[0.0000]

GDPpc 74.3357
[0.9331]

40.9579
[1.0000] GDPpc 289.557 ***

[0.0000]
389.16 ***
[0.0000]

Dens 103.584
[0.2343]

79.5754
[0.8559] Dens 232.967 ***

[0.0000]
181.673 ***

[0.0000]
Note: The null hypothesis assumes that the variable contains unit root. P-values in brackets. Significance at
*** 1%.

Table 8. Fisher-ADF & Fisher-PP panel unit root test for upper-middle income countries.

Variables Fisher—ADF Fisher—PP Fisher—ADF Fisher—PP

Levels First Differences

EPFpc 46.8653
[0.9642]

66.8678
[0.4470] EPFpc 257.191 ***

[0.0000]
738.596 ***

[0.0000]

EPRpc 23.9952
[1.0000]

28.9385
[1.0000] EPRpc 273.322 ***

[0.0000]
1072.02 ***

[0.0000]

CO2pc 25.4143
[1.0000]

23.1849
[1.0000] CO2pc 231.818 ***

[0.0000]
743.485 ***

[0.0000]

GDPpc 38.4883
[0.9973]

27.3549
[1.0000] GDPpc 175.707 ***

[0.0000]
273.061 ***

[0.0000]

Dens 78.4815
[0.1397]

70.7227
[0.3230] Dens 474.520 ***

[0.0000]
229.837 ***

[0.0000]
Note: The null hypothesis assumes that the variable contains unit root. P-values in brackets. Significance at
*** 1%.
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Table 9. Fisher-ADF & Fisher-PP panel unit root test for lower-middle & low income countries.

Variables Fisher—ADF Fisher—PP Fisher—ADF Fisher—PP

Levels First Differences

EPFpc 54.6241
[0.9796]

50.7312
[0.9929] EPFpc 225.482 ***

[0.0000]
674.029 ***

[0.0000]

EPRpc 74.4705
[0.5923]

71.3106
[0.6907] EPRpc 290.486 ***

[0.0000]
1154.4 ***
[0.0000]

CO2pc 47.9935
[0.9970]

54.6955
[0.9792] CO2pc 275.946 ***

[0.0000]
1002.39 ***

[0.0000]

GDPpc 35.1546
[1.0000]

32.7017
[1.0000] GDPpc 195.040 ***

[0.0000]
546.373 ***

[0.0000]

Dens 66.5735
[0.6584]

28.7294
[1.0000] Dens 324.933 ***

[0.0000]
124.692 ***

[0.0006]
Note: The null hypothesis assumes that the variable contains unit root. P-values in brackets. Significance at
*** 1%.

5.3. Cointegration

In order to test for panel cointegration, Westerlund panel cointegration tests are
performed for each data set separately. The null hypothesis of no cointegration is rejected
from the Gt and Ga statistics in almost every case, implying cointegration for at least one
unit, as well as from the Pt and Pa statistics in almost every case, implying cointegration
for the whole panel (Tables 10–12).

Table 10. Westerlund Panel Cointegration Test for high income countries.

Equation Gt Ga Pt Pa

CO2pc = f(GDPpc) −5.665 ***
[0.000]

−21.79 ***
[0.000]

−30.947 ***
[0.000]

−21.182 ***
[0.000]

CO2pc = f(GDPpc2)
−5.681 ***

[0.000]
−24.376 ***

[0.000]
−32 ***
[0.000]

−21.387 ***
[0.000]

CO2pc = f(GDPpc3)
−5.742 ***

[0.000]
−25.911 ***

[0.000]
−33.582 ***

[0.000]
−22.771 ***

[0.000]

CO2pc = f(EPFpc) −5.913 ***
[0.000]

−21.832 ***
[0.000]

−32.825 ***
[0.000]

−17.976 ***
[0.000]

CO2pc = f(EPRpc) −5.335 ***
[0.000]

−21.844 ***
[0.000]

−35.717 ***
[0.000]

−25.058 ***
[0.000]

CO2pc = f(Dens) −6.118 ***
[0.000]

−12.374
[0.312]

−31.202 ***
[0.000]

−9.953
[0.126]

Note: The null hypothesis assumes no cointegration. Significance at *** 1%.



Energies 2021, 14, 1682 13 of 24

Table 11. Westerlund Panel Cointegration Test for upper-middle income countries.

Equation Gt Ga Pt Pa

CO2pc = f(GDPpc) −4.974 ***
[0.000]

−18.636 ***
[0.000]

−25.683 ***
[0.000]

−17.946 ***
[0.000]

CO2pc = f(GDPpc2)
−5.047 ***

[0.000]
−19.918 ***

[0.000]
−24.775 ***

[0.000]
−20.762 ***

[0.000]

CO2pc = f(GDPpc3)
−5.080 ***

[0.000]
−21.058 ***

[0.000]
−25.619 ***

[0.000]
−21.604 ***

[0.000]

CO2pc = f(EPFpc) −5.165 ***
[0.000]

−18.395 ***
[0.000]

−26.173 ***
[0.000]

−17.93 ***
[0.000]

CO2pc = f(EPRpc) −5.232 ***
[0.000]

−19.344 ***
[0.000]

−24.499 ***
[0.000]

−22.053 ***
[0.000]

CO2pc = f(Dens) −6.119 ***
[0.000]

−3.307
[0.998]

−20.493 ***
[0.000]

−3.956
[0.999]

Note: The null hypothesis assumes no cointegration. Significance at *** 1%.

Table 12. Westerlund Panel Cointegration Test for lower-middle & low income countries.

Equation Gt Ga Pt Pa

CO2pc = f(GDPpc) −4.896 ***
[0.000]

−14.962 ***
[0.002]

−28.97 ***
[0.000]

−17.059 ***
[0.000]

CO2pc = f(GDPpc2)
−5.119 ***

[0.000]
−15.827 ***

[0.000]
−28.624 ***

[0.000]
−18.073 ***

[0.000]

CO2pc = f(GDPpc3)
−5.129 ***

[0.000]
−17.464 ***

[0.000]
−28.318 ***

[0.000]
−18.782 ***

[0.000]

CO2pc = f(EPFpc) −5.117 ***
[0.000]

−17.313 ***
[0.000]

−27.646 ***
[0.000]

−17.906 ***
[0.000]

CO2pc = f(EPRpc) −4.493 ***
[0.000]

−18.4 ***
[0.000]

−26.339 ***
[0.000]

−19.398 ***
[0.000]

CO2pc = f(Dens) −6.021 ***
[0.000]

−2.731
[0.999]

−12.693
[0.710]

−3.51
[0.998]

Note: The null hypothesis assumes no cointegration. Significance at *** 1%.

5.4. Regression Results

Six different regression models are constructed, in order to examine the existence of
EKC curve and the relationships among the studied variables in different income levels.
The Hausman tests imply the use of fixed effects model specifications and columns 2, 4
and 6 present the results of FE Driscoll-Kraay standard errors, as it was indicated by the
Pesaran CD tests (Section 5.2).

The regression results for high income countries indicate that GDP per capita is a driver
of CO2 emissions per capita, by both Fixed Effects Method and GMM. An N-shaped curve
is found to connect the studied variables in the static model, confirming the hypothesis that
even higher income levels can increase environmental degradation. In the dynamic model,
an inverted U-shape relationship is found to connect GDP per capita and CO2 emissions
per capita, supporting the existance of an inverted U-shaped curve and confirming the
EKC hypothesis. The results for upper-middle income countries also confirm the EKC
hypothesis, since an inverted U-shape curve is found to connect GDP per capita and CO2
emissions per capita, in both static and dynamic models. In contrast, the EKC hypothesis
is not confirmed in lower-middle & low income countries. The static model implies a
positive monotonic relationship between GDP per capita and carbon dioxide emissions,
while the dynamic model supports the existance of a U-shape relationship between the
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two variables. Figure 6 presents graphically these relationships between GDP per capita
and CO2 emissions for all three different income levels, in both static and dynamic models.

Electricity production from fossil fuels is found to be a significant driver of CO2
emissions, in every model, both static and dynamic, and for each one of the three income
levels. Electricity production from renewable sources is found to be linked with an inverse
relationship with CO2 emissions, in the dynamic model of high income countries and
in both static and dynamic models of lower-middle and low income countries, while it
is statistically insignificant in the models of upper-middle income countries. Population
density is found to be linked with an inverse relationship with CO2 emissions, in both
static and dynamic model of upper-middle income countries, while it is a small driver in
the dynamic models of high income and lower-middle and low income countries.

The lag of the dependent variables is an autoregressive-distributed lag specification
that ends up to an AD (1,0) formulation, where insignificant variables dynamics aren’t
included. All variables are assumed to be strictly exogenous, except the lagged dependent.
Lagged variables in the dynamic models have a value less than 1 and are statistically
significant (1% level), indicating a strong conditional convergence.
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Since a lagged coefficient that equals 0 is an indication of instant adjustment, while a
lagged coefficient that equals 1 is an indication of no adjustment [80], it is observed that
the dynamic models of high income and lower-middle & low income countries present a
slower adjustment to the equilibrium values, compared to the dynamic model of upper-
middle income countries. More specifically, in the model of high income countries, the
adjustment coefficient equals to 1–0.78. Since the lag coefficients show the adjustment to
the equilibrium values, it can be seen that this adjustment equals to 22%, meaning that
22% of the discrepancy between actual and desired levels of efficiency is eliminated in
a year; therefore, more than four periods are required for this adjustment. Similarly, the
results of the lower-middle & low income countries model indicate that the adjustment
coefficient equals to 1–0.67, meaning that 33% of the discrepancy between actual and
desired levels is eliminated in a year and that approximately three periods will be required
for this adjustment. In contrast, the dynamic model for upper-middle income countries
presents an adjustment coefficient equal to 1–0.37, meaning that 63% of the discrepancy is
eliminated in a year and that less than two periods will be required for the adjustment.

Both Wald tests of joint significance and Sargan tests of over-identifying restrictions
are asymptotically distributed as χ2 variables. Parentheses in Table 13 present the de-
grees of freedom. It can be seen that Sargan statistic does not reject the hypothesis of
over-identifying restrictions and there is evidence of serially uncorrelated errors. AR(1)
and AR(2) are first and second order serial autocorrelation tests, which indicate that the
hypotheses of absence of autocorrelation is not rejected.

5.5. Granger Causality

In order to identify the relationships and the causality between the studied factors,
Granger causality was examined for each one of the three datasets. Stacked test (with
common coefficients) was chosen and 2 lags were included.

The results indicate that a bidirectional causality exists between GDP per capita
and CO2 emissions in all three different income levels, confirming the linkages that exist
between these factors. A bidirectional causality is also found between GDP per capita and
per capita electricity production from fossil fuels for high income and lower-middle & low
income countries, while in the case of upper-middle income countries, a unidirectional
causality is confirmed from electricity production from fossil fuels to GDP per capita.



Energies 2021, 14, 1682 17 of 24

Table 13. Regression results with CO2pc as dependent variable.

High Income Upper-Middle Income Lower-Middle and Low Income

FE (DK se) GMM FE (DK se) GMM FE (DK se) GMM

CO2(-1) 0.778178 ***
(806.523)[0.0000]

0.373367 ***
(28.541)
[0.0000]

0.66676 ***
(366.9915)
[0.0000]

GDPpc
0.0000818 ***

(4.17)
[0.0001]

1.78E−05 ***
(19.66458)
[0.0000]

0.0002558 ***
(12.39)

[0.0000]

0.000138 ***
(40.96653)
[0.0000]

0.0001871 ***
(2.91)

[0.009]

−0.000283 ***
(−72.10892)

[0.0000]

GDPpc2

−0.000000003
***

(−4.85)
[0.000]

−0.000000000197
***

(−19.83668)
[0.0000]

−0.0000000131
***

(−7.2)
[0.0000]

−0.00000000587
***

(−18.86284)
[0.0000]

0.0000000737
***

(77.43749)
[0.0000]

GDPpc3

0.0000000000000177
***

(3.99)
[0.001]

EPFpc
1144.766 ***

(9.48)
[0.000]

1277.639 ***
(280.942)
[0.0000]

947.1906 ***
(10.09)

[0.0000]

463.3203 ***
(25.78434)
[0.0000]

1664.963 ***
(11.37)
[0.000]

381.1654 ***
(49.16397)
[0.0000]

EPRpc
−451.2071 ***
(−41.62376)

[0.0000]

−669.3433 ***
(−3.08)
[0.006]

−153.8469 ***
(−6.690689)

[0.0000]

Dens
0.00427 ***
(133.5502)
[0.0000]

−0.0181993 ***
(−8.08)
[0.0000]

−0.018673 ***
(−12.3941)

[0.0000]

0.0000698 ***
(3.230135)
[0.0013]

within R2 0.3105 0.5794 0.2478

Hausman 13.56 ***
[0.0011]

90.33 ***
[0.0000]

4.79 *
[0.0912]

Wald test 598234.3 (5) 8420.45 (4) 35743.48 (5)

Sargan test 47.65923 (42) 28.71 (28) 31.4265 (33)

AR(1) −2.285 **
[0.0223]

−2.362 **
[0.0182]

−2.288 **
[0.0221]

AR(2) −0.7995
[0.4240]

−1.025
[0.3054]

−0.9359
[0.3493]

Shape of curve N–shape InvertedU–
shape

Inverted
U–shape

Inverted
U–shape Line U–shape

Turning points 15859.25
56497.18 45177.67 9763.36 11754.69 1919.95

Observations 893 799 627 561 741 663

Note: t-Statistics in parentheses and p-values in square brackets. Parentheses in Wald and Sargan tests indicate degrees of freedom. Critical
values for the Wald test of overall significance of the explanatory variables: χ2

0.05,5 = 11.07, χ2
0.05,4 = 9.488. Critical values for the Sargan

test for over-identifying restrictions: χ2
0.05,42 = 58.124, χ2

0.05,28 = 41.337, χ2
0.05,33 = 47.4. Significance at *** 1%, ** 5% and * 10%.

A unidirectional causality is also found from electricity production from fossil fuels to
CO2 emissions per capita, only for high income and lower-middle & low income countries,
while this relationship is not confirmed in the case of upper-middle income countries.
Instead, a causal relationship is found from CO2 emissions to electricity production from
fossil fuels for upper-middle income countries. In the case of high income countries, a
bidirectional causality is found between GDP per capita and per capita electricity produc-
tion from renewable sources, as well as between CO2 emissions and population density.
Electricity production from fossil fuels is found to Granger cause population density, in
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high income and lower-middle & low income countries. In lower-middle & low income
countries, unidirectional causal relationships are also found from per capita electricity
production from renewable sources to electricity production from fossil fuels and from
population density to electricity production from renewables and to GDP per capita as well
(Table 14).

Table 14. Granger Causality Results.

Null Hypothesis High Income Upper-Middle Income Lower-Middle and Low Income

EPRpc does not Granger Cause EPFpc 0.1435
[0.8663]

0.84386
[0.4306]

8.49424 ***
[0.0002]

EPFpc does not Granger Cause EPRpc 0.22982
[0.7947]

1.66069
[0.1909]

2.2018
[0.1114]

CO2pc does not Granger Cause EPFpc 1.14026
[0.3203]

5.78463 ***
[0.0033]

1.68477
[0.1863]

EPFpc does not Granger Cause CO2pc 6.58308 ***
[0.0015]

0.2931
[0.7461]

10.4235 ***
[0.00003]

GDPpc does not Granger Cause EPFpc 9.3199 ***
[0.0001]

0.78258
[0.4577]

4.17817 **
[0.0157]

EPFpc does not Granger Cause GDPpc 11.7925 ***
[0.000009]

5.672 ***
[0.0036]

5.40786 ***
[0.0047]

Dens does not Granger Cause EPFpc 1.90495
[0.1495]

1.58869
[0.2051]

1.27445
[0.2803]

EPFpc does not Granger Cause Dens 7.17602 ***
[0.0008]

0.51733
[0.5964]

4.85094 ***
[0.0081]

CO2pc does not Granger Cause EPRpc 0.112
[0.8941]

0.90316
[0.4059]

0.5376
[0.5844]

EPRpc does not Granger Cause CO2pc 0.17197
[0.8420]

0.39549
[0.6735]

1.11302
[0.3292]

GDPpc does not Granger Cause EPRpc 4.5241 **
[0.0111]

0.85324
[0.4266]

0.29639
[0.7436]

EPRpc does not Granger Cause GDPpc 11.4263 ***
[0.00001]

0.65071
[0.5221]

0.60933
[0.5440]

Dens does not Granger Cause EPRpc 0.00811
[0.9919]

2.22833
[0.1087]

2.52252 *
[0.0810]

EPRpc does not Granger Cause Dens 0.0213
[0.9789]

0.43188
[0.6495]

0.0277
[0.9727]

GDPpc does not Granger Cause CO2pc 5.4029 ***
[0.0047]

10.2292 ***
[0.00004]

4.74665 ***
[0.0090]

CO2pc does not Granger Cause GDPpc 3.1871 **
[0.0418]

19.8117 ***
[0.000000005]

4.78144 ***
[0.0087]

Dens does not Granger Cause CO2pc 13.151 ***
[0.000002]

0.81525
[0.4431]

0.55917
[0.5720]

CO2pc does not Granger Cause Dens 3.64024 **
[0.0267]

0.26402
[0.7681]

1.38006
[0.2523]

Dens does not Granger Cause GDPpc 0.60785
[0.5448]

1.34882
[0.2604]

5.72788 ***
[0.0034]

GDPpc does not Granger Cause Dens 1.38
[0.2522]

1.70387
[0.1829]

0.2997
[0.7411]

Observations 799 561 663

Note: t-Statistics in parentheses and p-values in square brackets. Rejection at *** 1%, ** 5% and * 10%.
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6. Discussion

The present study confirms the existence of an inversed U-shaped curve for the 47
high income countries in the dynamic model and for the 33 upper-middle income countries
in both static and dynamic quadratic model. These results suggest that environmental
degradation increases along economic growth, but after a certain income level starts
reducing. This indicates that, after reaching a certain level of growth, environmental
measures and policies are promoted and there is a higher flow of resources towards
environmental protection. At the same time, the results confirm the existence of an N-
shaped curve in the static model of high income countries, confirming the assumption
that, in high income countries, environmental degradation grows at first, as income grows,
then starts reducing, after a certain income level, but it is once again increased at higher
levels of GDP per capita [23]. Thus, it can be assumed that, in higher income levels, the
existent measures and policies that had initially assisted in improving environmental
conditions are not sufficient anymore, leading once more to an increase in environmental
degradation. In the case of lower-middle and low income countries, the EKC hypothesis is
not confirmed. The static model indicates a monotonic relationship where CO2 emissions
per capita increase as GDP per capita increases, while the dynamic model suggests the
existence of a U-shape curve, meaning that in low income levels, GDP per capita has
a negative effect on carbon dioxide emissions and it is only after a specific threshold
($1919.95 per capita) that higher GDP per capita increases CO2 emissions and leads to
environmental degradation. Thus, it can be seen that lower-middle & low income countries
have to focus on other issues and on their growth and do not have the resources to invest
in environmental protection.

The estimated turning points in the case of the static high income countries model,
compared to the maximum GDP per capita observed in the studied period for the 47 high
income countries, indicate that at least one country existed in the years 2000–2018 that
had passed the second turning point and as GDP per capita increased, environmental
degradation increased, too. The estimated turning point of the dynamic model for the
high income countries indicates, compared to the same maximum GDP per capita, that
there were countries that had passed this turning point as well and that they were in
significantly higher GDP per capita levels. In the case of upper-middle income countries,
the estimated turning points of both models indicate that there were countries that had
passed the turning points and while their GDP per capita increased, their carbon dioxide
emissions decreased. The estimated turning point of the dynamic lower-middle & low
income countries model indicates that there were countries in the period 2000–2018 that
had passed this turning point and their carbon dioxide emissions increased, as their GDP
per capita increased.

Electricity production from fossil fuels is found to be a significant driver of CO2
emissions in each one of the studied income levels, both in static and in dynamic models,
confirming once again the negative environmental results that come with the use of fossil
fuels. In addition, an inverse relationship exists between electricity production from
renewable sources and carbon dioxide emissions, confirming thus the fact that higher
percentages of electricity production covered from renewables can have a positive impact
on the environment, reducing CO2 emissions and, therefore, combating climate change.

Population density is linked with an inverse relationship with carbon dioxide emis-
sions in the upper-middle income countries model, meaning that an increase in population
density would lead to a decrease in CO2 emissions. These results are also confirmed by
various studies in the literature [81,82]. In contrast, the dynamic models of high income
countries and lower-middle and low income countries suggest that population density is a
small driver of CO2 emissions.

This study also highlights the existence of a bidirectional Granger causality between
GDP per capita and CO2 emissions, while GDP per capita Granger causes per capita
electricity production from fossil fuels in all income levels. This confirms the fact that the
use of fossil fuels for electricity can indeed lead to economic growth while, at the same
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time, higher economic growth leads to a more intense use of fossil fuels in high income
countries and lower-middle and low income levels. In addition, a unidirectional causality
exists from per capita electricity production from fossil fuels to CO2 emissions per capita in
high income levels and lower-middle and low income levels, meaning that the use of fossil
fuels leads to environmental degradation, while an increase in economic growth leads to
an increase in air pollution. Per capita electricity production from renewable sources is
found to Granger cause GDP per capita and, therefore, boost economic growth, only in
high income countries, while in upper-middle and lower-middle & low income levels, this
causality is not confirmed. This means that, in the period 2000–2018, the use of fossil fuels
for electricity production in upper-middle and lower-middle and low income countries
was necessary, in order to boost their economic growth.

The adjustment coefficients that were estimated in the GMM models indicate that 22%
of the discrepancy between actual and desired levels is eliminated in a year in high income
countries, 33% in lower-middle and low income countries and 63% in upper-middle income
countries. It is obvious that the adjustment coefficients of the quadratic and the cubic model
differ significantly. These results indicate that in low income levels, the adjustment of
efficiency is relatively slow while, as income grows, the adjustment becomes faster. In
higher income levels, the adjustment becomes slower again.

7. Conclusions and Policy Implications

The linkages between energy consumption, carbon dioxide emissions and economic
growth have been extensively studied in the literature, as well as the causality existing
among them. Especially in the case of environmental degradation and economic devel-
opment, a variety of studies have been focusing on the Environmental Kuznets Curve
hypothesis, which assumes that these two factors are linked with an inverse U-shaped
relationship, while an N-shaped relationship is assumed to exist for high income countries.

This study aims to contribute to the existing literature, by examining the causal
relationships that exist among carbon dioxide emissions, economic growth and electricity
production from fossil fuels, as well as from renewable sources, for 119 world countries,
classified based on their income levels, and for the years 2000–2018, while taking into
consideration population density as well.

The results confirm the EKC hypothesis and the existence of an inverted U-shape curve
in the dynamic model for high income countries and in both static and dynamic models
for upper-middle income countries. The static model for high income countries confirms
the N-shape curve, that is also confirmed in the literature, while the EKC hypothesis is
not confirmed for lower-middle and low income countries. These results indicate that,
lower-middle & low income countries do not have the resources required to invest in
measures and policies related to environmental protection, since they have to focus on
other issues regarding their development and growth. In contrast, upper-middle income
countries, after reaching a certain level of growth, can promote measures and invest in
environmental protection. The same is assumed for high income countries, according to
the dynamic model; the static model for high income countries suggests that after a higher
level of income, environmental degradation starts to increase again, indicating that all
strategies and measures that were undertaken, were not sufficient for high growth levels.

These results can capture the situation existing in the world for the years 2000–2018,
but the world has now entered a phase of energy transition, that includes changes in the
electricity sector, where the use of renewables is more and more promoted [83]. This energy
transition focuses on the use of new energy systems that are efficient and less harmful, but
also has to take into consideration all the costs and risks related to the economy and the
society that might result from such a transition and address them, so that this procedure
will be sustainable [84].

The 13th Sustainable Development Goal, set by the United Nations in 2015, focuses on
combating climate change, by promoting strategies and measures related to climate and by
fostering resilience and adaptability. At the same time, the 8th SDG focuses on sustainable
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economic growth and on economic growth’s disengagement from environmental degrada-
tion [85]; a relationship that was confirmed once again in this study. Even higher levels
of GDP per capita are found to lead to higher levels of environmental degradation, but
fossil fuels are considered to be essential, in order to cover current demand in electricity
production. These results indicate that actions that minimize the exploitation of natural
resources as well as the generation of pollutants and waste as GDP per capita grows and
electricity demand is satisfied are necessary, in order to achieve the goals of sustainability.

In addition, the 7th SDG aims to reinsure that everyone in the world has access to
reliable and sustainable energy sources, focusing on the reliance on clean fuels and on a
higher share of renewables in world’s final energy consumption [85]. The present study
confirms once more the effects of fossil fuels on environmental degradation and the role
of renewables on the improvement of environmental quality. At the same time, the study
confirms the role of fossil fuels in boosting economic efficiency. These results highlight
the urgent need for actions that promote energy transition and the targets of the 7th SDG,
while taking into consideration all the necessary parameters, so that efficiency and growth
are maintained.

In conclusion, the results of the present study, that highlight the relationships that
existed among electricity production, economic growth and environmental degradation
from the beginning of the 21st century, can be taken into consideration, along with the
knowledge of new technologies, in order to fully understand those linkages in different in-
come levels and undertake targeted actions that successfully promote energy transition, as
well as the goals of sustainability. Different strategies should be implemented in countries
of higher incomes, which have already achieved substantial socio-economic growth and
have the necessary resources to invest in environmental protection and energy transition,
while different measures should be implemented in lower-middle & low income countries,
which have to focus mainly on their socio-economic development. Data shows that environ-
mental degradation is caused primarily from higher incomes and the static model confirms
that even higher income levels increase carbon dioxide emissions. Therefore, high income
countries should focus on decreasing CO2 emissions and on investing in environmental
policies, while they should assist countries of lower incomes in their path of sustainable
development, as should do countries of upper-middle income. In addition, and even
though the EKC hypothesis is not confirmed for lower incomes and a positive relationship
is found between economic growth and environmental degradation, it is suggested that
lower-middle and low income countries should prioritize their socio-economic develop-
ment, but without neglecting environmental protection, as the principles of sustainable
development suggest.

Further analysis for specific countries is suggested, in order to identify with precision
the linkages that exist between economic growth and carbon dioxide emissions in every
place in the world separately, as well as more factors that have an impact on environmental
degradation, while identifying the optimal shares of renewables and fossil fuels in electricity
production. Such studies will be significantly important, in order to successfully promote
energy transition with low socioeconomic costs and global sustainability.
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23. Beşer, M.K.; Beşer, B.H. The Relationship between Energy Consumption, CO2 Emissions and GDP per Capita: A Revisit of the

Evidence from Turkey. Alphanumer. J. 2017, 5, 353–368. [CrossRef]
24. Bongers, A. The Environmental Kuznets Curve and the Energy Mix: A Structural Estimation. Energies 2020, 13, 2641. [CrossRef]
25. Shahbaz, M.; Khraief, N.; Uddin, G.S.; Ozturk, I. Environmental Kuznets curve in an open economy: A bounds testing and

causality analysis for Tunisia. Renew. Sustain. Energy Rev. 2014, 34, 325–336. [CrossRef]
26. Apergis, N.; Ozturk, I. Testing Environmental Kuznets Curve hypothesis in Asian countries. Ecol. Indic. 2015, 52, 16–22. [CrossRef]
27. Jebli, M.B.; Youssef, S.B.; Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable

energy consumption and trade in OECD countries. Ecol. Indic. 2016, 60, 824–831. [CrossRef]
28. Li, T.; Wang, Y.; Zhao, D. Environmental Kuznets Curve in China: New evidence from dynamic panel analysis. Energy Policy

2016, 91, 138–147. [CrossRef]
29. Kang, Y.-Q.; Zhao, T.; Yang, Y.-Y. Environmental Kuznets curve for CO 2 emissions in China: A spatial panel data approach. Ecol.

Indic. 2016, 63, 231–239. [CrossRef]
30. Dong, K.; Sun, R.; Hochman, G. Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical

evidence from a panel of BRICS countries. Energy 2017, 141, 1466–1478. [CrossRef]
31. Al-Mulali, U.; Saboori, B.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy 2015,

76, 123–131. [CrossRef]

http://doi.org/10.1016/j.enpol.2012.10.046
http://doi.org/10.1016/j.enpol.2011.06.011
https://www.epa.gov/ghgemissions/overview-greenhouse-gases
https://www.epa.gov/ghgemissions/overview-greenhouse-gases
http://doi.org/10.1016/j.apenergy.2014.12.006
https://data.worldbank.org/indicator/EN.ATM.CO2E.KT
https://data.worldbank.org/indicator/EN.ATM.CO2E.KT
https://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE
https://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE
http://doi.org/10.1016/j.tibtech.2014.01.004
http://doi.org/10.1016/j.energy.2010.08.004
http://doi.org/10.1016/j.renene.2018.02.135
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/SP.POP.TOTL
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
https://www.iea.org
https://www.iea.org
https://www.iea.org
https://www.iea.org
https://www.iea.org
https://data.worldbank.org/indicator/AG.LND.FRST.K2
https://data.worldbank.org/indicator/AG.LND.FRST.K2
http://doi.org/10.1016/j.ecolecon.2004.02.011
http://doi.org/10.3390/en12061076
http://doi.org/10.17093/alphanumeric.353957
http://doi.org/10.3390/en13102641
http://doi.org/10.1016/j.rser.2014.03.022
http://doi.org/10.1016/j.ecolind.2014.11.026
http://doi.org/10.1016/j.ecolind.2015.08.031
http://doi.org/10.1016/j.enpol.2016.01.002
http://doi.org/10.1016/j.ecolind.2015.12.011
http://doi.org/10.1016/j.energy.2017.11.092
http://doi.org/10.1016/j.enpol.2014.11.019


Energies 2021, 14, 1682 23 of 24

32. Ozturk, I.; Al-Mulali, U. Investigating the validity of the environmental Kuznets curve hypothesis in Cambodia. Ecol. Indic. 2015,
57, 324–330. [CrossRef]

33. Abdallh, A.A.; Abugamos, H. A semi-parametric panel data analysis on the urbanization—Carbon emissions nexus for the
MENA countries. Renew. Sustain. Energy Rev. 2017, 78, 1350–1356. [CrossRef]

34. Özokcu, S.; Özdemir, Ö. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72,
639–647. [CrossRef]

35. Mehrara, M. Energy consumption and economic growth: The case of oil exporting countries. Energy Policy 2007, 35, 2939–2945.
[CrossRef]

36. Narayan, P.K.; Smyth, R. Energy consumption and real GDP in G7 countries: New evidence from panel cointegration with
structural breaks. Energy Econ. 2008, 30, 2331–2341. [CrossRef]

37. Apergis, N.; Payne, J.E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy
Policy 2010, 38, 656–660. [CrossRef]

38. Ozturk, I.; Aslan, A.; Kalyoncu, H. Energy consumption and economic growth relationship: Evidence from panel data for low
and middle income countries. Energy Policy 2010, 38, 4422–4428. [CrossRef]

39. Apergis, N.; Payne, J.E. The renewable energy consumption—Growth nexus in Central America. Appl. Energy 2011, 88, 343–347.
[CrossRef]

40. Wang, S.; Zhou, D.; Zhou, P.; Wang, Q. CO2 emissions, energy consumption and economic growth in China: A panel data analysis.
Energy Policy 2011, 39, 4870–4875. [CrossRef]

41. Lu, W.-C. Renewable energy, carbon emissions, and economic growth in 24 Asian countries: Evidence from panel cointegration
analysis. Environ. Sci. Pollut. Res. 2017, 24, 26006–26015. [CrossRef]

42. Lin, B.; Moubarak, M. Renewable energy consumption—Economic growth nexus for China. Renew. Sustain. Energy Rev. 2014, 40,
111–117. [CrossRef]

43. Pao, H.-T.; Tsai, C.-M. Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil. Energy
2011, 36, 2450–2458. [CrossRef]

44. Pao, H.-T.; Yu, H.-C.; Yang, Y.-H. Modeling the CO2 emissions, energy use, and economic growth in Russia. Energy 2011, 36,
5094–5100. [CrossRef]

45. Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62,
482–489. [CrossRef]

46. Acaravci, A.; Ozturk, I. On the relationship between energy consumption, CO2 emissions and economic growth in Europe. Energy
2010, 35, 5412–5420. [CrossRef]

47. Pirlogea, C.; Cicea, C. Econometric perspective of the energy consumption and economic growth relation in European Union.
Renew. Sustain. Energy Rev. 2012, 16, 5718–5726. [CrossRef]

48. Kasman, A.; Duman, Y.S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and
candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [CrossRef]

49. Alper, A.; Oguz, O. The role of renewable energy consumption in economic growth: Evidence from asymmetric causality. Renew.
Sustain. Energy Rev. 2016, 60, 953–959. [CrossRef]

50. Pablo-Romero, M.D.P.; Sánchez-Braza, A. Residential energy environmental Kuznets curve in the EU–28. Energy 2017, 125, 44–54.
[CrossRef]

51. Hundie, S.K.; Daksa, M.D. Does energy-environmental Kuznets curve hold for Ethiopia? The relationship between energy
intensity and economic growth. J. Econ. Struct. 2019, 8, 21. [CrossRef]

52. Aruga, K. Investigating the Energy-Environmental Kuznets Curve Hypothesis for the Asia-Pacific Region. Sustain. J. Rec. 2019,
11, 2395. [CrossRef]

53. Luzzati, T.; Orsini, M. Investigating the energy-environmental Kuznets curve. Energy 2009, 34, 291–300. [CrossRef]
54. Abdou, D.M.S.; Atya, E.M. Investigating the energy-environmental Kuznets curve: Evidence from Egypt. Int. J. Green Econ. 2013,

7, 103. [CrossRef]
55. Pablo-Romero, M.D.P.; De Jesús, J. Economic growth and energy consumption: The energy-environmental Kuznets curve for

Latin America and the Caribbean. Renew. Sustain. Energy Rev. 2016, 60, 1343–1350. [CrossRef]
56. Asumadu-Sarkodie, S.; Owusu, P.A. The relationship between carbon dioxide emissions, electricity production and consumption

in Ghana. Energy Sources Econ. Plan. Policy 2017, 24, 1–12. [CrossRef]
57. Mohiuddin, O.; Asumadu-Sarkodie, S.; Obaidullah, M. The relationship between carbon dioxide emissions, energy consumption,

and GDP: A recent evidence from Pakistan. Cogent Eng. 2016, 3, 1210491. [CrossRef]
58. Bento, J.P.C.; Moutinho, V. CO2 emissions, non-renewable and renewable electricity production, economic growth, and interna-

tional trade in Italy. Renew. Sustain. Energy Rev. 2016, 55, 142–155. [CrossRef]
59. Al-Mulali, U.; Weng-Wai, C.; Sheau-Ting, L.; Mohammed, A.H. Investigating the environmental Kuznets curve (EKC) hypothesis

by utilizing the ecological footprint as an indicator of environmental degradation. Ecol. Indic. 2015, 48, 315–323. [CrossRef]
60. Ulucak, R.; Bilgili, F. A reinvestigation of EKC model by ecological footprint measurement for high, middle and low income

countries. J. Clean. Prod. 2018, 188, 144–157. [CrossRef]

http://doi.org/10.1016/j.ecolind.2015.05.018
http://doi.org/10.1016/j.rser.2017.05.006
http://doi.org/10.1016/j.rser.2017.01.059
http://doi.org/10.1016/j.enpol.2006.10.018
http://doi.org/10.1016/j.eneco.2007.10.006
http://doi.org/10.1016/j.enpol.2009.09.002
http://doi.org/10.1016/j.enpol.2010.03.071
http://doi.org/10.1016/j.apenergy.2010.07.013
http://doi.org/10.1016/j.enpol.2011.06.032
http://doi.org/10.1007/s11356-017-0259-9
http://doi.org/10.1016/j.rser.2014.07.128
http://doi.org/10.1016/j.energy.2011.01.032
http://doi.org/10.1016/j.energy.2011.06.004
http://doi.org/10.1016/j.ecolecon.2006.07.009
http://doi.org/10.1016/j.energy.2010.07.009
http://doi.org/10.1016/j.rser.2012.06.010
http://doi.org/10.1016/j.econmod.2014.10.022
http://doi.org/10.1016/j.rser.2016.01.123
http://doi.org/10.1016/j.energy.2017.02.091
http://doi.org/10.1186/s40008-019-0154-2
http://doi.org/10.3390/su11082395
http://doi.org/10.1016/j.energy.2008.07.006
http://doi.org/10.1504/IJGE.2013.057436
http://doi.org/10.1016/j.rser.2016.03.029
http://doi.org/10.1080/15567249.2016.1227885
http://doi.org/10.1080/23311916.2016.1210491
http://doi.org/10.1016/j.rser.2015.10.151
http://doi.org/10.1016/j.ecolind.2014.08.029
http://doi.org/10.1016/j.jclepro.2018.03.191


Energies 2021, 14, 1682 24 of 24

61. Serajuddin, U.; Hamadeh, N. New World Bank Country Classifications by Income Level: 2020–2021. World Bank Blogs. Available
online: https://blogs.worldbank.org/opendata/new-world-bank-country-classifications-income-level-2020-2021# (accessed
on 11 February 2021).

62. IEA. Total Production. Electricity. Data and Statistics. Available online: https://www.iea.org (accessed on 11 February 2021).
63. World Bank. Electricity Production from Oil, Gas and Coal Sources (% of Total). The World Bank Data. Available online:

https://data.worldbank.org/indicator/EG.ELC.FOSL.ZS (accessed on 11 February 2021).
64. World Bank. Electricity Production from Renewable Sources, Excluding Hydroelectric (% of Total). The World Bank Data.

Available online: https://data.worldbank.org/indicator/EG.ELC.RNWX.ZS (accessed on 11 February 2021).
65. World Bank. Electricity Production from Hydroelectric Sources (% of Total). The World Bank Data. Available online: https:

//data.worldbank.org/indicator/EG.ELC.HYRO.ZS (accessed on 11 February 2021).
66. World Bank. CO2 Emissions (Metric Tons per Capita). The World Bank Data. Available online: https://data.worldbank.org/

indicator/EN.ATM.CO2E.PC (accessed on 11 February 2021).
67. World Bank. Population Density (People per sq. km of Land Area). The World Bank Data. Available online: https://data.

worldbank.org/indicator/EN.POP.DNST (accessed on 11 February 2021).
68. Halkos, G.E. Environmental Kuznets Curve for sulfur: Evidence using GMM estimation and random coefficient panel data

models. Environ. Dev. Econ. 2003, 8, 581–601. [CrossRef]
69. Halkos, G.; Petrou, K.N. The relationship between MSW and education: WKC evidence from 25 OECD countries. Waste Manag.

2020, 114, 240–252. [CrossRef]
70. Pedroni, P. Fully Modified OLS for Heterogeneous Cointegrated Panels. In Nonstationary Panels, Panel Cointegration, and Dynamic

Panels (Advances in Econometrics); Elsevier: Amsterdam, The Netherlands, 2004; pp. 93–130.
71. Revathy, A.; Paramasivam, P. Study on Panel Co-integration, Regression and Causality Analysis in Papaya Markets of India. Int.

J. Curr. Microbiol. Appl. Sci. 2018, 7, 40–49. [CrossRef]
72. Hall, A.R. Generalized Method of Moments; Oxford University Press: Oxford, UK, 2005.
73. Hall, A.R. Generalized Method of Moments. In Handbook of Research Methods and Applications in Empirical Macroeconomics; Edward

Elgar Publishing: Cheltenham, UK, 2013.
74. Yin, G. Bayesian generalized method of moments. Bayesian Anal. 2009, 4, 191–207. [CrossRef]
75. Ahmad, M.; Khan, R.E.A. Does Demographic Transition with Human Capital Dynamics Matter for Economic Growth? A

Dynamic Panel Data Approach to GMM. Soc. Indic. Res. 2018, 142, 753–772. [CrossRef]
76. Ullah, S.; Akhtar, P.; Zaefarian, G. Dealing with endogeneity bias: The generalized method of moments (GMM) for panel data.

Ind. Mark. Manag. 2018, 71, 69–78. [CrossRef]
77. Liu, Y.; Hao, Y. The dynamic links between CO2 emissions, energy consumption and economic development in the countries

along “the Belt and Road”. Sci. Total Environ. 2018, 645, 674–683. [CrossRef] [PubMed]
78. Harris, R.; Sollis, R. Applied Time Series Modelling and Forecasting; Wiley: Hoboken, NJ, USA, 2003.
79. Arellano, M.M.; Bond, S. Dynamic Panel Data Estimation Using DPD—A Guide for Users; Working Paper Series; Institute for Fiscal

Studies: London, UK, 1988.
80. Mocking, R.; Steegmans, J. Capital Structure Determinants and Adjustment Speed: An Empirical Analysis of Dutch SMEs; No. 357. rdf;

CPB Netherlands Bureau for Economic Policy Analysis: Hague, The Netherlands, 2017.
81. Ribeiro, H.V.; Rybski, D.; Kropp, J.P. Effects of changing population or density on urban carbon dioxide emissions. Nat. Commun.

2019, 10, 1–9. [CrossRef]
82. Gudipudi, R.; Fluschnik, T.; Ros, A.G.C.; Walther, C.; Kropp, J.P. City density and CO2 efficiency. Energy Policy 2016, 91, 352–361.

[CrossRef]
83. Markard, J. The next phase of the energy transition and its implications for research and policy. Nat. Energy 2018, 3, 628–633.

[CrossRef]
84. Sareen, S.; Haarstad, H. Bridging socio-technical and justice aspects of sustainable energy transitions. Appl. Energy 2018, 228,

624–632. [CrossRef]
85. Sustainable Development Goals—SDGs—The United Nations. The 17 Goals. Available online: https://sdgs.un.org/goals

(accessed on 20 January 2020).

https://blogs.worldbank.org/opendata/new-world-bank-country-classifications-income-level-2020-2021#
https://www.iea.org
https://data.worldbank.org/indicator/EG.ELC.FOSL.ZS
https://data.worldbank.org/indicator/EG.ELC.RNWX.ZS
https://data.worldbank.org/indicator/EG.ELC.HYRO.ZS
https://data.worldbank.org/indicator/EG.ELC.HYRO.ZS
https://data.worldbank.org/indicator/EN.ATM.CO2E.PC
https://data.worldbank.org/indicator/EN.ATM.CO2E.PC
https://data.worldbank.org/indicator/EN.POP.DNST
https://data.worldbank.org/indicator/EN.POP.DNST
http://doi.org/10.1017/S1355770X0300317
http://doi.org/10.1016/j.wasman.2020.06.044
http://doi.org/10.20546/ijcmas.2018.701.006
http://doi.org/10.1214/09-BA407
http://doi.org/10.1007/s11205-018-1928-x
http://doi.org/10.1016/j.indmarman.2017.11.010
http://doi.org/10.1016/j.scitotenv.2018.07.062
http://www.ncbi.nlm.nih.gov/pubmed/30031325
http://doi.org/10.1038/s41467-019-11184-y
http://doi.org/10.1016/j.enpol.2016.01.015
http://doi.org/10.1038/s41560-018-0171-7
http://doi.org/10.1016/j.apenergy.2018.06.104
https://sdgs.un.org/goals

	Introduction 
	Recent World Data 
	Literature Review 
	Materials and Methods 
	Data 
	Econometric Methodology 

	Results 
	Descriptive Statistical Analysis 
	Cross-Section Dependence and Unit Roots 
	Cointegration 
	Regression Results 
	Granger Causality 

	Discussion 
	Conclusions and Policy Implications 
	References

