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Abstract: This paper contains studies of daily energy production forecasting methods for photovoltaic
solar panels (PV panel) by using mathematical methods and fuzzy logic models. Mathematical
models are based on analytic equations that bind PV panel power with temperature and solar
radiation. In models based on fuzzy logic, we use Adaptive-network-based Fuzzy Inference Systems
(ANFIS) and the zero-order Takagi-Sugeno model (TS) with specially selected linear and non-linear
membership functions. The use of mentioned membership functions causes that the TS system is
equivalent to a polynomial and its properties can be compared to other analytical models of PV
panels found in the literature. The developed models are based on data from a real system. The
accuracy of developed prognostic models is compared, and a prototype software implementing the
best-performing models is presented. The software is written for a generic programmable logic
controller (PLC) compliant to the IEC 61131-3 standard.

Keywords: forecasting; solar PV system; fuzzy rules; ANFIS; mathematical models

1. Introduction

The basis for being on the electricity market is forecasting generation and demand
for electricity. Power generators and distributors use short-term forecasting most often.
The main problem of energy producers are external factors that affect the production level;
in other words, weather conditions [1,2]. In case of producers that sell energy on energy
exchanges, the use of a forecast with a high error may result in financial losses. The reason
for these losses is an inappropriate evaluation of energy supply and presenting an offer
with a price significantly deviated from the market price. However, accurate forecasts
reduce costs and increase profits, thanks to improving the efficiency of the procurement
process and energy distribution [3,4]. The choice of prognostic methods may depend on
the scope of information. There are many forecasting methods, and some of them are used
in power engineering.

Generally, the methods of power forecasting in solar systems can be divided into
physical, statistical, artificial intelligence and others. Some statistical methods in prediction
can be found in [2,5]. The comparison of the physical model with the multilayer perceptron
neural network (MLP NN) model for power predictions is presented in [6]. Among others
artificial intelligence methods, MLP neural networks [1,2,6,7], radial basis function neural
networks (RBF NN) [8], physical hybrid artificial neural networks [9], recurrent neural
networks [8] and deep neural networks [10] are used to predict the power and energy of
photovoltaic sources.

A large part of the developed methods has some disadvantages, such as a relatively
large average accuracy error and the dependence of a specific photovoltaic system design on
the geographical location. In order to increase quality of forecasting power, some authors
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have developed hybrid models [11,12] and applied various methods of optimization
of model parameters calculation [13] or used methods for input data imputation [14].
Implementation of the mentioned methods requires devices with high computing power
and the use of specialized software libraries. This may lead to the limitation of technology to
the area of computing centers and a lack of possibility to deploy the technology on platforms
commonly used in the industry, such as programmable logic controller (PLC) devices.

The goal of the paper is to evaluate fuzzy logic-based analytical models applied to
forecast daily energy generation by an installation of PV panels and compare these models
to an ANFIS system and to analytical models taken from the literature. The purpose of
the research is the following. The market forces green energy producers to have models
for energy production forecasting. In order to improve the accuracy of these models, local
climate conditions should be taken into account. The existence of these conditions has
impact on the precision of models. Having set up a PV panel site, it is recommended
to conduct measurements in order to obtain data required for building a model of the
site. Several examples of fuzzy logic applications in power engineering are control of a
battery energy storage system [15], energy management in a DC microgrid [16], design
of a voltage source inverter [17] and control of grid-connected inverters [18]. Experience
from these areas points to the fact that the quality of fuzzy logic-based models is better
or comparable to systems designed by applying other methods. An advantage of fuzzy
models is their rule-based form, which is easy to understand for a human. However, this
implies that in order to examine properties of the system, oftentimes, simulations must
be performed because of absence of analytical methods. Model-free and heuristic design
methods, deficit in analytical tools, can be a reason that the fuzzy logic is not preferred
solution in a given domain [19]. Authors of this paper focused on models that are based on
the zero-order Takagi-Sugeno fuzzy inference system with special kinds of fuzzy sets, as
described in the thesis [20]. This approach allows to express fuzzy rules as polynomials,
compare models designed as a set of fuzzy rules with mathematical models and utilize
analytical methods to examine features of the system. A practical application of the theory
described previously [20] is presented in [21,22] for an attitude control system and a
mechanical vibration limiting system. In one paper [23], it was shown that fuzzy models
obtained by the use of methods from [20] can be efficiently implemented in hardware
field-programmable gate array devices (FPGA).

The novelty of this work is an application of analytical methods in fuzzy modeling
from [20] in the area of power engineering. The paper shows that using the presented
techniques, we can obtain a high-quality fuzzy logic-based model for predicting daily
energy production by a PV panel. Because the model is identical with a polynomial
function, its characteristics can be studied with the use of formal methods.

We also show an exemplary implementation of our achievements. Commercial prod-
ucts utilizing fuzzy logic are considered to be innovative. The result of our research can
be a base to develop a novel device that can be deployed as a data processing node at the
layer 2 in the edge computing architecture of a Smart Energy System [24]. The hardware
platform for the device can be a standard general-purpose PLC unit. The program, which
implements fuzzy logic systems, neither requires high computing power nor non-standard
software components.

2. Methods for Predicting the Power and Energy of Photovoltaic Panels
2.1. Description of the PV System

The research was carried out on the basis of a photovoltaic panel system. The PV
system is composed of three modules (monocrystalline type), connected to the Soladin
600 solar inverter. Photovoltaic panels are positioned at 30 degrees to the horizon and are
directed to the South. The total installation power is 330 [Wp]. The PV system works in
Rzeszów (geographical location 50◦02′ N 22◦17′ E).

The photovoltaic measurement system included measurement of voltage and DC
current in front of the inverter, voltage, AC current, power and frequency at the inverter
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output. At the same time, measurements of solar radiation in the plane of PV panels were
made using a pyranometer. All parameters were measured on a current basis; however,
their average values were recorded every minute in the database. The measurement
data taken in the time interval from November to October of the next year were used for
the research.

In our research, two measured factors were used in the PV system: the daily value of
insolation and the total value of DC energy generated during the day, calculated per 1 [m2]
of the active area of photovoltaic panels. In addition, measurements of the daily maximum
temperature in the analyzed period came from a meteorological station in the system’s
work place. Therefore, the forecasts of the daily energy produced in a PV system will be
generated on the basis of two factors, i.e., air temperature and daily insolation. Developed
forecasting models generate forecasts in the perspective of one day.

The total set of measurement data consisting of 347 samples (days) was divided into a
training set (174 samples) and a test set (173 samples). This manner of division allowed
to achieve even coverage of the measurement space with test and learning points. The
algorithm for creating the learning set was as follows:

Let MST = (mST1, mST2, . . . , mSTn) be a sequence of measurements ordered by ascend-
ing temperature: mSTi is a tuple <t, g>, where t is the value of temperature and g is the
value of insolation; ∀i = 1, 2, . . . , n − 1: mSTi·t ≤mSTi + 1·t ∧mSTi·g ≤mSTi + 1·g.

Let MSG = (mSG1, mSG2, mSGn) be a sequence similar to the mentioned before, but
ordered by ascending insolation: ∀i = 1, 2, . . . , n: mSGi·g ≤mSGi + 1·g.

The learning set is defined as ML = MLT ∪MLG, where MLT and MLG are given by (1)
and (2):

MLT = {mSTi ∈MST|∀i = 1, 2, . . . , n − 1: mSTi·t 6= mSTi + 1·t}, (1)

MLG = {mSGi ∈MSG|∀i = 1, 2, . . . , n − 1: INT(mSGi·g/50) 6= INT(mSGi + 1·g/50)}. (2)

The test set is defined as MT = MST/ML.
Based on the training set the parameters of the forecasting models were determined

and the test set was used to verify these models.
Figure 1 presents the distribution of measure points in space of air temperature (T) and

insolation (G). Figure 2 presents the distribution of measurements in the air temperature set
(T) and Figure 3 shows the distribution of measurements in the set of daily insolation (G).
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Figures 1–3 allow to visually evaluate the quality of input data. From Figure 1, we can
say that elements of learning and test sets are distributed quite uniformly over the space of
measurements. Two remaining charts show values of temperature and insolation typical
for the temperate climate area where the city of Rzeszów lies. Short winder days, cloudy
spring and autumn are the reason for many measurements with low values of insolation
and values of temperature around 8 ◦C.

2.2. Mathematical Modes of the Power Production of Photovoltaic Panels

In the literature [25,26], several models of estimation of daily power production by a
solar panel operating in Maximum power point tracking (MPPT) conditions are presented.
One paper [25] proposes the equation:

Pmax1 =
(
a′·G + b′

)
·Tj + c′·G + d′, (3)

where: a′, b′, c′ and d′ are constants. Another model for determining the power of a PV
panel is presented by the following formula [26]:

Pmax2 = p ·
(

q · Gn

G0
+

(
Gn

G0

)m)
·
(

1 + r ·
Tj

Tjre f
+ s · AM

AM0
+

(
AM
AM0

)u
)
· A · G, (4)
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where G is the insolation in the plane of the PV panel, Gn is the insolation on the surface of
the Earth in the horizontal plane, G0 is the standard insolation 1000 (Wh/m2), T is the air
temperature, Tj is the temperature of the PV panel, Tjref is the reference temperature of the
PV panel and Tjref = 25 (◦C), AM is the air mass ratio, AM0 is the air mass ratio for the Sun
at the zenith, AM0 = 1.5, A is the active surface of the panel and p, q, m and u are constants.

The following dependence allows replacing the solar insolation Gn with solar radiation
G. We consider the average daily parameter measurements and assume that AM has a
constant value for one daily measurement, depending on the calendar day. Because
the G values are measured, the daily change of the AM parameter is included in the G
measurement. With these assumptions, (2) takes the form:

Pmax2 = c′1·G2·Tj + c′2·G2 + c′3·Gc′5 ·Tj + c′3·Gc′5 , (5)

where c′1, c′2, c′3, c′4 and c′5 are constants.
In [18], the value of c’5 ∈ (1.0618, 1.6601) was determined, depending on the panel

manufacturer. In Equations (3)–(5), there is the parameter Tj—the panel temperature.
The authors made air temperature measurements. In [27], it was shown that there is the
following relationship between the air temperature and the panel temperature:

Tj = t + h·G, (6)

where h is a constant and t is the air temperature. Considering the above, Equation (3)
takes the form:

Pmax1 = a·G2 + b·G·t + c·G + d·t + e (7)

and (5) can be simplified to the following formula:

Pmax2 = c1·G3+ c2·G2 + c3·G2·t + c4·t + c5·G + c6, (8)

where: a, b, c, d and e and c1, c2, c3, c4, c5 and c6 are constants.
A higher degree of polynomial approximating power in relation to (5) results from

the fact that (8) takes into account the dependence of photovoltaic panel efficiency on
insolation. This phenomenon was not modeled in (5).

The measurements contain the total energy produced by one square meter of the PV
panel surface during the period of 24 h, e.g., E = P × t, where P is the power of the PV
panel operating under the MPPT condition, time t = const = 24 h.

Taking the above into account, we obtain energy E = k×P. If we use Matlab to find
the constant coefficients of the polynomial equation of the power output of a PV panel,
we have:

E = k·P = k·(c1·G3+ c2·G2+ c3·G2·t+ c4·t + c5·G + c6). (9)

The value of the constant k will be included in the calculated coefficients c1, . . . , c6.
The presented analysis allows to use measured energy E instead of power in the process of
calculation constants c1, . . . , c6.

In order to interpolate the measurement results with (7) and (8), the following parame-
ters were determined: a, b, c, d, e, c1, . . . , c6, h using Matlab’s lsqcurvefit function [28]. The
interpolation method with minimization of mean square error was applied, as shown in
Algorithm 1. Tables 1 and 2 contain the calculated values of parameters.
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Algorithm 1 A Matlab program for computing coefficients of the Equation (5).

1: fileID = fopen(’measurements.csv’,’r’);
2: formatSpec = ’%d %f %f’; sizeA = [3 Inf];
3: test = fscanf(fileID,formatSpec,sizeA); test = test’;
4: fclose(fileID);
5: x1 = test(:,1); x2 = test(:,2); y = test(:,3); x = [x1 x2];
6: p = [1, 1, 1, 1, 1];
7: f = @(p,x) p(1) * x(:,2).ˆ2 + p(2).*x(:,1).*x(:,2) + ...
8: p(3) * x(:,2) + p(4) * x(:,1) + p(5);
9: abcde = lsqcurvefit(f,p,x,y)

Table 1. Values of the parameters of Equation (7), calculated from the training data set.

Parameter A b c d e

Value 1.99 × 10−6 −7.02 × 10−4 0.120 0.301 −17.06

Table 2. Values of the parameters of Equation (8), calculated from the training data set.

Parameter c1 c2 c3 c4 c5 c6

Value 3.82 ×
10−10

−5.15 ×
10−6

−8.85 ×
10−8 −0.719 0.125 −14.83

2.3. Adaptive Network-Based Fuzzy Inference System ANFIS

In this section, the goal is to design a fuzzy application system that predicts the total
daily production of electricity by the solar panel, based on insolation and air temperature.

The structure of the forecasting system was obtained using a classic engineering
approach. The optimal values of the fuzzy system parameters were determined by Matlab
software. The components of the system are presented in Figure 4.
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Based on the models presented in Section 2.2 and in accordance with the principles given
in [29], let us introduce the following linguistic variables: temperature t, insolation g and
power P. Let us define the following sets of linguistic values for the introduced variables:

t ∈ {low, medium, high}, (10)

g ∈ {low, medium, high}, (11)

P ∈ {low1, low4, low7, medium2, medium3, medium5, medium8, high6, high9}. (12)

For the given values of the linguistic variables, we specify the triangular fuzzy sets, as
shown in Figure 4. We do not specify sets for the variable P, because they will be determined
automatically. Membership functions for the linguistic values are given by the following
equations (where the symbols ∧ and ∨mean the minimum and maximum, respectively):

µtemp_low = 0 ∨ 13−t
18 ,

µtemp_medium = 0 ∨
(

t+5
18 ∧

31−t
18

)
,

µtemp_high = 0 ∨ t−13
18

(13)

and
µinsol_low = 0 ∨ 4329−g

4329−102.6 ,

µinsol_medium = 0 ∨
(

g−102.6
4329−102.6 ∧

8371−g
8371−4329

)
,

µinsol_high = 0 ∨ g−4329
8371−4329 .

(14)

Numerical constants that appear in (13) and (14) are taken from the measurements
data and depend on minimal and maximal values of temperature and insolation. Ranges
for t and g are as follows: t ∈ (−5; 31), g ∈ (102.6; 8371). Figure 5 shows the chart of
functions given by (13); the chart of functions (14) looks similar.
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Taking into account the power models from Section 2.2 and the values of variables t
and g, nine rules can be formulated to determine the power produced by the panel.

P
Temperature t

Low Medium High

insolation g

low low1 low4 low7

medium medium2 medium5 medium8

high medium3 high6 high9
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Applying the algorithm described in [30] and the Matlab software for the training
data, numerical values for elements of the P set were obtained, as shown in the Table 3.

Table 3. Computed linguistic values of P based on the training data set.

Name Value Name Value

Low 1 −2.801 Medium 5 410.3
Low 4 0.921 Medium 8 369.9
Low 7 26.29 High 6 785.4

Medium 2 474.6 High 9 685.2
Medium 3 433.0

2.4. Rule Based System with Linear Membership Functions

Equations (15)–(18) and the chart form the Figure 6 are citations from [20]. We place
them here so that the reader can understand the method without the need for checking other
publications. Similarly to Section 2.3, let us introduce the following linguistic variables:
temperature t ∈ {low, low}, insolationg ∈ {low, low} and power P = {p1, p2, p3, p4}. Let us
assume that the temperature and irradiation are bounded: t ∈ (−αt, βt), g ∈ (−αg, βg). For
the given values of linguistic variables, let us define fuzzy sets shown below:

µlow(t) =
βt − t

αt + βt
, (15)

µlow(t) = 1− µlow(t), (16)

µlow(g) =
βg − g

αg + βg
, (17)

µlow(g) = 1− µlow(g). (18)
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Figure 6 shows the charts of the membership functions µlow(t) and µlow(t). The values
of the variable P will be real numbers. In [20], it is shown that with expressed conditions
the zero-order Takagi-Sugeno system described by the following rules:

IF t is low AND g is low THEN P = p1,
IF t is low AND g is low THEN P = p2,
IF t is low AND g is low THEN P = p3,
IF t is low AND g is low THEN P = p4,

is equivalent to the following equation:

TS(t, g) = a·g·t + b·t + c·g + d. (19)

Equations (3) and (19) define the same polynomial: they have a degree of 1 and
both are functions of temperature and insolation. Therefore, the system can be modeled
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by (19) only when on the input there is given the temperature of the PV panel, not the
air temperature.

2.5. Rule Based System—Nonlinear Membership Functions

As in Section 2.4, we cite Equation (20) and the chart from the Figure 7 from the
work [20], where it was shown that using a certain class of nonlinear membership functions,
it is possible to present a zero-order Takagi-Sugeno system as the scalar product of two
matrices. Let us assume the following denotes:

Temperature, t ∈ {low, medium, high}
Insolation, g ∈ {low, medium, high}
Power, P ∈ {p1, p2, . . . , p9}
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Suppose that temperature t ∈ (−αt, βt) and insolation g ∈ (−αg, βg), i.e., the values of
temperature and solar radiation are limited to a certain range. For given values of linguistic
variables, let us define fuzzy sets as follows:

µlow(t) =
(αt+βt−λ·(t+αt))·(βt−t)

(αt+βt)
2 ,

µmedium(t) = 2·λ (t+αt)·(βt−t)
(αt+βt)

2 ,

µhigh(t) =
(αt+βt+λ·(t−βt))·(t+αt)

(αt+βt)
2 ,

(20)

where parameter λ satisfies the condition 0 < λ ≤ 1. In the further part of the discussion,
we will assume that λ = 1. The chart of the membership functions µlow(t), µmedium(t) and
µhigh(t) for the parameter λ = 1 is shown in Figure 7.

In [20], it was shown that with the given assumptions, the zero-order Takagi-Sugeno
system described by the rules:

IF t is low AND g is low THEN P = p1,
IF t is medium AND g is low THEN P = p2,
IF t is high AND g is low THEN P = p3,
IF t is low AND g is medium THEN P = p4,
IF t is medium AND g is medium THEN P = p5,
. . .

IF t is high AND g is high THEN P = p9,

is equivalent to the following equation:
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TS(t, g) = n1 · t2 · g2 + n2 · t2 · g + n3 · t2 + n4 · t · g2 + n5 · t · g + n6 ·t + n7 · g2 + n8 ·g + n9, (21)

where: n1, . . . , n9 are constant parameters. The Formula (21) is a generalization of polyno-
mials (3), (7) and (8), so the system is able to model the daily production of energy with
both air temperature and the panel temperature.

Using the test data file and the Matlab program similar to the one showed on the
Algorithm 1, parameters of Equation (21) were computed. Table 4 contains obtained values.

Table 4. Parameters of Equation (18) calculated from the training data set.

Parameter n1 n2 n3 n4 n5 n6 n7 n8 n9

Value 1.94 × 10−9 −2.87 ×
10−5 2.07 × 10−2 1.03 × 10−8 −1.36 ×

10−4
−1.87 ×

10−1
−3.27 ×

10−6 1.23 × 10−1 −18.55

3. Results

This section presents the results of energy forecasting for developed models. The
accuracy of the models was estimated on the bases of various forecast error measures.

3.1. Measures for Estimating Forecast Errors

In the literature on the problem of forecasting energy, the accuracy of prognostic
models is determined by means of various measures. This often makes it difficult to
compare the results of different authors and their prognostic methods. Therefore, it
is advisable to present the obtained results in the form of standardized measures for
calculating forecast errors. Thus, the accuracy of the models developed by us will be
presented by using the error measures described below.

Mean error (ME):

ME =
1
N

N

∑
i=1

ei (22)

Mean Absolute Error (MEA):

MAE =
1
N

N

∑
i=1
|ei|. (23)

Mean Absolute Percentage Error (MAPE):

MAPE =
1
N

N

∑
i=1

∣∣∣Ep
i − Ei

∣∣∣
Ei

·100%. (24)

Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

e2
i . (25)

Absolute Percentage Error (δP):

δP =

∣∣∣Ep
i − Ei

∣∣∣
Ei

·100%, (26)

where Ei is the measurement of energy in the solar installation on the i-th day, Ep
i is the

forecast of energy production on the i-th day, N is number of samples and ei = Ep
i − Ei is

the error of the forecast.
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3.2. Forecast Errors Calculations

Table 5 presents the calculated errors of forecasts of particular models for the training
data, where MP1 is the analytical model described by (7), MP2 is the analytical model
described by (8), TSi is the ANFIS model described in Section 2.3, TS_nl is the Takagi-
Sugeno fuzzy model with nonlinear membership functions given by (21). Table 6 presents
forecast errors for the test data.

Table 5. Forecasts errors for the training data.

Error Measure MP1 MP2 TSi TS_nl

ME 0.035 0.701 3.56 × 10−5 −0.130
MEA 9.764 8.465 7.615 7.162

MAPE 8.460 9.953 4.262 4.429
RMSE 12.71 11.32 10.73 10.37

Table 6. Forecasts errors for the test data.

Error Measure MP1 MP2 TSi TS_nl

ME 0.886 1.377 −0.505 0.027
MEA 10.04 9.567 9.584 8.725

MAPE 6.885 8.522 4.928 4.159
RMSE 13.18 12.33 13.14 11.28

Figure 8a shows the distribution of the relative percentage errors (26) of energy
forecasts for the MP1 and MP2 analytical models, marked as δMP1 and δMP2, in the test set.
Figure 8b presents the distribution of the relative percentage errors of energy prediction
for the TSi and TS_nl models, also in the test set. The areas of disks and areas enclosed
by circles are proportional to values of errors. A gray disk included inside of the circle
means that for the given pair (temperature, insolation), the model represented on the chart
by the disk gives lower forecasting error comparing with the model represented by the
circle. Figure 8 shows that every of investigated models has low forecasting quality for low
temperatures and insolation values. Aggregated measures presented in Tables 5 and 6 do
not show these properties of models.

Figure 9 shows measured energy production and energy forecasts for the training
data (174 days), and Figure 10 presents values energy measurements and forecasts for
173 days of the test data. Both charts allow to evaluate general quality of the model from
Section 2.3 and show complexity of the PV panel energy production forecasting problem in
the temperate climate area. Value of the forecasting energy for a succeeding day can be
significantly different regardless of a season. The model correctly approximates training
data (Figure 9) and keeps the quality for the test data (Figure 10).

3.3. Conclusions and Discusion

After the comparison of the quality of measurement data interpolation of the acquired
model with the analytical model from the references, one should draw the conclusion
that such a system can be applied in forecasting (the TSi column in Tables 5 and 6). Its
performance is significantly better than that of analytical equations in all error measures.
However, for one of the main error measures, namely, the MAPE error, the TS_nl rule
system generates significantly smaller errors than the mathematical models and a little
better than the ANFIS model.
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On the basis of reference works in the area of applying analytical methods in fuzzy
logic, it has been pointed out that the forecasting methods based on fuzzy logic are gener-
alization of analytical equations, which depend on what membership function is applied
to fuzzy sets. The best of the studied systems based on fuzzy logic, the analytical form of
which is different than the discussed analytical equations, turn out to be better than the
analytical equation (the TS_nl column in Tables 5 and 6).
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4. Software for Energy Production Forecast

Based of the above considerations, a prototype software for daily energy production
forecast has been developed. The development platform is the CPDev engineering environ-
ment [31]. This platform allows to create control programs in languages of the IEC 61131-3
standard: structured chart (ST), instruction list (IL), ladder diagram (LD), functional block
diagram (FBD) and sequential function chart (SFC). These programs can be deployed
to different PLC devices and installed in solar panel sites. The forecasting software is
currently at the Technology Readiness Level 3 (TRL) and consists of three main modules
(see Figure 11a): the main program module, visualization panel management module and
Human-Machine Interface (HMI) events processing module. Modules communicate by the
use of global variables. The algorithm for the energy production forecast is as following
(see Algorithm 2):

1. Get weather forecast (lines 9–11).
2. Calculate the irradiation on the panel surface (lines 12–18).
3. Calculate the energy production forecast (lines 19–23).

The function of reading the weather forecast is currently being simulated but will be
programmed as a custom function block, as described in the paper [32]. Two remaining
functions are fully implemented. A calculation of the irradiation on the tilted PV panel
surface is performed according to a previous paper [33]. Required parameters (albedo,
diffusion model, solar panels total area, inverter efficiency, etc.) are entered in the settings
panel (Figure 11b). Forecasting of the energy production is done by one of the three
functions, MODEL1, MODEL2 and MODEL3, which implement Equations (7), (8) and (21),
respectively. Coefficients of the mentioned equations are entered as constants in the
settings panel.
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Algorithm 2 The main function of the energy production forecast program.

1: PROGRAM PR_MAIN
2: VAR_EXTERNAL (*$AUTO*) END_VAR
3: VAR
4: result: REAL;
5: weather_forecast_service: GET_WEATHER_FORECAST;
6: irradiation_service: IRRADIATION_IN_PANEL_SURFACE;
7: END_VAR
8: result := initialize();
9: weather_forecast_service(
10: temperature => TEMPERATURE,
11: irradiationHorizontalSurface => IRRADIATION);
12: irradiation_service(
13: irradiation := IRRADIATION * 1e6,
14: latitudeOfTheSite := LATITUDE_OF_THE_SITE,
15: albedo := ALBEDO,
16: tiltAngle := TILT_ANGLE,
17: diffuseModel := DIFFUSE_MODEL,
18: irradiation_on_panel => IRRADIATION_ON_PANEL);
19: case FORECAST_MODEL_ID of

20:
0: result :=

MODEL1(MODEL_1_PARAMS,IRRADIATION_ON_PANEL,TEMPERATURE);

21:
1: result :=

MODEL2(MODEL_2_PARAMS,IRRADIATION_ON_PANEL,TEMPERATURE);

22:
2: result :=

MODEL3(MODEL_3_PARAMS,IRRADIATION_ON_PANEL,TEMPERATURE);
23: end_case
24: ENERGY_FORECAST := result;
25: END_PROGRAM
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5. Conclusions

The paper presents an overview of selected models of daily power production by
photovoltaic panels. Parameters for individual models were computed and their quality
assessed. The parameters of all model were determined in such a way as to ensure
adjustment to the measurement data obtained from the photovoltaic system installation.
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Studies have shown that the best model is a two-input Takagi-Sugeno system with
nonlinear membership functions (TS_nl). Such a system is equivalent to a continuous linear
function of two variables: insolation and temperature.

Noteworthy is the model described by Equations (7) and (8), because its quality
is slightly lower than that of the TS_nl model, but its advantage is the low technical
complexity and the existence of the analytical form of the model. The model can be used
with both air and panel temperature. Since the latter quantity is not forecasted, it should
be determined indirectly.

If you use the forecasts of insolation and temperature, the quality of forecasting power
production depends on the quality of the weather forecast. Authors take the position that
with a system model based on real measurements, one should strive to use high-quality
forecasting data. With the development of weather forecasting methods, the quality of
power output forecasts described in the paper will improve. High quality of the mentioned
forecasts is related to the financing of green energy producers. A proper estimation of
supply allows to gain a competitive advantage on the energy market.
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