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Abstract: A flow–particle interaction solver was developed in this study. For the basic flow solver, 

an improved divergence-free-condition compensated coupled (IDFC2) framework was employed to 

predict the velocity and pressure field. In order to model the effect of solid particles, the differen-

tially interpolated direct forcing immersed boundary (DIIB) method was incorporated with the 

IDFC2 framework, while the equation of motion was solved to predict the displacement, rotation 

and velocity of the particle. The hydrodynamic force and torque which appeared in the equations 

of motion were directly evaluated by fluid velocity and pressure, so as to eliminate the instability 

problem of the density ratio close to 1. In order to effectively evaluate the drag/lift forces acting on 

the particle, an interpolated kernel function was introduced. The present results will be compared 

with the benchmark solutions to validate the present flow–particle interaction solver. 

Keywords: immersed boundary method; quasi multi-moment method; incompressible Navier–

Stokes equation; dispersion-relation-preserving; flow–structure interaction 

 

1. Introduction 

The offshore wind farm is a wind turbine installed in an offshore area where there is 

a strong wind field for a long period of time. It can avoid the noise, shading and visual 

obstruction caused by the wind turbine’s operation in the land area. Offshore wind farms 

can also provide more stable wind energy and low turbulence effects. However, it re-

quires consideration of the effects of wind turbulence on the wind turbine and its sup-

porting structure. Recently, attention has also been paid to the offshore floating wind tur-

bine. How to efficiently simulate the interaction between the floating structure and the 

water/air interface becomes an important research topic. 

The coupling analysis of fluids and solids in practical engineering applications usu-

ally requires the consideration of complex geometries. These complex geometries are usu-

ally in a stationary or transient motion at high Reynolds number flows, such as offshore 

stationary wind turbines and marine systems. These fluid–structure problems are typi-

cally solved by the traditional body-fitted-grid. In order to generate high-quality mesh, a 

lot of efforts in terms of manpower are always required to refine the mesh at the high 

curvature region. The computational cost is then increased, especially when dealing with 
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the moving boundary problems. In addition, the quality of the grid is also very crucial for 

simulation analysis. 

In recent decades, the immersed boundary method has been shown to have great 

potential for modeling the flow–particle interaction problem. It is achieved by virtue of 

incorporating introduced momentum forcing terms in the equations of motion to predict 

the displacement, rotation and velocity of the solid object [1]. The main advantage of em-

ploying an immersed boundary method for this kind of problem is that the regular fixed 

Cartesian grid can still be used for simulating the complex time-varying geometries. 

However, how to effectively evaluate the drag/lift of the coupling interface and the 

particle velocity is still a research topic to be refined. Uhlmann [2] proposed incorporating 

the regularized delta function approach to model the particulate flows, and the improved 

methods were then proposed by Kempe and Fröhlich [3] and Breugem [4]. Zhang and 

Gay [5] also proposed a finite element method based on an immersed boundary for fluid–

structure interactions. Alternatively, Luo et al. [6] simulated the fluid–particle interactions 

by direct-forcing based modified immersed boundary method. To further improve the 

accuracy of velocity in moving solid, Wang et al. [7] introduced the multi-direct forcing 

method. Yang and Stern [8] also demonstrated a sharp interface-based immersed bound-

ary method by virtue of the direct-forcing approach for solving particulate flows, while 

Horng et al. [9] exhibited a prediction-correction based direct-forcing immersed boundary 

projection method for solving fluid–particle interactions. 

With the success of finite volume and finite element frameworks, scientists are also 

motivated to employ an immersed boundary based fluid–particle solver on the Lattice–

Boltzmann (LB) framework. Wu and Shu [10] demonstrated a boundary condition-en-

forced immersed boundary LB scheme to solve particulate flows, while Hao and Zhu [11] 

revealed an implicit immersed boundary method on the Lattice–Boltzmann framework 

for fluid–structure interactions. Wang et al. [12] later evaluated three LB schemes to un-

derstand their performance when modeling the particulate flows. Zhou and Fan [13] also 

presented a LB immersed boundary scheme based on the work of Breugem [4]. Zhang et 

al. [14] further exhibited the particulate immersed boundary method (PIBM) to speed up 

the calculation of the particulate flow simulations. Coclite et al. [15] proposed kinematic 

and dynamic forcing strategies for predicting the transport of inertial capsules, and later 

extend to model the deformable inertial capsules [16]. 

Due to the fact that the convergence of the Lattice-Boltzmann framework is based on 

equilibrium equations, each fluid must have its own balance equation for the convergence 

of the Lattice–Boltzmann method. Furthermore, the definitions of boundary conditions in 

the Lattice–Boltzmann method is still developing for fitting the physical properties of in-

terfaces. Moreover, some previous studies still only applied the prescribed motion of solid 

particle for the fluid–solid interaction simulation. 

To alleviate the issue of evaluating drag and lift forces, Chiu and Poh [17] have re-

cently successfully incorporated the improved divergence-free-condition compensated 

coupled (IDFC2) framework with the direct forcing immersed boundary (DIIB) method 

[18] for solving the flows with prescribed-motion time-varying geometries. The spurious 

force oscillation (SFO) can be efficiently alleviated and the calculation is relatively simple. 

This motivated us to incorporate the IDFC2 framework with equation of particle motion 

for simulating the fluid–particle interactions. The ultimate goal for this study is to develop 

the solver to model the interaction between the floating wind turbine and water/air inter-

face. 

In this study, the framework will be extended for simulating the fluid–particle inter-

actions. To prevent the instability problem when the density ratio is close to 1, the drag 

and lift forces will be directly evaluated from fluid velocity and pressure. An interpolated 

kernel function to accurately and effectively evaluate the drag/lift forces will be proposed. 

Details of calculating the equation of motion as well as near-wall treatment when the solid 

particle is approaching the wall will also be addressed. 
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This paper is organized as follows. Section 2 presents the governing equations for 

fluid flows and solid particles. Section 3 present the DIIB method and the methodology 

for fluid–particle interactions. Section 4 presents the IDFC2 based flow–particle interaction 

framework. Verification studies are presented in Section 5. This is followed by presenting 

the simulated results to show the applicability for the proposed framework. Finally, some 

concluding remarks are drawn in Section 6. 

2. Governing Equations 

2.1. Incompressible Navier–Stokes Equations 

The non-dimensional primitive-variable Navier–Stokes equations for incompressible 

flows can be expressed as the following momentum equations and continuity equation: 

����⃑

��
+ � ∙ (��⃑ ��⃑ ) =

�

��
����⃑ − �� + �⃑  (1)

� ∙ ��⃑ = 0 (2)

where ��⃑  is the velocity vector, � is the pressure field, and �� is the Reynolds number. 

�⃑ is external force vectors due to particle motions, and is modeled by the present im-

mersed boundary based flow–particle interaction framework. 

2.2. Equations of Motion for Solid Particle 

The equations of motion for the rigid body can be written as 

����
����⃑

��
= (�� − ��)���⃑ + ��

���⃑   (3)

���⃑

��
= ���⃑   (4)

��
�����⃑

��
= ��

����⃑   (5)

����⃑

��
= ���⃑   (6)

where the linear velocity vector (��⃑ ) and particle position vector (�⃑) are due to linear mo-

tion, while � and Ω are the angular velocity and orientation due to the angular motion. 

�� and �� are the density for the solid particle and fluid, respectively. �� is the volume 

of the solid particle, �⃑ is the gravity, and �� is the inertial moment of the solid particle. 

��
���⃑  and ��

����⃑  are the hydrodynamic force and torque acting on the solid particle, respec-

tively. 

As stated in [2,3], when we evaluated the ��
���⃑  and ��

����⃑  by the summation of forcing terms 

�⃑ together with the relation of momentum balance over the corresponding fluid domain 

[2], it will lead to an instability issue when the density ratio close to 1, or (�� − ��) ≈ 0. 

This is due to the fact that the term (�� − ��) will appear in the denominator when solv-

ing the equations of motion. In order to avoid this issue, hydrodynamic force and torque 

are directly evaluated in this study: 

��
���⃑ = �� � � ∙ � �� (7)

��
����⃑ = �� � � × (� ∙ �) �� (8)

It is noted that by using the present approach, (�� − ��) will be never appear in the 

denominator, so that there will be no instability problems even when the density ratio id 

close to 1. In Section 3.1, the present study will introduce methods to accurately and effec-

tively evaluate the two above equations. Furthermore, the implicit midpoint temporal 

scheme was employed to solve Equations (3)–(6) in the present study. 
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3. Differentially Interpolated Direct Forcing Immersed Boundary (DIIB) Method 

In this section, the DIIB method is employed to model the solid body. Here, we will 

briefly describe the fundamental idea of the DIIB method. 

Assuming there is a solid object � immersed in the Eulerian grid; in order to model 

the effect of solid object, the direct forcing term �⃑ is introduced in Equation (1) to satisfy 

the velocity condition (��⃑ ) of the solid object. With the semi-implicit discretization, Equation 

(1) can be split into the following two equations: 

���⃑ ∗����⃑ �

∆�
= −∇ ∙ (��⃑ ��⃑ )∗ =

�

��
∇���⃑ ∗ − ∇�  (9)

��⃑ − ��⃑ ∗

∆�
= �⃑ (10)

It is noted that in practice, the boundary points of the solid object do not always fall 

into the Eulerian grid points. The direct forcing method will then evaluate the modified 

velocity on some target Eulerian grid points, followed by obtaining the corresponding 

momentum forcing terms based on Equation (10) to model the effect of solid object with 

velocity condition ��⃑ . 

For the DIIB method, the velocity (��) at Eulerian grid point which is inside and close 

to the solid boundary, will be modified to satisfy the velocity condition ��� at the solid 

boundary by virtue of interpolated velocity at fluid domain �� and Taylor series expansion: 

�� = 2��� − ��  (11)

Taking Figure 1 as an example, in general �� does not always lie on the grid point. 

The evaluation of �� is done by “advect” �� from point Q to point A [18]: 

���

��
+ (��⃑ ∙ ∇)�� = 0  (12)

In the above, ��⃑  is the unit normal vector of the solid object. In practice, Equation (12) 

is solved by first order upwind with single artificial time step ∆� = ���������/|��⃑ | = 2������/|��⃑ |. 

The reader can refer to [18] for details. 

 
(a) 

 
(b) 

Figure 1. Schematic of the direct forcing immersed boundary (DIIB) method: (a) evaluation of ��; 

and (b) evaluation of �� . 

To alleviate the spurious force oscillations (SFOs) and to obtain smooth pressure, the 

velocity modification method [17] was employed in this study. The idea behind this 

method is to modify the velocity inside the velocity to the solid object moving velocity 

when solving the pressure correction equation. It has been shown in [17] that this method 

successfully suppresses the SFO for the problems with prescribed motions and will then 
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be implemented for dealing with the problem for which the motions are obtained by solv-

ing equations of motion. 

3.1. Evaluation of Drag and Lift Forces 

When employing the direct forcing immersed boundary method, it is suggested to 

evaluate forces � by the following equation for calculating drag and lift forces: 

� = � � ∙ � �� (13)

where � is the summation of shear and pressure stress, � is unit normal vector and � is 

surface area. In this study, a four-point piecewise discrete delta function based interpo-

lated kernel is employed [17]: 

�(�, �) = � �(�, �)�′(
� − �

ℎ
)�′(

� − �

ℎ
) (14)

�� �
� − �

ℎ
� = � �

� − �

ℎ
� / � � �

� − �

ℎ
� (15)

�� �
� − �

ℎ
� = � �

� − �

ℎ
� / � � �

� − �

ℎ
� (16)

�(�) =

⎩
⎪
⎨

⎪
⎧

1

8
�3 − 2|�| + �1 + 4|�| + 4��� , |�| ≤ 1

1

8
�5 − 2|�| − �−7 + 12|�| − 4��� ,1 ≤ |�| ≤ 2

0                           , |�| ≥ 2  

 (17)

when the solid particle is approaching the wall, the interpolated kernel will be simplified 

to the following one-point piecewise discrete delta function [19]: 

�(�) �
1 − |�|, |�| ≤ 1

0    ,    |�| ≥ 1
 (18)

4. Improved Divergence-Free-Condition Compensated Coupled (IDFC2) Framework 

The idea behind the IDFC2 framework is to discretize momentum equations by virtue 

of cell-center and cell-face velocity [17]. With the present approach, we can not only obtain 

the accurate velocity vector (�, �), but also the fully coupled pressure field �. The follow-

ing will first introduce the original IDFC framework, then briefly describe how to mitigate 

to IDFC2 framework. 

4.1. Derivation of IDFC Framework 

With the 2D grid structure as shown in Figure 2, the derivation of the IDFC frame-

work starts from the semi-discrete momentum equation. Without loss of generality, we 

take velocity � at the cell-center P (��) as an example: 

��
∗ − ��

�

∆�
+ (

���

��
)� + (

���

��
)� =

1

��
(
���

���
+

���

���
)� − (

���

��
)� (19)
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Figure 2. Schematic of the present framework. 

The idea for the IDFC method is that discretizing the momentum equation for the 

cell-face �� should have the same form as we discretize the momentum equation at the 

cell-center: 

��
∗���

�

∆�
+ (

���

��
)� + (

���

��
)� =

�

��
(

���

��� +
���

���)� − (
���

��
)�  (20)

However, obtaining the velocity derivatives on the cell-face is not as easy as on the 

cell-center. The linear-averaged approximation is then employed to evaluate the cell-face 

velocity derivatives on the cell-face � [20]: 

(
���

��
)� ≈ (

���

��

�
)� =

1

2
(�

���

��
�

�
+ �

���

��
�

�
) (21)

(
���

��
)� ≈ (

����

��
)� =

1

2
(�

���

��
�

�

+ �
���

��
�

�

) (22)

�

��
(

���

��� +
���

���)� ≈
�

��
(

���

��� +
���

���

�
)� =

�

�
(

�

��
�

���

��� +
���

����
�

+
�

��
�

���

��� +
���

����
�

)  (23)

By using Equations (21)–(23) into Equation (20), ��
∗  can then be obtained. ��

∗ , ��
∗, ��

∗ 

can also be obtained in a similar way. In order to fulfill the divergence-free condition, the 

Poisson equation for pressure correction is then solved with cell-face velocity: 

(
���′

���
+

���′

���
)� =

1

∆�
(
��

∗ − ��
∗

∆�
−

��
∗ − ��

∗

∆�
) (24)

It is followed by updating the cell-face velocity by virtue of the predicted pressure cor-

rection: 

��
��� = ��

∗ − ∆�(
��′

��
)� (25)

��
��� = ��

∗ − ∆�(
��′

��
)� (26)

��
��� = ��

∗ − ∆�(
��′

��
)� (27)

��
��� = ��

∗ − ∆�(
��′

��
)� (28)

while the pressure is updated as ���� = �� + �′. Finally, the cell-center velocity is updated 

by again employing the linear-averaged approximation for the cell-center derivatives: 
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��
∗ − ��

�

∆�
+ (

����

��
)� + (

����

��
)� =

1

��
(
���

���
+

���

���

�
)� − (

���

��
)� (29)

where: 

(
���

��

�
)� =

1

2
(�

����

��
�

�
+ �

����

��
�

�
) (30)

(
����

��
)� =

1

2
(�

����

��
�

�

+ �
����

��
�

�

) (31)

1

��
(
���

���
+

���

���

�
)� =

1

2
(

1

��
�

���

���
+

���

���

�
�

�

+
1

��
�

���

���
+

���

���

�
�

�

) (32)

It is noted that by virtue of Equations (30)–(32), the introduced IDFC forcing terms 

can efficiently stabilize the calculations [20]. 

4.2. Derivation of IDFC2 Framework 

It is known from [17] that the IDFC method may lead to non-physical velocity oscil-

lations due to the fact that the cell-face and cell-center velocity is not strongly coupled 

when evaluating the velocity derivatives. To resolve this issue, we modified Equation (23) 

to include the contribution of cell-face velocity: 

1

��
(
���

���
+

���

���

�
)� =

1

��
(� �

���

���
+

���

���
�

�

+ (1 − �) �
���

���
+

���

���

�
�

�

) (33)

In the above, � is the newly introduced parameter which is utilized as coupling cell 

and face velocity. In this study, � was chosen as 1/2 to ensure the strong coupling. 

The approximation equation for cell-face velocity ��
∗  is then rewritten as 

��
∗ − ��

�

∆�
+ (

����

��
)� + (

����

��
)� =

1

��
(
���

���
+

���

���

�
)� − (

���

��
)� (34)

The corresponding cell-center velocity is expressed as 

��
∗ − ��

�

∆�
+ (

����

��
)� + (

����

��
)� =

1

��
(
���

���
+

���

���

�
)� − (

���

��
)� (35)

1

��
(
���

���
+

���

���

�
)� =

1

2
(

1

��
�

���

���
+

���

���

�
�

�

+
1

��
�

���

���
+

���

���

�
�

�

) (36)

The overall algorithm for the present DIIB–IDFC2 framework is summarized as fol-

lows. The linear and angular velocity, position and rotation of the solid objects are first 

solved by the equations of motion, where the hydrodynamic force and torque are obtained 

from the fluid velocity and pressure. To compute the summation of the hydrodynamic 

force and torque, the solid surface is first divided by a collection of Lagrangian points, and 

then interpolates the fluid velocity and pressure on each Lagrangian point. Finally, the lin-

ear and angular velocity of solid objects are then employed as the boundary condition for 

the solid–fluid interface. For the sake of completeness, we also plotted the algorithm in Fig-

ure 3. In this study, a finite volume-based, second order accurate dispersion-relation pre-

serving upwinding scheme [20] was utilized to discretize the convection terms, while the 

central difference was employed for other derivative terms. The second order semi-im-

plicit Gear method was employed as the temporal scheme. For more details of the numer-

ical scheme, people can refer to [20]. 
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Figure 3. Overall algorithm for the present framework. 

5. Results 

5.1. Taylor-Couette Flow 

The 2-D Taylor–Couette flow problem has been chosen as the first validation prob-

lem. For the present problem, the radius for outer circular (��) and inner circular (��) are 

0.4 and 0.2. The non-slip boundary condition is employed for the outer circular, and a 

constant rotating angular velocity ��� = 3 is set as a boundary condition for the inner 

circular. The exact solution for this kind of flow setting can be derived as 

�(�, �) = −� �
��

�

��
− 1� � (37)

�(�, �) = � �
��

�

��
− 1� � (38)

�(�, �) = ��(
��

2
−

��
�

2��
− ��

� log(��)) (39)

� =
�����

�

��
� − ��

� (40)

� = ��� − �� (41)

For the present study, four different mesh sizes, namely Δ� = Δ� = Δℎ = 1/10, 1/20, 

1/40 and 1/80 with �� = 500 are conducted for the validation study in a unit square do-

main. The inner and outer cylinder are modeled with DIIB method, as shown in Figure 4. 

 

Figure 4. Schematic of the Taylor–Couette flow problem. 



Energies 2021, 14, 1675 9 of 19 
 

 

From Table 1 and Figure 5, this shows that the rate of convergence for �, � and � 

are 2.033, 2.033 and 2.044, which match very well with the proposed accuracy order. The 

validation of the present solver was then confirmed. 

Table 1. The error L-2 norms for the Taylor–Couette flow problem. 

 � � � 

Δℎ = 1/10 3.380 × 10−2 3.380 × 10−2 2.053 × 10−2 

Δℎ = 1/20 2.214 × 10−2 2.214 × 10−2 9.046 × 10−3 

Δℎ = 1/40 1.911 × 10−3 1.911 × 10−3 9.115 × 10−4 

Δℎ = 1/80 4.928 × 10−4 4.928 × 10−4 2.923 × 10−4 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. The rate of convergence plot for the Taylor–Couette flow problem. (a) �; (b) �; and (c) �. 

5.2. Lid-Driven Semi-Circular Cavity Flow 

To further understand the performance of the present framework, the lid-driven 

semi-circular cavity flow problem was then investigated. In a 1 × 0.5 rectangular domain, 

there is a semi-circular cavity with a radius of 0.5 modeled by immersed boundary 

method, and the lid is driven with velocity ���� = 1, as shown in Figure 6. Comparisons 

of cutting-line velocity at � = 0.5  and � = 0.25  with the benchmarking solutions of 

Glowinski et al. [21] and Ding et al. [22] were made with �� = 1000 and 100 × 50 mesh. 

This shows excellent agreement with Figure 7. To further show the accuracy of the present 

IDFC2 framework, we also plotted the numerical results which was obtained by the fifth order 

upwinding scheme-based DFC framework [23]. As can be seen in Figure 7, the present results 

match better than the reference results. For the sake of completeness, the predicted contours 

of pressure and vorticity are also plotted in Figure 8 to show the applicability of the present 

framework. 

 

Figure 6. Schematic of the lid-driven semi-circular cavity flow problem. 
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Figure 7. Comparisons of the velocity with the referenced solutions at the cutting lines for the lid-

driven semi-circular cavity flow problem. 

 
(a) 

 
(b) 

Figure 8. The contour plots for the lid-driven semi-circular cavity flow problem: (a) pressure; and (b) 

vorticity. 

5.3. Flow Past Circular Cylinders in Tandem 

In this subsection, the flow past circular cylinders in tandem problem will be simu-

lated to show that the present framework can produce accurate solutions for time transi-

ent flows. For this problem the computational domain is set as a 45 × 20 rectangular do-

main at the inlet with velocity �� = 1 from the left boundary, while the other three 

boundaries are set as convective boundary conditions. Inside the computational domain, 

there are two circular cylinders with diameter � = 1 in tandem. The centroid of the left 

one is located at (9.5, 0), while the right one is located at (9.5 + D, 0), where D is the distance 

between two circular centroids. In this study, two scenarios of D = 4 and D = 5 with �� =

200 and mesh size ∆� = ∆� = �/20 were investigated. The details of the present settings 

are plotted in Figure 9. The simulated vorticity and pressure contours at t = 400 are plotted 

in Figures 10 and 11 for D = 4 and D = 5, respectively. As shown in Figures 10 and 11, the 

present framework can correctly produce the vortex shedding behavior, while the pres-

sure can remain smooth. The predicted results were then used to evaluate the drag coef-

ficient (��), lift coefficient (��) and Strouhal number (��), and compare with the referenced 

solutions ([24–27]). From Table 2, good agreements can be observed between predicted re-

sults and benchmarking solutions. The drag and lift coefficient are also plotted in Figures 

12 and 13 with respect to time. It is confirmed that the present framework for transient 

flows is applicable and accurate. 
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Table 2. Comparisons of ��, �� and �� for the flow past circular cylinders in tandem problem with 

�� = 200. Note that ��1 is the left circular cylinder, while ��2 is the right circular cylinder. 

 D = 4 

 ��1 ��2 ��1 ��2 �� 

Meneghini et al., 2001 1.18 0.38 --- --- 0.174 

Mahir and Altac, 2008 1.34 0.558 0.805 1.99 0.181 

Dehkordi et al., 2011 1.16 0.52 --- --- 0.179 

Slaouti and Stansby, 1992 1.11 0.88 0.7 1.8 0.190 

Present study 1.293 0.568 0.783 1.853 0.183 

 D = 5 

 ��1 ��2 ��1 ��2 �� 

Mahir and Altac, 2008 1.327 0.455 0.731 1.569 0.186 

Slaouti and Stansby, 1992 0.97 0.7 0.55 1.6 0.180 

Present study 1.277 0.418 0.702 1.482 0.185 

 

Figure 9. Schematic of the flow past circular cylinders in tandem problem. 

 
(a) 

 
(b) 

Figure 10. The instantaneous contour plots for the flow past circular cylinders in tandem problem, 

D = 4: (a) vorticity; and (b) pressure. 

 
(a) 

 
(b) 

Figure 11. The instantaneous contour plots for the flow past circular cylinders in tandem problem, 

D = 5: (a) vorticity; (b) pressure. 
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(a) 

 
(b) 

Figure 12. The time history plots for the flow past circular cylinders in tandem problem, D = 4. 

Note that ��1 is the left circular cylinder, while ��2 is the right circular cylinder: (a) ��; and (b) 

��. 

 
(a) 

 
(b) 

Figure 13. The time history plots for the flow past circular cylinders in tandem problem, D = 5. 

Note that ��1 is the left circular cylinder, while ��2 is the right circular cylinder: (a) ��; and (b) 

��. 

5.4. Two Circular Cylinders Moving towards Each Other in Quiescent Flow 

In the computational domain (� = −8~24, � = −8~8), there are two circular cylin-

ders with a unit diameter (d = 1), the lower initially located at (��, �� = 0,0), while the upper 

one located at (��, �� = 16,1.5), and then moving toward each other along the x direction 

with the prescribed motions until � = 32: 

��(�) = �
�

�
sin (

��

�
), 0 ≤ � ≤ 16

� − 16, 0 ≤ � ≤ 32
  (42)

��(�) = �
16 −

�

�
sin (

��

�
), 0 ≤ � ≤ 16

32 − �, 0 ≤ � ≤ 32
  (43)

Based on the above prescribed motions, two cylinders will move periodically in the 

x axis until � = 16, then start to move towards each other. In this study, a no-slip boundary 

condition is applied to all boundaries, and the mesh size and time step size are chosen as 

∆� = ∆� = �/40 and ∆� = 10��. From Figures 14 and 15, it shows that the present frame-

work can produce smooth pressure and vorticity. To validate the accuracy of the predicted 

results, we plotted Figure 16 to compare the time-history drag (CD) and lift (CL) coefficients of 

the upper cylinder with the referenced solutions [9,28] which shows excellent agreements. For 

the sake of completeness, we also plotted Figure 17 to show the effect of velocity modification 

method. This clearly shows that with the velocity modification method, SFO is well sup-

pressed. 
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(a) (b) 

(c) (d) 

Figure 14. The predicted pressure contour plots for the problem of two cylinders moving towards 

each other: (a) � = 4; (b) � = 16; (c) � = 24; and (d) � = 32. 

(a) (b) 

(c) (d) 

Figure 15. The predicted vorticity contour plots for the problem of two cylinders moving towards 

each other problem. (a) � = 4; (b) � = 16; (c) � = 24; and (d) � = 32. 

 
(a) 

 
(b) 

Figure 16. Comparisons of the time history plots of the upper cylinder for the problem of two cyl-

inders moving towards each other: (a) ��; and (b) ��. 
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(a) 

 
(b) 

Figure 17. Comparisons of the effect of the velocity modification method for the problem of two 

cylinders moving towards each other: (a) ��; and (b) ��. 

5.5. Free-Falling Circular Cylinder in Quiescent Flow 

The free-falling circular cylinder problem will be simulated in this subsection. In a 2 

× 6 rectangular box, a circular cylinder located at (1,4) with a radius r = 0.125 is free falling 

from rest, as shown in Figure 18a. The densities of solid (��) and fluid (��) are 1.25 and 

1, while the non-dimensional fluid viscosity and gravity for the investigated problem are 

0.1 and (0, −980). The cylinder positions and vorticity contours at different times are plot-

ted in Figure 18. In order to validate the present framework, comparisons of the time his-

tory of cylinder positions and velocity are also plotted at Figure 19. It can be clearly shown 

that the preset results obtained by the proposed framework and methodology with ∆� =

∆� = 1/128 and ∆� = 10�� agree well with the reference benchmark results [29,30]. For 

the sake of completeness, CD, CL and � are plotted in Figure 20a, while the effect of ve-

locity modification method is plotted in Figure 20b. From Figure 20, it shows that the pre-

sent framework can also well suppress for the free-falling cylinder problem. The pressure 

contours at t = 0.2 are also plotted to further show the benefit of employing velocity modifi-

cation method. From Figure 21a, the smooth pressure is obtained, while Figure 21b clearly 

shows oscillated pressure near the downward cylinder interface. 

To show the advantage of the present framework, different density ratios (��/��), 

1.05 and 1.01, were also investigated in this study. Figure 22 clearly shows that the present 

framework can correctly and consistently predict solid velocity and position. The applica-

bility and efficiency of the present framework for solving the free-falling cylinder problem 

is thus confirmed. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 18. The predicted results for the free-falling circular cylinder problem: (a) the cylinder posi-

tions at different times; (b) vorticity contours at t = 0.4; (c) vorticity contours at t = 0.6; and (d) vor-

ticity contours at t = 0.8. 
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(a) 

 
(b) 

Figure 19. Comparisons of the results for the free-falling circular cylinder problem with bench-

mark results [29,30]: (a) velocity; and (b) centric y location. 

 
(a) 

 
(b) 

Figure 20. The time history plots for the free-falling cylinder problem: (a) ��, �� and �; and (b) 

comparison of the velocity modification method for ��. 

 
(a) 

 
(b) 

Figure 21. The predicted pressure contours at t = 0.2 for the free-falling cylinder problem: (a) with 

velocity modification method; and (b) without velocity modification method. 
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(a) 

 
(b) 

Figure 22. Comparisons of the results for the free-falling circular cylinder problem with bench-

mark results [25,26]: (a) velocity; and (b) centric y location. 

5.6. Drafting–Kissing–Tumbling (DKT) Problem of Two Free-Falling Circular Cylinders in Qui-

escent Flow 

Finally, the drafting–kissing–tumbling (DKT) problem was investigated in this sub-

section. In a computational domain of (�, �) = (0~6, −1~1), there are two cylinders with 

a radius r = 0.125 located at (1, 0.001) and (1.5, −0.001). The density ratio and viscosity ratio 

was chosen as 1.5 and 0.01, while the gravity is (980,0). To model the DKT scenario in this 

study, the repulsion force model [29] was employed in this study, with the choice of a 

stiffness parameter as 5 × 10�� and effective force range as 3Δ�. Due to the large repul-

sion force, the sub-time stepping method is employed to prevent the divergence issue 

when solving the equations of motions. The idea is to introduce a sub-time step Δ��(=

Δ�/�), which is � times smaller than the original time step Δ�, and solves the sub-time 

step � times. In practice, the fluid solver costs the most of the computational time, so the 

additional cost due to the sub-time stepping can be ignored. In this study, the sub-time step 

� is set as 20. The predicted pressure and vorticity contours with Δ� = Δ� = 1/256 and Δ� =

5 × 10�� at t = 0.15, 0.2, 0.25 and 0.3 are plotted in Figures 23 and 24. The comparisons of solid 

velocity and position with the referenced solution [2] are then made. From Figures 25 and 

26, good agreements can be seen at � ≤ 0.17, (drafting and first kissing stage). For � >

0.17 (the later kissing and tumbling stage), it still shows reasonable agreements. As indi-

cated by [2], the discrepancy should be due to strong instability and the choice of collision 

parameter and the initial horizontal offset of two cylinders. It is noted that there is no 

drafting for the present framework if the horizontal offset is set to zero. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 23. The predicted pressure contour plots for the drafting–kissing–tumbling (DKT) problem: 

(a) � = 0.15; (b) � = 0.2; (c) � = 0.25; and (d) � = 0.3. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 24. The predicted vorticity contour plots for the DKT problem: (a) � = 0.15; (b) � = 0.2; (c) � 

= 0.25; and (d) � = 0.3. 

 
(a) 

 
(b) 

Figure 25. Comparisons of the x velocity (��) and x position (��) of two cylinders with referenced 

results for the drafting–kissing–tumbling (DKT) problems of two free-falling particles: (a) ��; and 

(b) ��. 

 
(a) 

 
(b) 

Figure 26. Comparisons of y velocity (��) and y position (��) of two cylinders with referenced re-

sults for the drafting–kissing–tumbling (DKT) problems of two free-falling particles. (a) ��; (b) �� . 
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6. Conclusions 

In this study, we proposed a framework to model the flow–particle interaction prob-

lem. The solid object is modeled by the DIIB method, while the fluid velocity and pressure 

are solved by the IDFC2 method. To prevent the instability problem of a density ratio close 

to 1, the hydrodynamic force and torque which appeared in the equations of motion are 

directly evaluated with modified interpolation kernel function. The methodology of eval-

uating the drag/lift forces and the treatment of a circular cylinder approaching the wall 

have also been addressed. To validate the applicability and accuracy, problems of one and 

two particles were investigated. To make the framework more stable, the idea of a sub-

time stepping method was also employed for DKT problems of two particles. From the 

investigating validation/benchmarking problems, the simulated results reveal the ap-

plicability, accuracy and efficiency of the present framework. 
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