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Abstract: Early prediction of thermal loads plays an essential role in analyzing energy-efficient
buildings’ energy performance. On the other hand, stochastic algorithms have recently shown high
proficiency in dealing with this issue. These are the reasons that this study is dedicated to evaluating
an innovative hybrid method for predicting the cooling load (CL) in buildings with residential usage.
The proposed model is a combination of artificial neural networks and stochastic fractal search
(SFS–ANNs). Two benchmark algorithms, namely the grasshopper optimization algorithm (GOA)
and firefly algorithm (FA) are also considered to be compared with the SFS. The non-linear effect of
eight independent factors on the CL is analyzed using each model’s optimal structure. Evaluation
of the results outlined that all three metaheuristic algorithms (with more than 90% correlation) can
adequately optimize the ANN. In this regard, this tool’s prediction error declined by nearly 23%, 18%,
and 36% by applying the GOA, FA, and SFS techniques. Moreover, all used accuracy criteria indicated
the superiority of the SFS over the benchmark schemes. Therefore, it is inferred that utilizing the SFS
along with ANN provides a reliable hybrid model for the early prediction of CL.

Keywords: energy-efficiency; HVAC; machine learning; cooling load; deep learning; big data; artificial
intelligence; nature-inspired metaheuristic; building energy; zero energy; smart city; smart buildings

1. Introduction

Buildings, vehicles, and industry are the three primary energy consumption sectors
globally [1–3]. Among those, buildings consume a considerable share, which is anticipated
to reach over 30% by 2040 [4]. On the other hand, people’s high tendency to dwell in smart
cities has resulted in the idea of developing energy-efficient structures [5,6]. Therefore,
accurate analysis of buildings’ energy performance (EPB) is a significant step toward this
objective. In energy-efficient buildings, heating load (HL) and cooling load (CL) demand
account for system energy consumption and are controlled by heating, ventilating, and air
conditioning (HVAC) system [7] to provide convenient indoor air condition.

It is well established that the cost and use of energy affect human lives every day.
In this sense, many issues arise from the content of energy consumption such as acid
rain, dependency on depleting supplies of fossil fuels, greenhouse gas emissions [8–16],
climate change [17–20], in addition to environmental concerns that come along with energy
power supply [2,21–33]. In recent years, various techniques have been used for the optimal
design of the HVAC system [34–42]. Ghahramani et al. [43], for instance, used a systematic
model to optimize the performance of the HVAC system in office buildings in terms of
temperature setpoints. Moreover, Ferreira et al. [44] used a soft computing method for
controlling the HVAC system. Implemented the proposed model led to about 50% saving
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in energy consumption. The effect of façade parameters (e.g., solar reflectance and U-value)
was investigated by Ihara et al. [45], and it was deduced that solar heat gain coefficient
(SHGC) could have the most significant impact on energy consumption reduction.

In this way, some drawbacks of forwarding modeling approaches (e.g., modeling in
simulation packages), such as large dimensions and inadequacy for occupied spaces [46],
have driven engineers to employ artificial intelligence approaches for early estimation of
energy [47–49]. Artificial intelligence is known as intelligence solutions demonstrated by
machines, unlike the natural intelligence provided by animals and humans [50–55]. Artifi-
cial neural networks (ANNs), as one of the most known AI-based solutions, have received
increasing attraction recently [56–60]. More technically, deep-learning-based [61–64], machine
learning [65–67], decision-making-based theories, feature selection-based solutions [68–70],
extremer machine learning solutions [71–74], and hybrid searching algorithms that en-
hanced conventional multilayer perceptron such as Harris Hawks optimization [62,75],
whale optimizer [76,77], bacterial foraging optimization [78], chaos enhanced grey wolf
optimization [79], moth-flame optimizer [72,80], many-objective sizing optimization [81–86],
driven robust optimization [87], ant colony optimization [88], and global numerical op-
timization [89]. These techniques are successfully employed in different aspects such
as building design [90–97], image processing/classification [97–104], sustainability, and
environmental concerns [23,105–107]. Various studies are also performed on predicting the
HL and CL of residential buildings [39,41,42,108–110]. Zhou et al. [42] used an ANN and
the nonlinear autoregressive with exogenous inputs (NARX) concept for accurate analysis
of thermal load in an academic building. In a similar effort, Koschwitz, et al. [111] imple-
mented an approximation of long-term urban heating load using nonlinear autoregressive
exogenous recurrent neural networks (NARX RNNs). Roy et al. [112] showed a better
performance of neural networks (with a variance accounted for 99.76%) compared to other
conventional methods such as gradient boosted machines.

Other predictors such as adaptive neuro-fuzzy inference systems (ANFISs) have
shown high robustness for dealing with EPB non-linear problems [113]. Pezeshki and
Mazinani [114] concluded the superiority of ANFISs over typical fuzzy logic in buildings’
thermal efficiency because it enjoys the advantages of the ANN as well. Scholars such as
Naji et al. [115] and Chou and Bui [116] have demonstrated the applicability of ANFIS and
support vector-based methods. More recent studies have suggested utilizing conventional
predictors with metaheuristic search schemes for various usages [41,117]. More signifi-
cantly, for energy consumption modeling, these methods have gained high popularity.
Satrio et al. [118] found integrating ANNs and multi-objective genetic algorithms a capable
tool for optimizing the HVAC system. Moayedi et al. [4] coupled an ANN with a firefly
algorithm based on electromagnetism for predicting building energy consumption. The
findings revealed their suggested model’s superiority over conventional models such as
typical ANN, genetic programming, and extreme learning machine. Tien Bui et al. [41]
could reduce the HL prediction error of the ANN from 2.93 to 2.06 and 2.00 by applying
the genetic algorithm and imperialist competition algorithm, respectively. This error also
fell down from 3.28 to 2.09 and 2.10 for CL estimation. Particle swarm optimization (PSO)
is another capable optimizer that has been widely employed for creating hybrid mod-
els [119,120]. Goudarzi et al. [121] also used the PSO to develop a hybrid of autoregressive
integrated moving average and SVR for energy consumption modeling. Moreover, in
researches by Nguyen et al. [122] and Moayedi et al. [123], novel metaheuristic techniques
(e.g., elephant herding optimization, Harris Hawks optimization, and grasshopper opti-
mization algorithm) were applied to enhance the prediction capability of the ANN. Despite
the wide use of nature-inspired metaheuristic techniques for optimizing the HVAC system,
the wide variety of these techniques motivated the authors to investigate the applicability
of a novel member of this family, namely, stochastic fractal search in this paper. Based on
our best knowledge, this algorithm has not been previously used in this field.
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2. Methodology
2.1. ANN

As suggested by McCulloch and Pitts [124], the basic idea of ANNs roots in the bio-
logical neural system of humans. The structure of this model comprises several processors
named neurons connected by so-called synapses weight. As a potential advantage of this
model, the ANNs try to analyze the non-linear association of a set of input-output data
by establishing a stage of mathematical relationships [125]. Figure 1 shows the structure
of one of the most popular notions of ANNs, namely, multi-layer perceptron (MLP). As
shown, this network is composed of one hidden layer. However, based on the problem’s
complexity, it can contain two or more hidden layers [126,127].

Figure 1. A three-layer multi-layer perceptron (MLP).

Input nodes receive the data. Each node assigns (i.e., multiplies) a specific weight
factor (W), and the obtained value is added to a bias factor (b). Lastly, an activation
function (f ) is applied to the whole term to generate the proposed neuron’s response. It is
mathematically expressed by Equation (1) as follows:

O = f (∑ IW + b). (1)

2.2. Stochastic Fractal Search

Proposed by Salimi [128], stochastic fractal search (SFS) is a recently developed meta-
heuristic algorithm. This method is based on the fractal mathematical concept and the
diffusion feature. Mosbah and El-Hawary [129] used this approach for training an ANN.
The SFS draws on two major processes, namely, diffusing and updating for handling the
optimization task. During diffusion, the points exploit the space by diffusing around their
current location. It helps the algorithm to protect the solution against local minima. This
movement leads to a so-called process Gaussian walk that is mathematically described as
follows [130].

GS1 = G
(
mnBp, δ

)
+ (a1 p1 − a1 p1) (2)

GS2 = G
(
mnp, δ

)
(3)

δ =

∣∣∣∣ log(z)
z

(pi − pb)

∣∣∣∣, (4)

where G (mn, δ) indicates the Gaussian distribution function with mean mn and standard
deviations δ. z shows the iteration, and two terms a1 and a2 are random values varying
from 0 to 1. Moreover, mnp and mnBp equal to pi (the position of a given individual) and
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pb (the position of the best individual), respectively. The role of log (z)
z lies in reducing the

jump size, which leads to a more localized investigation.
For increasing the exploring ability of the population moving near the present location,

two measures may be considered acting on every different vector index and the whole
population. After ranking the population in the first measure, they receive a probability
index based on the following equation:

ppi =
rank (pi)

Npop
, (5)

where Npop represents the number of the agents. Equation (6) shows how the qth com-
ponent of the agent i is updated provided that ppi < a (a random number that could be
between 0 and 1), otherwise no change takes place.

pz+1
i (q) = pz

s (q)− a(pz
u (q)− pz

i (q)), (6)

where pu and ps are random individuals.
Over the second measure, all individuals updated in Equation (6) go through

Equation (5) to be ranked provided that ppi < a, while for pz+1
i , the recent individual

is updated by the following equations:

pn
i (q) = pz+1

i − µ(pz+1
s − pu) f or µ ≤ 0.5 (7)

pn
i (q) = pz+1

i + µ(pz+1
s − pz+1

u ) f or µ > 0.5, (8)

where pz+1
s and pz+1

u denote random agents obtained from the first measure. Moreover, µ
stands for a number generated by Gaussian distribution [131].

2.3. Benchmark Optimizers

As mentioned, the grasshopper optimization algorithm (GOA) and the firefly algo-
rithm (FA) are used to create benchmark hybrids of ANN. Like any other algorithms, these
techniques implement their certain search method to attain a globally optimal solution for
a given problem [132]. As the name implies, the GOA is inspired by the herding behavior
of grasshoppers in nature. It was designed by Saremi et al. [133] in two significant steps,
including exploration and exploitation. The herd members (i.e., the grasshoppers) fly
to find food, where their swimming movement is affected by three parameters of social
relationship, gravity force, and wind advection. More details about the GOA can be found
in previous studies [134–136].

The FA is also a capable nature-inspired search scheme proposed by Yang [137]. The
FA represents the social flashing behavior of fireflies. The intensity variation of light and
attractiveness formulation are two crucial ingredients of this algorithm [138]. Three basic
rules of the FA are (i) the individuals are unisex and are attracted to each other regardless
of gender, (ii) the more brightness, the higher attractiveness, and (iii) the objective function
of the problem determines the brightness of a firefly. More mathematical information about
the fireflies’ interaction is well-explained in references such as [139–141].

3. Data and Statistical Analysis

As is known, using reliable data plays an essential role in the proper development
of intelligent models. In the case of this study, the information of a residential building is
used. The database is produced by a computer simulation in Ecotect [142] environment.
Tsanas and Xifara [143] generated it, and it is now available on http://archive.ics.uci.edu/
ml/datasets/Energy+efficiency (accessed on 13 December 2020).

By analyzing 12 different buildings (with a total volume of 771.75 m3), the HL and

CL [144] of 768 cases are collected when relative compactness (RC = 6V
2
3

A , which indicates
the ratio between the surface area (A) and the corresponding volume (V) [145]), surface

http://archive.ics.uci.edu/ml/datasets/Energy+efficiency
http://archive.ics.uci.edu/ml/datasets/Energy+efficiency
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area (SA), wall area (WA), roof area (RA), overall height (OH) [144,146], orientation, glaz-
ing area (GA, indicating the overall area measured using rough opening consisting of
the glazing, frame and sash [147]), and glazing area distribution (GAD, indicating the
distribution of the GA within the entire building) [144] are taken as influential parameters
(i.e., independent factors).

Note that the orientation consists of the north, east, south, and west, the GA receives
four values of 0%, 10%, 25%, and 40% of the floor area [144,146], and the GAD is classified
into six groups as follows: (i) uniform (one-fourth glazing on each side), (ii) north: 55%
on the north and 15% on the remaining sides each, (iii) east: 55% on the east side and 15%
on the remaining sides each, (iv) south: 55% on the south side and 15% on the remaining
sides each, (v) west: 55% on the west side and 15% on the remaining sides each, and (vi) no
glazing areas [148]. Figure 2 shows the types of building with respect to the RC, which are
mostly orthogonal polyhedral adapted from [119].

Figure 2. Building shapes with respect to the relative compactness (RC) values.

The statistical description of the parameters (in terms of average value, sample vari-
ance, standard error, minimum, and maximum) are presented in Table 1. Figure 3 also
illustrates the relationship between the CL and the mentioned parameters.

Table 1. Statistical indices to describe the input/target variable(s).

Features
Descriptive Index

Mean Standard Error Sample Variance Minimum Maximum

Relative Compactness (m) 0.76 0.00 0.01 0.62 0.98
Surface of the area (m2) 671.71 3.18 7759.16 514.50 808.50

Area of the wall (m2) 318.50 1.57 1903.27 245.00 416.50
Area of the roof (m2) 176.60 1.63 2039.96 110.25 220.50

Height (m) 5.25 0.06 3.07 3.50 7.00
Orientation (-) 3.50 0.04 1.25 2.00 5.00

Area of the glazing (m2) 0.23 0.00 0.02 0.00 0.40
Area distribution of the Glazing (-) 2.81 0.06 2.41 0.00 5.00

Cooling load (kWh/m2) 24.59 0.34 90.50 10.90 48.03
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Figure 3. The obtained cooling load (CL) values vs. influential factors.

In order to develop the proposed models, the dataset should be divided into two
parts, namely, training and testing groups. In this study, it is conducted with respect to the
broadly taken proportion of 80:20. In other words, out of all 768 data, 80% (i.e., 614 samples)
are used in the training phase for analyzing the relationship between the CL and influential
parameters, and the remaining 20% (i.e., 154 samples) are considered as testing data. This
group is provided to the trained networks to assess their generalization capability.

In this dataset, some nominal parameters (e.g., orientations of north, east, south,
and west) are represented by values (Figure 3) to be readable for the proposed neural
system. These conversions are common ways for making the data accommodable with
the mechanism of the model. For example, Moayedi et al. [149] replaced some nominal
conditioning factors of a geotechnical issue with values. Apart from this, ANNs are known
as powerful classifiers (for diagnoses issues [150] and natural hazard prediction [151]),
meaning that they can nicely interpret the relationships between input parameters (or their
representative values) and the given output by assigning weight factors. It is worth noting
that the data are used in their original format (preferred over the normalized format), due
to some factors. Most importantly, first, as Figure 3 shows, there is no large scattering or
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abrupt change in the behavior of the samples, and second, since a new method is going
to be examined, the condition of the problem is better to remain the same as original in
order to avoid unwanted effects. Nonetheless, the effect of normalization seems worth
investigation in artificial intelligence models.

4. Results and Discussion

This study aims to evaluate the applicability of three notions of metaheuristic algo-
rithms, namely, stochastic fractal search, grasshopper optimization algorithm, and firefly
algorithm in the early estimation of cooling load in energy-efficient buildings. In this
research, the algorithms are contributed to the problem by optimizing the parameters of an
ANN used for estimating the CL by analyzing environmental parameters. The prediction
results of the MLP neural network (MLPNN) tool, and the GOA–ANN, FA–ANN, and
SFS–ANN ensembles, are presented and discussed in this part.

4.1. Hybridizing the MLPNN Using SFS, FA, and GOA

For executing the models, this study uses MATLAB (an abbreviation of "matrix lab-
oratory, The University of New Mexico, New Mexico, US) programming language on a
laptop system with these processing characteristics: Intel (R) Core (TM) i5-4460 CPU @
3.20Hz RAM 6 Gb. In order to optimize an ANN using optimizer algorithms, they should
be mathematically synthesized [122,152]. However, before doing this, the best structure
of the ANN should be determined. To this end, the influential parameters, especially
the number of hidden neurons, should be optimized. Based on previous studies and the
authors’ experience, tangent–sigmoid (Tansig) is selected as the activation function of the
ANN neurons. Then, 10 different MLPNN structures (with the number of hidden neurons
from 1 to 10) are tested, and it was shown that six neurons generate the most reliable
hidden layer. Note that this model was trained by Levenberg–Marquardt [153], which is a
powerful candidate for this task.

Next, the predictive structure of the proposed MLPNN is provided to the GOA, FA,
and SFS algorithms to construct the hybrid models. Given the training dataset, these
algorithms try to find highly optimized weights and biases to build an efficient MLPNN. A
total of 1000 repetitions is considered for each algorithm to have enough convergence. For
each iteration, an evaluation is carried out by means of an objective function, which is set
root mean square error (RMSE) in this study. The RMSE is formulated as follows:

RMSE =

√
1
Q ∑Q

i=1

[(
CLiobserved − CLipredicted

)]2
, (9)

where the number of involved data is shown by Q, CLi observed, and CLi predicted stand for the
CL values obtained by Tsanas and Xifara [143] and our intelligent models, respectively.

The size of the working population is an influential factor for the performance of the
implemented ensemble models. Thus, a trial-and-error process is adopted to ensure that
the best population size is used during the optimization. Each model is implemented with
nine population sizes of 10, 25, 50, 75, 100, 200, 300, 400, and 500, and the RMSE of the
latest iteration is recorded as the best response. The results are shown in Figure 4a. As is
seen, the best optimization results for the GOA, FA, and SFS algorithms with 400, 100, and
400 population sizes, respectively. The optimization curves of the mentioned structures
are also shown in Figure 4b–d. The other parameters of the SFS algorithm (maximum
diffusion = 2 and the type of walk that was the first Gaussian walk) and three parameters
of the FA algorithm (α = 0.5, β = 0.2, and γ = 0.1) were manually tuned based on previous
experiences or by trial and error. These models are then used to estimate the CL.
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Figure 4. (a) Sensitivity analysis and (b–d) best optimization curves.

4.2. Accuracy Criteria

Along with the RMSE, mean absolute error (MAE) is used to report the error of
prediction in both training and testing phases. Moreover, the accommodation of the results
is evaluated by the coefficient of determination (R2), which varies from 0 to 1. The larger
the R2 is, the higher the regression between the results becomes. These two indices (i.e.,
MAE and R2) are expressed by Equations (10) and (11), respectively.

MAE =
1
Q

Q

∑
I=1

∣∣∣CLiobserved − CLipredicted

∣∣∣ (10)
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R2 = 1 −
∑Q

i=1 (CLipredicted − CLiobserved)
2

∑Q
i=1 (CLiobserved − CLobserved)

2 , (11)

where the average of CLi observed values are addressed by CLobserved.

4.3. Accuracy Evaluation

In the training phase, assessing the products showed a good understanding of the
relationship between the CL and considered inputs for all used predictors. A comparison
between the measured and predicted values of CL is also presented in Figure 5. It can be
observed that the models can correctly forecast the overall CL pattern.

Figure 5. Cont.
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Figure 5. The measured CLs versus those predicted by (a) MLPNN, (b) GOA–ANN (GOA-optimized
artificial neural network), (c) FA–ANN (FA-optimized artificial neural network), and (d) SFS–ANN
(SFS-optimized artificial neural network) models.

In addition, the used error criteria indicate a reasonable error in the learning process.
In this regard, the RMSE obtained 3.3916, 2.7725, 3.0812, and 2.2824, respectively, for the
MLPNN, GOA–ANN, FA–ANN, and SFS–ANN, respectively. It demonstrates nearly 18%
and 9% accuracy enhancement by incorporating the GOA and FA, and more considerably,
around 33% by employing the SFS. Reducing the MAE values from 2.6511 to 1.8972 (by
28.44%), 2.1468 (by 19.02%), and 1.6272 (by 38.62%) is another evidence for the efficacy of
the applied metaheuristic algorithms. Moreover, the correlation for the training results is
reported by the obtained R2s of 0.8804, 0.9156, 0.8957, and 0.9428.

Figure 6 illustrates the regression chart for the testing data. According to this figure,
the correlation of the MLPNN results grew from 88% to over 90% after functioning all
three metaheuristic algorithms. It is also shown that with an R2 of 0.9401, the SFS–ANN
produced the most consistent outputs, followed by the GOA–ANN with 0.9123 and FA–
ANN with 0.9006. A comparison between the estimated values for the largest and lowest
CLs highlights the capability of the models better (Table 2).

Figure 6. The consistency of the measured CLs with those predicted by (a) MLPNN, (b) GOA–ANN,
(c) FA–ANN, and (d) SFS–ANN models in the testing phase.
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Table 2. Relative errors for predicting five maximum/minimum CL values.

Measured
Values

Predicted Values Error (%)

MLPNN GOA-ANN FA-ANN SFS-ANN MLPNN GOA-ANN FA-ANN SFS-ANN

Minimum

11.17 11.07 11.22 13.08 11.82 0.93 0.45 17.14 5.80

11.27 10.73 11.82 12.96 11.07 4.77 4.92 14.97 1.78

11.73 11.41 12.67 13.14 12.01 2.70 8.04 12.03 2.40

12.04 17.11 15.12 14.60 12.65 42.15 25.58 21.28 5.09

13.43 10.39 12.89 13.52 13.13 22.65 4.03 0.68 2.20

Maximum

41.07 34.85 34.66 32.89 36.96 15.13 15.60 19.91 10.00

42.86 34.04 34.51 32.83 36.32 20.59 19.49 23.39 15.26

44.18 38.95 39.27 37.72 41.58 11.83 11.12 14.63 5.89

45.52 36.61 36.89 35.61 39.45 19.57 18.96 21.77 13.32

45.97 38.77 37.14 35.72 39.20 15.67 19.21 22.30 14.72

Moreover, the evaluation of the accuracy is conducted by measuring the error of
testing data. In this sense, Figure 7a to h depicts the calculated error (= measured CL–
predicted CL) for each sample, along with the histogram them showing the frequency of
errors in specific ranges. The calculated RMSEs of 3.1663, 2.7628, 2.9411, and 2.2828 indicate
around 12.74%, 7.11%, and 27.90% reduction in generalization error of ANN by using the
GOA, FA, and SFS techniques, respectively. As for MAE, these values are 22.89%, 17.54%,
and 35.56%, as the mean absolute error fell down from 2.4575 to 1.8951, 2.0265, and 1.5836.

Figure 7. Cont.



Energies 2021, 14, 1649 12 of 19

Figure 7. Direct errors and their frequency drawn for the testing results of (a,b) MLPNN, (c,d)
GOA–ANN, (e,f) FA–ANN, and (g,h) SFS–ANN.

Table 3 provides a summary of the results. Based on the resulted accuracy criteria,
three major points can be deduced as follows:

(i). All used artificial intelligence models are capable enough to learn properly, and
subsequently, estimate the CL pattern for buildings with unseen conditions;

(ii). Synthesizing with three metaheuristic algorithms of GOA, FA, and SFS can signifi-
cantly improve the regular ANN competency;

(iii). Comparing the efficiency of the used algorithms reveals the outstanding optimization
capability of SFS in optimizing the ANN. After SFS, GOA outperforms FA.

Table 3. A summary of accuracy indices obtained in this study.

Models

Network Results

Training Testing

RMSE MAE R2 RMSE MAE R2

MLPNN 3.3916 2.6511 0.8804 3.1663 2.4575 0.8881
GOA-ANN 2.7725 1.8972 0.9156 2.7628 1.8951 0.9123

FA-ANN 3.0812 2.1468 0.8957 2.9411 2.0265 0.9006
SFS-ANN 2.2824 1.6272 0.9428 2.2828 1.5836 0.9401

4.4. Presenting the Neural Predictive Formula

As explained, all evidence asserted the superiority of the SFS technique in optimizing
the ANN in this study. It means that the solution matrix (i.e., ANN weights and biases)
proffered by this scheme develops a more flexible neural network. Therefore, in this section,
the SFS–ANN ensemble is presented in the form of a neural-metaheuristic formulation
to predict the HL by taking the effective parameters into the equation. It is expressed by
Equation (12), which is made of six weights and one bias term belonging to the unique output
neuron. As can be derived, this formula needs to receive some inputs shown by A, B, . . . , F. These
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parameters symbolize the response of the hidden neurons (see Figure 1), which are calculated
by Equation (13). Considering the number of input parameters and hidden neurons, the
main matrix comprises eight columns and six rows, which are multiplied by the input
matrix. Next, the bias matrix is added, and the Tansig activation function is applied. It is
worth noting that to use this predictive formula, the values must be normalized, meaning
that the output of the equation is normalized and it should be transformed to the real extent.

CL SFS-ANN = 0.1898 × A + 0.9542 × B − 0.3437× C + 0.0578 × D + 0.8368 × E − 0.8240 × F − 0.2414 (12)

[A B C D E F] = Tansig (([1.0336 0.2712 − 0.9112 0.6027 0.8083 0.1966 0.1951 0.0468 0.7463 − 0.4399 − 0.6948 − 0.6665

−0.7741 − 0.5713 0.4305 − 0.5282 0.2431 − 0.8419 0.3706 − 0.4923 − 0.5359 − 0.0527

−1.0335 0.7495 0.4635 0.9505 0.6423 − 0.0044 − 1.0053 − 0.5465 − 0.3986 0.2620 − 0.2864 0.1648

−0.6859 − 1.1583 − 0.4441 0.1043 0.1328 − 0.9595 0.4652 0.9660 0.8049 − 0.8814 0.1853 − 0.5100

−0.4416 0.0622][RC SA WA RA OH Orientation GA GAD])

+[−1.7514 − 1.0509 − 0.3503 0.3503 − 1.0509 1.7514])

(13)

4.5. Future Projects

This study presented a reliable application of optimized intelligent models for dealing
with an important energy-related issue. Due to the improvements observed, the suggested
method can emerge in the form of a more user-friendly platform (such as graphical user
interface) in order to create an effective early prediction system that yields the cooling load
by receiving certain input factors. It could be of great interest for engineers and architects to
achieve the most optimal design of a residential building (e.g., with respect to geometries).

However, it is believed that the efficiency of the model can increase by doing a number
of ideas. Some of these ideas are related to the data. First, the results are recommended to
be compared with the case of using normalized data. It should be investigated which type
of data are more suitable for these simulations. Second, using an optimal number of inputs
may lead to a less complex method, and consequently, a fewer number of parameters to be
optimized. Associating the HL along with the CL turns the problem into a double-target
simulation, and the benefit should be evaluated versus the complexity caused. Another
potential subject could be working on different types of buildings in one specific study. By
doing this, the model can be generalized to many other usages of buildings. Lastly, further
studies are recommended to focus on comparative efforts in order to point out the most
optimal algorithm for coupling with neural networks or even other intelligent tools.

5. Conclusions

In this study, for the first time, three robust optimizers of stochastic fractal search,
grasshopper optimization algorithm, and firefly algorithm were applied to the problem of
the cooling load early prediction. These algorithms were used to optimize the performance
of a neural network by adjusting the computational parameters. The findings revealed,
firstly, that the applicability of neural computing for analyzing the non-linear relationship
between the CL and eight environmental parameters. Secondly, all three metaheuristic
algorithms could promisingly optimize the ANN for the betterment of accuracy. Last but
not least, from a comparison among the results, it was concluded that the SFS-based hybrid
model enjoys more accuracy than GOA and FA. The governing neural-metaheuristic
relationship of the SFS–ANN was also presented in the form of a viable formula for
mathematically predicting the CL.

Author Contributions: Conceptualization, methodology, H.M.; software, validation, writing—
original draft preparation, H.M. and A.M.; writing—review and editing, visualization, project
administration, A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was not funded.



Energies 2021, 14, 1649 14 of 19

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Support of the Alexander von Humboldt Foundation is acknowledged. Open
Access Funding by the Publication Fund of the TU Dresden.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Homoud, M.S. Computer-aided building energy analysis techniques. Build. Environ. 2001, 36, 421–433. [CrossRef]
2. Yang, W.; Zhao, Y.; Wang, D.; Wu, H.; Lin, A.; He, L. Using principal components analysis and IDW interpolation to determine

spatial and temporal changes of surface water quality of Xin’anjiang river in Huangshan, China. Int. J. Environ. Res. Public Health
2020, 17, 2942. [CrossRef] [PubMed]

3. Zuo, X.; Dong, M.; Gao, F.; Tian, S. The modeling of the electric heating and cooling system of the integrated energy system in the
coastal area. J. Coast. Res. 2020, 103, 1022–1029. [CrossRef]

4. Moayedi, H.; Gör, M.; Lyu, Z.; Bui, D.T. Herding Behaviors of grasshopper and Harris hawk for hybridizing the neural network
in predicting the soil compression coefficient. Measurement 2020, 152, 107389. [CrossRef]

5. Ahmadi-Karvigh, S.; Ghahramani, A.; Becerik-Gerber, B.; Soibelman, L. Real-time activity recognition for energy efficiency in
buildings. Appl. Energy 2018, 211, 146–160. [CrossRef]

6. Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc.
2017, 31, 183–212. [CrossRef]

7. McQuiston, F.C.; Parker, J.D. Heating, Ventilating, and Air Conditioning: Analysis and Design; John Wiley and Sons, Inc.: Hoboken,
NJ, USA, 1982.

8. Chen, Y.; He, L.; Guan, Y.; Lu, H.; Li, J. Life cycle assessment of greenhouse gas emissions and water-energy optimization for
shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville
shales. Energy Convers. Manag. 2017, 134, 382–398. [CrossRef]

9. Chen, Y.; He, L.; Li, J.; Zhang, S. Multi-criteria design of shale-gas-water supply chains and production systems towards optimal
life cycle economics and greenhouse gas emissions under uncertainty. Comput. Chem. Eng. 2018, 109, 216–235. [CrossRef]

10. Chen, Y.; Li, J.; Lu, H.; Yan, P. Coupling system dynamics analysis and risk aversion programming for optimizing the mixed
noise-driven shale gas-water supply chains. J. Clean. Prod. 2021, 278, 123209. [CrossRef]

11. Cheng, X.; He, L.; Lu, H.; Chen, Y.; Ren, L. Optimal water resources management and system benefit for the Marcellus shale-gas
reservoir in Pennsylvania and West Virginia. J. Hydrol. 2016, 540, 412–422. [CrossRef]

12. Han, X.; Zhang, D.; Yan, J.; Zhao, S.; Liu, J. Process development of flue gas desulphurization wastewater treatment in coal-fired
power plants towards zero liquid discharge: Energetic, economic and environmental analyses. J. Clean. Prod. 2020, 261, 121144.
[CrossRef]

13. He, L.; Chen, Y.; Zhao, H.; Tian, P.; Xue, Y.; Chen, L. Game-based analysis of energy-water nexus for identifying environmental
impacts during Shale gas operations under stochastic input. Sci. Total Environ. 2018, 627, 1585–1601. [CrossRef]

14. Li, Z.-G.; Cheng, H.; Gu, T.-Y. Research on dynamic relationship between natural gas consumption and economic growth in
China. Struct. Chang. Econ. Dyn. 2019, 49, 334–339. [CrossRef]

15. Liu, E.; Lv, L.; Yi, Y.; Xie, P. Research on the Steady Operation Optimization Model of Natural Gas Pipeline Considering the
Combined Operation of Air Coolers and Compressors. IEEE Access 2019, 7, 83251–83265. [CrossRef]

16. Su, Z.; Liu, E.; Xu, Y.; Xie, P.; Shang, C.; Zhu, Q. Flow field and noise characteristics of manifold in natural gas transportation
station. Oil Gas Sci. Technol. Rev. 2019, 74, 70. [CrossRef]

17. He, L.; Shen, J.; Zhang, Y. Ecological vulnerability assessment for ecological conservation and environmental management.
J. Environ. Manag. 2018, 206, 1115–1125. [CrossRef]

18. Lu, H.; Tian, P.; He, L. Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide
hotspots driven by socio-economic, geo-hydrologic and climatic conditions. Renew. Sustain. Energy Rev. 2019, 112, 788–796.
[CrossRef]

19. Tian, P.; Lu, H.; Feng, W.; Guan, Y.; Xue, Y. Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by
future climate change: A case study in Lhasa River Basin. CATENA 2020, 187, 104340. [CrossRef]

20. Zhang, K.; Ruben, G.B.; Li, X.; Li, Z.; Yu, Z.; Xia, J.; Dong, Z. A comprehensive assessment framework for quantifying climatic
and anthropogenic contributions to streamflow changes: A case study in a typical semi-arid North China basin. Environ. Model.
Softw. 2020, 128, 104704. [CrossRef]

21. Chen, H.; Chen, A.; Xu, L.; Xie, H.; Qiao, H.; Lin, Q.; Cai, K. A deep learning CNN architecture applied in smart near-infrared
analysis of water pollution for agricultural irrigation resources. Agric. Water Manag. 2020, 240, 106303. [CrossRef]

22. Feng, S.; Lu, H.; Tian, P.; Xue, Y.; Lu, J.; Tang, M.; Feng, W. Analysis of microplastics in a remote region of the Tibetan Plateau:
Implications for natural environmental response to human activities. Sci. Total Environ. 2020, 739, 140087. [CrossRef] [PubMed]

http://doi.org/10.1016/S0360-1323(00)00026-3
http://doi.org/10.3390/ijerph17082942
http://www.ncbi.nlm.nih.gov/pubmed/32344554
http://doi.org/10.2112/SI103-213.1
http://doi.org/10.1016/j.measurement.2019.107389
http://doi.org/10.1016/j.apenergy.2017.11.055
http://doi.org/10.1016/j.scs.2017.02.016
http://doi.org/10.1016/j.enconman.2016.12.019
http://doi.org/10.1016/j.compchemeng.2017.11.014
http://doi.org/10.1016/j.jclepro.2020.123209
http://doi.org/10.1016/j.jhydrol.2016.06.041
http://doi.org/10.1016/j.jclepro.2020.121144
http://doi.org/10.1016/j.scitotenv.2018.02.004
http://doi.org/10.1016/j.strueco.2018.11.006
http://doi.org/10.1109/ACCESS.2019.2924515
http://doi.org/10.2516/ogst/2019038
http://doi.org/10.1016/j.jenvman.2017.11.059
http://doi.org/10.1016/j.rser.2019.06.013
http://doi.org/10.1016/j.catena.2019.104340
http://doi.org/10.1016/j.envsoft.2020.104704
http://doi.org/10.1016/j.agwat.2020.106303
http://doi.org/10.1016/j.scitotenv.2020.140087
http://www.ncbi.nlm.nih.gov/pubmed/32758955


Energies 2021, 14, 1649 15 of 19

23. He, L.; Shao, F.; Ren, L. Sustainability appraisal of desired contaminated groundwater remediation strategies: An information-
entropy-based stochastic multi-criteria preference model. Environ. Dev. Sustain. 2020, 23, 1759–1779. [CrossRef]

24. Huang, Z.; Zheng, H.; Guo, L.; Mo, D. Influence of the Position of Artificial Boundary on Computation Accuracy of Conjugated
Infinite Element for a Finite Length Cylindrical Shell. Acoust. Aust. 2020, 48, 287–294. [CrossRef]

25. Jia, L.; Liu, B.; Zhao, Y.; Chen, W.; Mou, D.; Fu, J.; Wang, Y.; Xin, W.; Zhao, L. Structure design of MoS2@Mo2C on nitrogen-doped
carbon for enhanced alkaline hydrogen evolution reaction. J. Mater. Sci. 2020, 55, 16197–16210. [CrossRef]

26. Shirazi, M.G.; Rashid, A.S.B.A.; Nazir, R.B.; Rashid, A.H.B.A.; Moayedi, H.; Horpibulsuk, S.; Samingthong, W. Sustainable soil
bearing capacity improvement using natural limited life geotextile reinforcement—A review. Minerals 2020, 10, 479. [CrossRef]

27. Lv, Q.; Liu, H.; Yang, D.; Liu, H. Effects of urbanization on freight transport carbon emissions in China: Common characteristics
and regional disparity. J. Clean. Prod. 2019, 211, 481–489. [CrossRef]

28. Quan, Q.; Hao, Z.; Xifeng, H.; Jingchun, L. Research on water temperature prediction based on improved support vector
regression. Neural Comput. Appl. 2020, 58, 458–465. [CrossRef]

29. Yang, M.; Sowmya, A. An Underwater Color Image Quality Evaluation Metric. IEEE Trans. Image Process. 2015, 24, 6062–6071.
[CrossRef]

30. Zhang, B.; Xu, D.; Liu, Y.; Li, F.; Cai, J.; Du, L. Multi-scale evapotranspiration of summer maize and the controlling meteorological
factors in north China. Agric. For. Meteorol. 2016, 216, 1–12. [CrossRef]

31. Zhang, D.; Han, X.; Wang, H.; Yang, Q.; Yan, J. Experimental study on transient heat/mass transfer characteristics during static
flash of aqueous NaCl solution. Int. J. Heat Mass Transf. 2020, 152, 119543. [CrossRef]

32. Liu, J.; Liu, Y.; Wang, X. An environmental assessment model of construction and demolition waste based on system dynamics: A
case study in Guangzhou. Environ. Sci. Pollut. Res. 2020, 27, 37237–37259. [CrossRef]

33. Zhang, W. Parameter Adjustment Strategy and Experimental Development of Hydraulic System for Wave Energy Power
Generation. Symmetry 2020, 12, 711. [CrossRef]

34. Bui, X.-N.; Moayedi, H.; Rashid, A.S.A. Developing a predictive method based on optimized M5Rules–GA predicting heating
load of an energy-efficient building system. Eng. Comput. 2019, 36, 931–940. [CrossRef]

35. Gao, W.; Alsarraf, J.; Moayedi, H.; Shahsavar, A.; Nguyen, H. Comprehensive preference learning and feature validity for
designing energy-efficient residential buildings using machine learning paradigms. Appl. Soft Comput. 2019, 84, 105748.
[CrossRef]

36. Guo, Z.; Moayedi, H.; Foong, L.K.; Bahiraei, M. Optimal Modification of Heating, Ventilation, and Air Conditioning System
Performances in Residential Buildings Using the Integration of Metaheuristic Optimization and Neural Computing. Energy Build.
2020, 214, 109866. [CrossRef]

37. Jun, Z.; Kanyu, Z. A particle swarm optimization approach for optimal design of PID controller for temperature control in HVAC.
In Proceedings of the 2011 Third International Conference on Measuring Technology and Mechatronics Automation, 6–7 January
2011; pp. 230–233.

38. Moayedi, H.; Bui, T.D.; Dounis, A.; Lyu, Z.; Foong, K.L. Predicting Heating Load in Energy-Efficient Buildings Through Machine
Learning Techniques. Appl. Sci. 2019, 9, 4338. [CrossRef]

39. Moayedi, H.; Mu’azu, M.A.; Foong, L.K. Novel Swarm-based Approach for Predicting the Cooling Load of Residential Buildings
Based on Social Behavior of Elephant Herds. Energy Build. 2019, 206, 109579. [CrossRef]

40. Ghahramani, A.; Karvigh, S.A.; Becerik-Gerber, B. HVAC system energy optimization using an adaptive hybrid metaheuristic.
Energy Build. 2017, 152, 149–161. [CrossRef]

41. Tien Bui, D.; Moayedi, H.; Anastasios, D.; Kok Foong, L. Predicting Heating and Cooling Loads in Energy-Efficient Buildings
Using Two Hybrid Intelligent Models. Appl. Sci. 2019, 9, 3543. [CrossRef]

42. Zhou, G.; Moayedi, H.; Bahiraei, M.; Lyu, Z. Employing artificial bee colony and particle swarm techniques for optimizing a
neural network in prediction of heating and cooling loads of residential buildings. J. Clean. Prod. 2020, 254, 120082. [CrossRef]

43. Ghahramani, A.; Zhang, K.; Dutta, K.; Yang, Z.; Becerik-Gerber, B. Energy savings from temperature setpoints and deadband:
Quantifying the influence of building and system properties on savings. Appl. Energy 2016, 165, 930–942. [CrossRef]

44. Ferreira, P.; Ruano, A.; Silva, S.; Conceicao, E. Neural networks based predictive control for thermal comfort and energy savings
in public buildings. Energy Build. 2012, 55, 238–251. [CrossRef]

45. Ihara, T.; Gustavsen, A.; Jelle, B.P. Effect of facade components on energy efficiency in office buildings. Appl. Energy 2015, 158,
422–432. [CrossRef]

46. Park, J.; Lee, S.J.; Kim, K.H.; Kwon, K.W.; Jeong, J.-W. Estimating thermal performance and energy saving potential of residential
buildings using utility bills. Energy Build. 2016, 110, 23–30. [CrossRef]

47. Wang, Z.; Hong, T.; Piette, M.A. Building thermal load prediction through shallow machine learning and deep learning. Appl.
Energy 2020, 263, 114683. [CrossRef]

48. Zhao, X.; Ye, Y.; Ma, J.; Shi, P.; Chen, H. Construction of electric vehicle driving cycle for studying electric vehicle energy
consumption and equivalent emissions. Environ. Sci. Pollut. Res. 2020, 27, 37395–37409. [CrossRef]

49. Zhu, L.; Kong, L.; Zhang, C. Numerical Study on Hysteretic Behaviour of Horizontal-Connection and Energy-Dissipation
Structures Developed for Prefabricated Shear Walls. Appl. Sci. 2020, 10, 1240. [CrossRef]

50. Chao, L.; Zhang, K.; Li, Z.; Zhu, Y.; Wang, J.; Yu, Z. Geographically weighted regression based methods for merging satellite and
gauge precipitation. J. Hydrol. 2018, 558, 275–289. [CrossRef]

http://doi.org/10.1007/s10668-020-00650-z
http://doi.org/10.1007/s40857-020-00175-5
http://doi.org/10.1007/s10853-020-05107-2
http://doi.org/10.3390/min10050479
http://doi.org/10.1016/j.jclepro.2018.11.182
http://doi.org/10.1007/s00521-020-04836-4
http://doi.org/10.1109/TIP.2015.2491020
http://doi.org/10.1016/j.agrformet.2015.09.015
http://doi.org/10.1016/j.ijheatmasstransfer.2020.119543
http://doi.org/10.1007/s11356-019-07107-5
http://doi.org/10.3390/sym12050711
http://doi.org/10.1007/s00366-019-00739-8
http://doi.org/10.1016/j.asoc.2019.105748
http://doi.org/10.1016/j.enbuild.2020.109866
http://doi.org/10.3390/app9204338
http://doi.org/10.1016/j.enbuild.2019.109579
http://doi.org/10.1016/j.enbuild.2017.07.053
http://doi.org/10.3390/app9173543
http://doi.org/10.1016/j.jclepro.2020.120082
http://doi.org/10.1016/j.apenergy.2015.12.115
http://doi.org/10.1016/j.enbuild.2012.08.002
http://doi.org/10.1016/j.apenergy.2015.08.074
http://doi.org/10.1016/j.enbuild.2015.10.038
http://doi.org/10.1016/j.apenergy.2020.114683
http://doi.org/10.1007/s11356-020-09094-4
http://doi.org/10.3390/app10041240
http://doi.org/10.1016/j.jhydrol.2018.01.042


Energies 2021, 14, 1649 16 of 19

51. Li, T.; Xu, M.; Zhu, C.; Yang, R.; Wang, Z.; Guan, Z. A Deep Learning Approach for Multi-Frame In-Loop Filter of HEVC. IEEE
Trans. Image Process. 2019, 28, 5663–5678. [CrossRef] [PubMed]

52. Xu, M.; Li, T.; Wang, Z.; Deng, X.; Yang, R.; Guan, Z. Reducing Complexity of HEVC: A Deep Learning Approach. IEEE Trans.
Image Process. 2018, 27, 5044–5059. [CrossRef] [PubMed]

53. Fu, X.; Pace, P.; Aloi, G.; Yang, L.; Fortino, G. Topology Optimization Against Cascading Failures on Wireless Sensor Networks
Using a Memetic Algorithm. Comput. Netw. 2020, 177, 107327. [CrossRef]

54. Fu, X.; Yang, Y. Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks. Reliab. Eng. Syst.
Saf. 2020, 197, 106815. [CrossRef]

55. Li, C.; Hou, L.; Sharma, B.Y.; Li, H.; Chen, C.; Li, Y.; Zhao, X.; Huang, H.; Cai, Z.; Chen, H. Developing a new intelligent system
for the diagnosis of tuberculous pleural effusion. Comput. Methods Programs Biomed. 2018, 153, 211–225. [CrossRef]

56. Cao, B.; Zhao, J.; Lv, Z.; Gu, Y.; Yang, P.; Halgamuge, S.K. Multiobjective Evolution of Fuzzy Rough Neural Network via
Distributed Parallelism for Stock Prediction. IEEE Trans. Fuzzy Syst. 2020, 28, 939–952. [CrossRef]

57. Shi, K.; Wang, J.; Tang, Y.; Zhong, S. Reliable asynchronous sampled-data filtering of T–S fuzzy uncertain delayed neural networks
with stochastic switched topologies. Fuzzy Sets Syst. 2020, 381, 1–25. [CrossRef]

58. Shi, K.; Wang, J.; Zhong, S.; Tang, Y.; Cheng, J. Non-fragile memory filtering of T-S fuzzy delayed neural networks based on
switched fuzzy sampled-data control. Fuzzy Sets Syst. 2020, 394, 40–64. [CrossRef]

59. Zhu, Q. Research on Road Traffic Situation Awareness System Based on Image Big Data. IEEE Intell. Syst. 2020, 35, 18–26.
[CrossRef]

60. Zhang, X.; Wang, Y.; Chen, X.; Su, C.-Y.; Li, Z.; Wang, C.; Peng, Y. Decentralized adaptive neural approximated inverse control
for a class of large-scale nonlinear hysteretic systems with time delays. IEEE Trans. Syst. ManCybern. Syst. 2018, 49, 2424–2437.
[CrossRef]

61. Lv, Z.; Qiao, L. Deep belief network and linear perceptron based cognitive computing for collaborative robots. Appl. Soft Comput.
2020, 92, 106300. [CrossRef]

62. Qian, J.; Feng, S.; Li, Y.; Tao, T.; Han, J.; Chen, Q.; Zuo, C. Single-shot absolute 3D shape measurement with deep-learning-based
color fringe projection profilometry. Opt. Lett. 2020, 45, 1842–1845. [CrossRef] [PubMed]

63. Qian, J.; Feng, S.; Tao, T.; Hu, Y.; Li, Y.; Chen, Q.; Zuo, C. Deep-learning-enabled geometric constraints and phase unwrapping for
single-shot absolute 3D shape measurement. Apl Photonics 2020, 5, 046105. [CrossRef]

64. Qiu, T.; Shi, X.; Wang, J.; Li, Y.; Qu, S.; Cheng, Q.; Cui, T.; Sui, S. Deep Learning: A Rapid and Efficient Route to Automatic
Metasurface Design. Adv. Sci. 2019, 6, 1900128. [CrossRef]

65. Hu, L.; Hong, G.; Ma, J.; Wang, X.; Chen, H. An efficient machine learning approach for diagnosis of paraquat-poisoned patients.
Comput. Biol. Med. 2015, 59, 116–124. [CrossRef]

66. Shen, L.; Chen, H.; Yu, Z.; Kang, W.; Zhang, B.; Li, H.; Yang, B.; Liu, D. Evolving support vector machines using fruit fly
optimization for medical data classification. Knowl. Based Syst. 2016, 96, 61–75. [CrossRef]

67. Zhang, C.; Wang, H. Swing Vibration Control of Suspended Structure Using Active Rotary Inertia Driver System: Parametric
Analysis and Experimental Verification. Appl. Sci. 2019, 9, 3144. [CrossRef]

68. Zhang, X.; Fan, M.; Wang, D.; Zhou, P.; Tao, D. Top-k Feature Selection Framework Using Robust 0-1 Integer Programming. IEEE
Trans. Neural Netw. Learn. Syst. 2020, 1–15. [CrossRef]

69. Zhao, X.; Li, D.; Yang, B.; Chen, H.; Yang, X.; Yu, C.; Liu, S. A two-stage feature selection method with its application. Comput.
Electr. Eng. 2015, 47, 114–125. [CrossRef]

70. Liu, S.; Yu, W.; Chan, F.T.; Niu, B. A variable weight-based hybrid approach for multi-attribute group decision making under
interval-valued intuitionistic fuzzy sets. Int. J. Intell. Syst. 2020, 36, 1015–1052. [CrossRef]

71. Chen, H.-L.; Wang, G.; Ma, C.; Cai, Z.-N.; Liu, W.-B.; Wang, S.-J. An efficient hybrid kernel extreme learning machine approach
for early diagnosis of Parkinson’s disease. Neurocomputing 2016, 184, 131–144. [CrossRef]

72. Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C. Toward an optimal kernel extreme learning machine
using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017, 267, 69–84.
[CrossRef]

73. Wang, S.-J.; Chen, H.-L.; Yan, W.-J.; Chen, Y.-H.; Fu, X. Face recognition and micro-expression recognition based on discriminant
tensor subspace analysis plus extreme learning machine. Neural Process. Lett. 2014, 39, 25–43. [CrossRef]

74. Xia, J.; Chen, H.; Li, Q.; Zhou, M.; Chen, L.; Cai, Z.; Fang, Y.; Zhou, H. Ultrasound-based differentiation of malignant and benign
thyroid Nodules: An extreme learning machine approach. Comput. Methods Programs Biomed. 2017, 147, 37–49. [CrossRef]

75. Zhang, Y.; Liu, R.; Wang, X.; Chen, H.; Li, C. Boosted binary Harris hawks optimizer and feature selection. Eng. Comput. 2020,
1–30. [CrossRef]

76. Wang, M.; Chen, H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft
Comput. J. 2020, 88, 105946. [CrossRef]

77. Cao, Y.; Li, Y.; Zhang, G.; Jermsittiparsert, K.; Nasseri, M. An efficient terminal voltage control for PEMFC based on an improved
version of whale optimization algorithm. Energy Rep. 2020, 6, 530–542. [CrossRef]

78. Xu, X.; Chen, H.-L. Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput. 2014, 18,
797–807. [CrossRef]

http://doi.org/10.1109/TIP.2019.2921877
http://www.ncbi.nlm.nih.gov/pubmed/31217108
http://doi.org/10.1109/TIP.2018.2847035
http://www.ncbi.nlm.nih.gov/pubmed/29994256
http://doi.org/10.1016/j.comnet.2020.107327
http://doi.org/10.1016/j.ress.2020.106815
http://doi.org/10.1016/j.cmpb.2017.10.022
http://doi.org/10.1109/TFUZZ.2020.2972207
http://doi.org/10.1016/j.fss.2018.11.017
http://doi.org/10.1016/j.fss.2019.09.001
http://doi.org/10.1109/MIS.2019.2942836
http://doi.org/10.1109/TSMC.2018.2827101
http://doi.org/10.1016/j.asoc.2020.106300
http://doi.org/10.1364/OL.388994
http://www.ncbi.nlm.nih.gov/pubmed/32236013
http://doi.org/10.1063/5.0003217
http://doi.org/10.1002/advs.201900128
http://doi.org/10.1016/j.compbiomed.2015.02.003
http://doi.org/10.1016/j.knosys.2016.01.002
http://doi.org/10.3390/app9153144
http://doi.org/10.1109/TNNLS.2020.3009209
http://doi.org/10.1016/j.compeleceng.2015.08.011
http://doi.org/10.1002/int.22329
http://doi.org/10.1016/j.neucom.2015.07.138
http://doi.org/10.1016/j.neucom.2017.04.060
http://doi.org/10.1007/s11063-013-9288-7
http://doi.org/10.1016/j.cmpb.2017.06.005
http://doi.org/10.1007/s00366-020-01028-5
http://doi.org/10.1016/j.asoc.2019.105946
http://doi.org/10.1016/j.egyr.2020.02.035
http://doi.org/10.1007/s00500-013-1089-4


Energies 2021, 14, 1649 17 of 19

79. Zhao, X.; Zhang, X.; Cai, Z.; Tian, X.; Wang, X.; Huang, Y.; Chen, H.; Hu, L. Chaos enhanced grey wolf optimization wrapped
ELM for diagnosis of paraquat-poisoned patients. Comput. Biol. Chem. 2019, 78, 481–490. [CrossRef]

80. Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation strategy for global
optimization. Inf. Sci. 2019, 492, 181–203. [CrossRef]

81. Cao, B.; Dong, W.; Lv, Z.; Gu, Y.; Singh, S.; Kumar, P. Hybrid Microgrid Many-Objective Sizing Optimization With Fuzzy Decision.
IEEE Trans. Fuzzy Syst. 2020, 28, 2702–2710. [CrossRef]

82. Cao, B.; Fan, S.; Zhao, J.; Yang, P.; Muhammad, K.; Tanveer, M. Quantum-enhanced multiobjective large-scale optimization via
parallelism. Swarm Evol. Comput. 2020, 57, 100697. [CrossRef]

83. Cao, B.; Wang, X.; Zhang, W.; Song, H.; Lv, Z. A Many-Objective Optimization Model of Industrial Internet of Things Based on
Private Blockchain. IEEE Netw. 2020, 34, 78–83. [CrossRef]

84. Cao, B.; Zhao, J.; Gu, Y.; Fan, S.; Yang, P. Security-Aware Industrial Wireless Sensor Network Deployment Optimization. IEEE
Trans. Ind. Inform. 2020, 16, 5309–5316. [CrossRef]

85. Cao, B.; Zhao, J.; Gu, Y.; Ling, Y.; Ma, X. Applying graph-based differential grouping for multiobjective large-scale optimization.
Swarm Evol. Comput. 2020, 53, 100626. [CrossRef]

86. Cao, B.; Zhao, J.; Yang, P.; Gu, Y.; Muhammad, K.; Rodrigues, J.J.P.C.; de Albuquerque, V.H.C. Multiobjective 3-D Topology
Optimization of Next-Generation Wireless Data Center Network. IEEE Trans. Ind. Inform. 2020, 16, 3597–3605. [CrossRef]

87. Qu, S.; Han, Y.; Wu, Z.; Raza, H. Consensus Modeling with Asymmetric Cost Based on Data-Driven Robust Optimization. Group
Decis. Negot. 2020, 30, 1–38. [CrossRef]

88. Zhao, X.; Li, D.; Yang, B.; Ma, C.; Zhu, Y.; Chen, H. Feature selection based on improved ant colony optimization for online
detection of foreign fiber in cotton. Appl. Soft Comput. 2014, 24, 585–596. [CrossRef]

89. Sun, G.; Yang, B.; Yang, Z.; Xu, G. An adaptive differential evolution with combined strategy for global numerical optimization.
Soft Comput. 2019, 24, 1–20. [CrossRef]

90. Abedini, M.; Zhang, C. Performance Assessment of Concrete and Steel Material Models in LS-DYNA for Enhanced Numerical
Simulation, A State of the Art Review. Arch. Comput. Methods Eng. 2020, 28, 1–22. [CrossRef]

91. Gholipour, G.; Zhang, C.; Mousavi, A.A. Numerical analysis of axially loaded RC columns subjected to the combination of impact
and blast loads. Eng. Struct. 2020, 219, 110924. [CrossRef]

92. Liu, J.; Wu, C.; Wu, G.; Wang, X. A novel differential search algorithm and applications for structure design. Appl. Math. Comput.
2015, 268, 246–269. [CrossRef]

93. Mou, B.; Zhao, F.; Qiao, Q.; Wang, L.; Li, H.; He, B.; Hao, Z. Flexural behavior of beam to column joints with or without an
overlying concrete slab. Eng. Struct. 2019, 199, 109616. [CrossRef]

94. Wang, J.; Huang, Y.; Wang, T.; Zhang, C.; Liu, Y.-H. Fuzzy finite-time stable compensation control for a building structural
vibration system with actuator failures. Appl. Soft Comput. 2020, 93, 106372. [CrossRef]

95. Wu, C.; Wu, P.; Wang, J.; Jiang, R.; Chen, M.; Wang, X. Critical review of data-driven decision-making in bridge operation and
maintenance. Struct. Infrastruct. Eng. 2020, 17, 1–24. [CrossRef]

96. Zhang, C.; Abedini, M.; Mehrmashhadi, J. Development of pressure-impulse models and residual capacity assessment of RC
columns using high fidelity Arbitrary Lagrangian-Eulerian simulation. Eng. Struct. 2020, 224, 111219. [CrossRef]

97. Zhang, C.; Wang, H. Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical
modeling and experimental verification. Struct. Control Health Monit. 2020, 27, e2543. [CrossRef]

98. Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic algorithms: A comprehensive review. In Computational Intelligence
for Multimedia Big Data on the Cloud with Engineering Applications; Academic Press: Cambridge, MA, USA, 2018; pp. 185–231.

99. Chao, M.; Kai, C.; Zhiwei, Z. Research on tobacco foreign body detection device based on machine vision. Trans. Inst. Meas.
Control 2020, 42, 2857–2871. [CrossRef]

100. Liu, D.; Wang, S.; Huang, D.; Deng, G.; Zeng, F.; Chen, H. Medical image classification using spatial adjacent histogram based on
adaptive local binary patterns. Comput. Biol. Med. 2016, 72, 185–200. [CrossRef]

101. Xu, M.; Li, C.; Zhang, S.; Callet, P.L. State-of-the-Art in 360◦ Video/Image Processing: Perception, Assessment and Compression.
IEEE J. Sel. Top. Signal Process. 2020, 14, 5–26. [CrossRef]

102. Yue, H.; Wang, H.; Chen, H.; Cai, K.; Jin, Y. Automatic detection of feather defects using lie group and fuzzy fisher criterion for
shuttlecock production. Mech. Syst. Signal Process. 2020, 141, 106690. [CrossRef]

103. Zenggang, X.; Zhiwen, T.; Xiaowen, C.; Xue-min, Z.; Kaibin, Z.; Conghuan, Y. Research on Image Retrieval Algorithm Based on
Combination of Color and Shape Features. J. Signal Process. Syst. 2019, 93, 1–8. [CrossRef]

104. Zhang, T.; He, X.; Deng, Y.; Tsang, D.C.W.; Yuan, H.; Shen, J.; Zhang, S. Swine manure valorization for phosphorus and nitrogen
recovery by catalytic–thermal hydrolysis and struvite crystallization. Sci. Total Environ. 2020, 729, 138999. [CrossRef] [PubMed]

105. Hu, X.; Chong, H.-Y.; Wang, X. Sustainability perceptions of off-site manufacturing stakeholders in Australia. J. Clean. Prod. 2019,
227, 346–354. [CrossRef]

106. Zhang, B.; Niu, Z.; Wang, J.; Ji, D.; Zhou, T.; Liu, Y.; Feng, Y.; Hu, Y.; Zhang, J.; Fan, Y. Four-hundred gigahertz broadband
multi-branch waveguide coupler. Iet Microw. Antennas Propag. 2020, 14, 1175–1179. [CrossRef]

107. Keshtegar, B.; Heddam, S.; Sebbar, A.; Zhu, S.-P.; Trung, N.-T. SVR-RSM: A hybrid heuristic method for modeling monthly pan
evaporation. Environ. Sci. Pollut. Res. 2019, 26, 35807–35826. [CrossRef] [PubMed]

http://doi.org/10.1016/j.compbiolchem.2018.11.017
http://doi.org/10.1016/j.ins.2019.04.022
http://doi.org/10.1109/TFUZZ.2020.3026140
http://doi.org/10.1016/j.swevo.2020.100697
http://doi.org/10.1109/MNET.011.1900536
http://doi.org/10.1109/TII.2019.2961340
http://doi.org/10.1016/j.swevo.2019.100626
http://doi.org/10.1109/TII.2019.2952565
http://doi.org/10.1007/s10726-020-09707-w
http://doi.org/10.1016/j.asoc.2014.07.024
http://doi.org/10.1007/s00500-019-03934-3
http://doi.org/10.1007/s11831-020-09483-5
http://doi.org/10.1016/j.engstruct.2020.110924
http://doi.org/10.1016/j.amc.2015.06.036
http://doi.org/10.1016/j.engstruct.2019.109616
http://doi.org/10.1016/j.asoc.2020.106372
http://doi.org/10.1080/15732479.2020.1833946
http://doi.org/10.1016/j.engstruct.2020.111219
http://doi.org/10.1002/stc.2543
http://doi.org/10.1177/0142331220929816
http://doi.org/10.1016/j.compbiomed.2016.03.010
http://doi.org/10.1109/JSTSP.2020.2966864
http://doi.org/10.1016/j.ymssp.2020.106690
http://doi.org/10.1007/s11265-019-01508-y
http://doi.org/10.1016/j.scitotenv.2020.138999
http://www.ncbi.nlm.nih.gov/pubmed/32498172
http://doi.org/10.1016/j.jclepro.2019.03.258
http://doi.org/10.1049/iet-map.2020.0090
http://doi.org/10.1007/s11356-019-06596-8
http://www.ncbi.nlm.nih.gov/pubmed/31705408


Energies 2021, 14, 1649 18 of 19

108. Seo, B.; Yoon, Y.B.; Cho, S.S.S. ANN-based thermal load prediction approach for advanced controls in building energy systems.
ARCC Conf. Repos. 2019, 1, 365–374.

109. Halon, T.; Pelinska-Olko, E.; Szyc, M.; Zajaczkowski, B. Predicting Performance of a District Heat Powered Adsorption Chiller by
Means of an Artificial Neural Network. Energies 2019, 12, 3328. [CrossRef]

110. Nguyen, H.; Moayedi, H.; Sharifi, A.; Amizah, W.J.W.; Safuan, A.R.A. Proposing a novel predictive technique using M5Rules-PSO
model estimating cooling load in energy-efficient building system. Eng. Comput. 2019, 35, 857–866. [CrossRef]

111. Koschwitz, D.; Spinnräker, E.; Frisch, J.; van Treeck, C. Long-term urban heating load predictions based on optimized retrofit
orders: A cross-scenario analysis. Energy Build. 2020, 208, 109637. [CrossRef]

112. Roy, S.S.; Samui, P.; Nagtode, I.; Jain, H.; Shivaramakrishnan, V.; Mohammadi-ivatloo, B. Forecasting heating and cooling loads of
buildings: A comparative performance analysis. J. Ambient Intell. Humaniz. Comput. 2019, 11, 1253–1264. [CrossRef]

113. Nilashi, M.; Dalvi-Esfahani, M.; Ibrahim, O.; Bagherifard, K.; Mardani, A.; Zakuan, N. A soft computing method for the prediction
of energy performance of residential buildings. Measurement 2017, 109, 268–280. [CrossRef]

114. Pezeshki, Z.; Mazinani, S.M. Comparison of artificial neural networks, fuzzy logic and neuro fuzzy for predicting optimization of
building thermal consumption: A survey. Artif. Intell. Rev. 2019, 52, 495–525. [CrossRef]

115. Naji, S.; Shamshirband, S.; Basser, H.; Keivani, A.; Alengaram, U.J.; Jumaat, M.Z.; Petković, D. Application of adaptive neuro-fuzzy
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