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Abstract: The access of large-scale electric vehicles (EVs) will increase the network loss of medium 
voltage distribution network, which can be alleviated by adjusting the network structure and or-
derly charging for EVs. However, it is difficult to accurately evaluate the charging efficiency in the 
orderly charging of electric vehicle (EV), which will cause the scheduling model to be insufficiently 
accurate. Therefore, this paper proposes an EV double-layer scheduling model based on the isolated 
bidirectional DC–DC (IBDC) converter optimal efficiency model, and establishes the hierarchical 
and partitioned optimization model with feeder–branch–load layer. Firstly, based on the actual to-
pology of medium voltage distribution network, a dynamic reconfiguration model between switch-
ing stations is established with the goal of load balancing. Secondly, with the goal of minimizing 
the branch layer network loss, a dynamic reconstruction model under the switch station is estab-
lished, and the chaotic niche particle swarm optimization is proposed to improve the global search 
capability and iteration speed. Finally, the power transmission loss model of IBDC converter is es-
tablished, and the optimal phase shift parameter is determined to formulate the double-layer col-
laborative optimization operation strategy of electric vehicles. The example verifies that the above 
model can improve the system load balancing degree and reduce the operation loss of medium 
voltage distribution network. 

Keywords: medium voltage distribution network; switch station; electric vehicle; DC–DC con-
verter; reconfiguration; orderly charging  
 

1. Introduction 
In recent years, due to the large-scale access of distributed new energy sources and 

electric vehicles (EVs), the economy and reliability of the distribution network have been 
severely challenged [1,2]; especially with the surge of electric vehicle (EV) users, disor-
derly charging behavior will aggravate the imbalance of the distribution network load [3]. 
Therefore, there are usually two solutions to the above problems. The first is distribution 
network reconstruction [4,5], that is, the topology of the distribution network is adjusted, 
and then the power flow direction is adjusted by changing the closing and opening of 
switches. The other is optimal scheduling for controllable load.  

Nowadays, relying on the rapid development of information collection, communica-
tion, and processing technology, the active distribution network can collect a large 
amount of data to provide a data basis for the distribution network reconfiguration plan. 
Thus, by changing the switch combination state, load balance can be achieved, system loss 
can be reduced, and the economic reliability of the distribution network can be improved 
[6,7]. Taking into account the temporal and spatial characteristics of loads such as EVs, 
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and the uncertainty of the charging time, it is necessary to dynamically adjust the switch 
state to adapt to the impact of this uncertainty [8]. Some articles have researched dynamic 
reconstruction [9–11]. Furthermore, in the actual distribution network, the switching sta-
tion is a facility that connects or cuts the user’s electrical equipment selectively through 
the switching device, which is usually taken as the research object. The topological struc-
ture under the switch station is also complicated. There may be a contact relationship be-
tween the ring network cabinets under a certain switch station, and there may also be a 
contact relationship between the ring network cabinets under different switch stations 
[12]. Few people have established an optimization model under the switch station. If the 
topology reconstruction of the branch layer under the switch station is not considered, the 
line loss problem under the switch station is still not solved. Therefore, not only the re-
construction between the switch stations, but also the reconstruction under the switch sta-
tion must be considered. 

On the other hand, after the optimization of topology is completed, orderly charging 
optimization scheduling for EVs can be performed to further optimize the line loss in the 
branch layer [13–15]. However, in the process of dispatching EVs, there are two problems 
that need to be solved urgently. The first one is the optimization of the dispatching 
method. The traditional method is mostly direct dispatch, that is, the dispatching center 
directly dispatches all EVs under the transformer area. Considering the increasing num-
ber of EVs in the future, the solution dimension and difficulty of this method gradually 
increase. Therefore, a new scheduling method should be established to reduce the diffi-
culty of solving [16,17]. The second one is the determination of charging efficiency param-
eters. The charging efficiency is affected by the converter and heat dissipation. The loss of 
an isolated bidirectional DC–DC (IBDC) converter under dual-phase-shift (DPS) control 
mainly includes switching loss [18], on-state loss, copper loss, and iron loss caused [19]. 
Previous studies only roughly estimated the charging efficiency. Modeling and analysis 
of these main factors are required to achieve the optimal charging efficiency. Once the 
optimal charging efficiency is determined, an orderly charging optimization model can be 
established more accurately. 

Therefore, this paper establishes a power transmission loss model in the IBDC con-
verter, and the loss is minimized by adjusting parameters. Then, this paper calculates the 
optimal charging efficiency and applies it to the orderly charging model. Prior to this, this 
paper proposes a method of topology dynamic reconstruction, which not only optimizes 
the switch state between switch stations, but also optimizes the specific topology structure 
under the switch station. The main contributions of this paper can be summarized as fol-
lows:  
1. Compared with most previous researches on dynamic reconstruction, this paper 

takes the switch station as the research object. This paper not only establishes a dy-
namic reconfiguration model between switch stations, but also proposes a dynamic 
reconfiguration model under a certain switch station. Especially, in the branch layer 
optimization, the chaotic niche particle swarm optimization (CNPSO) is proposed to 
speed up the solution convergence speed and prevent falling into the local optimum. 

2. In order to reduce the solving difficulty of dispatch, this paper proposes a double-
layer distributed optimization scheduling model. Specifically, multiple aggregators 
are set under a switch station, and the multi-level information interaction mechanism 
of network–aggregator–vehicle is established to formulate the charging strategy of 
electric vehicles. 

3. This paper innovatively proposes an orderly charging model for electric vehicles con-
sidering isolated bidirectional DC–DC converter optimal efficiency model. Specifi-
cally, the power loss model of the IBDC converter is established to determine the 
optimal shift ratio parameter for a given transmission power, and the optimal effi-
ciency is applied to the ordered charging model.  
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The rest of this paper is organized as follows: In Section 2, medium voltage distribu-
tion network dynamic reconfiguration model with EV is established. Specifically, a dy-
namic reconstruction model between switch stations is established and an internal dy-
namic reconfiguration model under a switch station is established. Subsequently, not only 
the principle of dual phase shift control is analyzed, but the transmission power loss 
model is established in Section 3. Furthermore, the orderly charging model of EV consid-
ering IBDC converter optimal efficiency is set up in Section 4. Simulation analysis is im-
plemented in Section 5, and some useful conclusions are finally drawn in Section 6.  

2. Distribution Network Dynamic Reconfiguration Model with EV 
In Figure 1, A~N represent the switch station. The reconstruction between switch sta-

tions described in this paper means to change the state of disconnect switches and tie 
switches in the network to achieve regional load balance. The lower part of the arrow 
represents the location information of the specific load node under the switch station. The 
ring network cabinet adopts the interval power supply mode, and its branches can be 
directly connected to the distribution transformer, that is, directly supply power to the 
low voltage transformer area, and can also be connected to the ring network cabinet for 
external distribution. 

A K

EV EV Load LoadEV

connecting line

BS
N

AS KS NS 1NS +

substation substation

EV

feeder layer

branch layer

load layer

Switch station

 ：ring network cabinet

 ：distribution transformer

 
Figure 1. Topological structure of medium-voltage distribution network with EV. 

The feeder voltage level in the structure diagram described in Figure 1 is 10 kV. Dif-
ferent numbers of EVs are installed under different distribution transformers. In view of 
the large number of electric vehicles in the future, this paper gives priority to optimizing 
the topological structure, and then sets up multiple aggregators under the switch station 
to guide the charging time of a specific electric vehicle. 

In this paper, the DC charging pile is used to charge the electric vehicle. The control 
panel in the charging pile is used to collect the battery capacity of the electric vehicle and 
upload the next day’s travel demand. The charging module uses IBDC converter to supply 
power to the high voltage distribution box in the vehicle. The structure of specific load 
layer is shown in Figure 2. 

AC/DC
T

DC/AC AC/DC

380V AC

10kv bus

IBDC Converter

control panel

data collected

 
Figure 2. Electric vehicle charging structure diagram. 
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The driving circuit acts on the power switch to convert the DC voltage after rectifier 
filtering into AC voltage. Then, the AC voltage is isolated by the high frequency trans-
former, and the DC pulse is obtained by rectification filtering, thus charging the battery 
pack. 

In this paper, the optimization between switching stations is defined as the feeder 
layer optimization, the optimization within the switching station is defined as the branch 
layer optimization, and the charging optimization for electric vehicles is defined as the 
load layer optimization. 

2.1. Dynamic Reconstruction Model between Switch Station Groups 
For the optimization of switch stations in feeder layer, it is necessary to analyze the 

connection mode of 10 kV distribution network, and derive different constraints for dif-
ferent connection modes. The actual typical connection types of 10 kV distribution net-
work are single power supply, series supply, T-type series supply, etc. The feeder layer in 
Figure 1 is a series connection mode, this paper focuses on the analysis of T-type series 
supply wiring mode, which is more complicated. The specific connection mode is as fol-
lows. 

Taking the switch topology of Figure 3 as an example, the power supply demand 
guarantee constraints are as follows: 
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where Pt 
G,A1 and Pt 

G,A2 represent all loads supplied by A1 and A2, respectively. Pl, i denotes 
the total load under the switching station after the i-th switch. St 

i  represents the state of 
the i-th switch. t represents time.  
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Figure 3. T-type series supply wiring mode. 

Three active power equality constraints ensure the power supply demand of each 
switch station. For the other two topologies, it is only equivalent to the change of power 
supply position. In the left graph of Figure 4, the original topology can be obtained by 
exchanging the position of A2 point and A3 point. In the right graph of Figure 4, the orig-
inal topology can be obtained by exchanging the position of A1 point and A3 point. 
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Figure 4. T-type series supply disconnect switch position. 

For T-type serial supply structure, topology constraint is established: 
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Three inequality constraints ensure that there must be one or two disconnected 
switches between two power points, and equality constraints determine the number of 
disconnected switches in the T-type series supply structure. The three networks with dif-
ferent switch positions satisfy the constraint condition of formula (2). 

Therefore, according to the typical topology and connection mode of 10 kV main 
feeder, the total prediction load curve of each switch station is obtained. Taking the min-
imum load fluctuation level in the region as the goal, the reconstruction scheme between 
switching stations is established. The objective function is as follows: 

( ) ( ) ( )1 2 1 3 3 2

24 2 2 2
, , , , , ,

1

min t t t t t t
G A G A G A G A G A G A

t

f P P P P P P
=

 = − + − + −    (3)

Considering the high cost of breaking the switch, this paper needs to calculate the 
load balancing index to determine whether to perform the switch action. 

2.2. Internal Dynamic Reconfiguration Model of Switch Station 
2.2.1. Branch Layer Reconstruction Model 

After the feeder layer topology optimization is completed, it is necessary to analyze 
the load in each switch station to realize the branch layer autonomous optimization. 

In this paper, the load curve of each ring network cabinet in the switching station is 
analyzed, and the minimum loss is achieved by changing the switch state between the 
ring network cabinets. At a single time level, the objective function of minimizing network 
loss is as follows: 

1 2 2
Br Br

loss, Br Br 2
BrBr 1

= 
N

i
P Qf y r
U

−

=

+  (4)

where yBr is the switch state of branch Br, 0 means open, 1 means close; UBr is the voltage 
value at the beginning of branch; PBr and QBr represent the injected active power and re-
active power of the first node.  

In addition, the power flow equation equality constraints, voltage amplitude con-
straints and line capacity constraints should be satisfied. The formula is as follows: 
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where SBr,max is the maximum line capacity, Ui,max is the maximum node voltage.  
In addition to the above constraints, the model also needs to meet the network topol-

ogy operation constraints. In this paper, through network coding and simplification, a 
single-loop matrix is formed, which constitutes a radial constraint and a connected con-
straint, so as to determine the infeasible optimization solution. 

The switches in each loop network are coded, and the single loop matrix is formed 
by searching the path from each node to the parent node. Each row in the single loop 
matrix represents a loop. The optimization variable in the reconstruction scheme is a 
switch in each row of the matrix. In order to make the solution satisfy the constraint of no-
island and no-ring network, this paper uses SL correlation matrix and upper node search 
to determine the feasibility of each solution. 

SL correlation matrix is defined as follows: 

11 1

1

S
n

n nn

a a

a a
L

 
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
  


 (6)

where aij represents the membership relationship between the j-th dimension solution and 
the i-th loop in the SL correlation matrix. If the solution belongs to this loop, it is 1, other-
wise it is 0. 

The principle of no-island judgment method is that if two rows are the same in the 
SL matrix, the solution of the j-dimension belongs to two loops at the same time. At this 
time, the system has a loop, and the infeasible solution must be eliminated. 

The principle of upper node search is that the upper node of each node in turn is 
found, putting the result into a matrix, and finally it is judged whether there are 0 elements 
in the matrix except for the first column. If it exists, it means that there are islands in the 
network, and the infeasible solution must be eliminated. 

Considering the high cost of the switch, this paper analyzes the difference between 
the network loss value before optimization and the optimized network loss value. Once 
the difference is less than a threshold, the switch optimization action is not performed. 

2.2.2. Reconstruction Method Based on CNPSO Algorithm 
Aiming at the branch layer dynamic reconstruction model, and in order to prevent 

particle swarm algorithm from falling into local optimum and accelerate the iterative 
speed, this paper improves the traditional particle swarm optimization algorithm by in-
troducing logistic chaotic equation and niche elite retention algorithm. Refer to Appendix 
B for dynamic updates of inertia weights. 

To solve the problem of local optimum, by adding a mixed disturbance near the 
group extremum, the solution space near the optimal solution is searched and the local 
search is strengthened. The specific steps are as follows: 

Step 1: The global optimal solution of the n-th iteration output is mapped to the def-
inition domain of the logistic equation to generate the chaotic variable znj. The formula is 
as follows: 
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where xj is the global optimal particle, that is, the disconnected switch combination of 
loops, n is the number of iterations; xmax, j and xmin, j represent the upper and lower bounds 
of the j-th dimensional variable, respectively.  

Step 2: Using logistic mapping equation to generate d chaotic sequences, and then the 
chaotic variables are inversed to the original solution space to obtain new optimization 
variables. The formula is as follows: 

1= (1 ), 1,2,......n n n
j j jz z z j dμ+ − =

 (8)

( )1 1
min, max, min, , 1,2,......n n

j j j j jx x z x x j d+ += + − =  (9)

Step 3: The fitness function value of the new optimization variable is calculated and 
compared with the fitness value of the original solution xj. If it is better than the original 
solution or reaches the maximum number of iterations, the position of the original particle 
is replaced by the position of the new particle. Otherwise, let n = n + 1, and turn to Step 2. 

In addition to the local optimal problem, once the population is too large, it will affect 
the iteration speed. In this paper, the niche technology of sharing fitness mechanism is 
used to solve, that is, by calculating the sharing degree of individual particles in the group. 
The greater the degree of sharing, the higher the degree of closeness with other particles. 

In this paper, the Euclidean distance between each particle is calculated, and the 
niche radius of the current population is calculated. The sharing degree of each individual 
is sorted, and the whole population is pruned. The individuals with higher sharing degree 
are deleted to ensure the uniform distribution of the solution. The number of all particles 
in the initial population is Nsh, and the shared fitness function is defined as follows: 
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where 
shNΩ represents the whole group space, shareσ represents the niche radius, Dij rep-

resents the Euclidean distance between individual xi and xj, and d represents dimension 
of decision variables. 
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(12)

3. Isolated Bidirectional DC–DC Converter Optimal Efficiency Model 
According to the topological structure of the medium voltage distribution network 

group, after determining the topological structure of the feeder layer and the branch layer, 
the orderly charging modeling of electric vehicles in each switch station is carried out. 
However, the charging efficiency of electric vehicles is affected by the transmission loss of 
the DC–DC converter, which further affects the accuracy of formulating the charging tim-
ing strategy for electric vehicles. It is assumed that the charging power is 12 kW and the 
battery capacity is 80 kWh. If the charging efficiency is increased by 5%, an additional 3 
kW can be charged. In some scenarios, the next-day travel demand of EVs can be met in 
advance, and the charging load at that time at the branch layer can be reduced. 
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Therefore, aiming at the problem of peak current and return power when single-
phase-shift (SPS) control IBDC converter, this paper adopts dual-phase-shift control (DPS) 
method to establish an optimal efficiency calculation model. 

3.1. Principle of Dual-Phase-Shift Control 
As shown in Figure 5, a typical IBDC converter circuit consists of two symmetrical 

H-bridges and high-frequency transformers. Compared with the traditional SPS control, 
DPS control is to introduce a new phase shift duty cycle between the two diagonal switch 
tubes of the full bridge on the primary side or on the secondary side. In this paper, the 
shift ratio D1 of the primary side in a half period is defined as the internal shift ratio, and 
the shift ratio D2 between the two sides in the half period is defined as the external shift 
ratio. When the internal shift ratio D1 = 0, DPS control becomes traditional SPS control. 
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Figure 5. IBDC converter topology. 

Figure 6 describes the working state of the converter in a switching cycle, such as the 
conduction time of the switch tube and diode, and the voltage change. Due to the sym-
metry of control, the system waveform of t0–t4 period is taken as the research object, and 
the working mode of converter can be divided into five states. According to the analysis 
of the working status of these five stages in turn, it can be found that the inductance cur-
rent formula in the t0–t4 period is a piecewise linear formula.  
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2t 3t 4t 5t 6t '

6t 7t 8t

1-V
1V
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t

t

t
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t
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Figure 6. Waveform of dual phase shift control system. 

When 0 ≤ D1 ≤ D2 ≤ 1, set t0 = 0, and then other time point can be expressed as t1 = 
D1Ths, t2 = D2Ths, t3 = (D1 + D2)Ths, t4 = Ths, t5 = (1 + D1)Ths, t6 = (1 + D2)Ths, and t7 = (1 + D1 +D2)Ths. 



Energies 2021, 14, 1614 9 of 21 
 

 

Voltage regulation ratio was set to k =V1/(nV2), and switching frequency was set to fs = 
1/(2Ths). According to the symmetry, iL(t0) = -iL(t4) can be obtained, so the inductance cur-
rent iL(t) in each time period can be obtained, and then the following transmission power 
formula is derived by the inductance current formula: 

( ) ( )
1

21 2
2 2 10

1 11
2 2

hsT
h L

hs s

nVVP v i t dt D D D
T f L

 = = − −    (13)

3.2. Transmission Power Loss Model of IBDC Converter 
The loss of an IBDC converter under DPS control mainly includes switching loss, 

conduction loss caused by switching devices, copper loss, and iron loss caused by mag-
netic components. The loss generated by the switching device is related to its on-state 
voltage drop and switching frequency. The loss generated by the magnetic element is re-
lated to the effective value of the inductance current and the winding resistance. 

3.2.1. Switching Loss Model 
When the switch tube works in soft switching mode, switching losses can be ignored. 

When the switch tube is in a hard switching state, due to the overlap of voltage waveform 
and current waveform in the transient process of opening and closing, the loss is gener-
ated [20]. The turn-off loss and turn-on loss are: 

( ) ( ) ( ) ( )1 22
s s Q Q

s off
off F L s F L Q

t t

f t
P V V i t n V V i t

∈Ω ∈Ω

 
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   

(14)

( ) ( ) ( )( )2 2 62
s on

on F L L
f tP n V V i t i t= + +

 
(15)

where toff and ton are switch turn-off time and turn-on time, respectively, and VF is the for-
ward voltage drop of diode. sΩ  and QΩ  indicate the set of turn-off moments. 

3.2.2. Conduction Loss Model 
Since both the switch tube and the diode have a forward voltage drop when they are 

turned on, the on-state loss will be generated when the current flows, which is manifested 
in the form of heat.  

Based on the odd symmetry of the converter working waveform and the conduction 
state of the switches and diodes in each stage, the conduction loss of IGBT and diode can 
be obtained [21]: 

( ) ( ) ( )'
22

3
2

o

t t tsat
I L L Lt t t

hs

VP i t dt i t dt n i t dt
T

 = + + 
   

 
(16)

( ) ( ) ( ) ( ) ( ) ]
'

1 22

1 0

3 4

2 3
2 2 2

o

t t t t tF
d L L L L Lt t t t t

hs

VP i t dt i t dt n i t dt n i t dt n i t dt
T

= + + + +    
 

(17)

where Vsat represents the on-state voltage drop of IGBT, which is a constant. 

3.2.3. Magnetic Components Loss Model 
Magnetic components mainly include transformers and auxiliary inductance, and the 

loss that produced during their work are mainly composed of copper loss and iron loss 
[22].  

During the whole switching period, the current iL flows through the transformer and 
the auxiliary inductance, and the copper loss is related to the root mean square of the 
current iL: 
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( ) 2
cop tr au rmsP R R I= +  (18)

where Rtr and Rau are winding resistance of the transformer and auxiliary inductor, respec-
tively, which are constants. Irms represents the root mean square of the current iL.  

Iron loss of magnetic components is mainly composed of hysteresis loss, eddy cur-
rent loss, and residual loss. The calculation formula is as follows: 

2 2
20

2

2 s e
iron rms

mf N VP I
g
μ

=  (19)

where m is the iron loss coefficient, 0μ  is the vacuum permeability, g is the air gap, N is 
the turns of the coil, and Ve is the effective volume. These parameters can be found from 
the parameter table [23]. 

3.3. Optimal efficiency Calculation Model 
According to formulas (14)–(19), the switching loss PSW, conduction loss PCON, and 

transformer and auxiliary inductance loss PTA of the IBDC converter can be obtained, so 
the total loss Ploss can be obtained. The detailed formula derivation is reflected in the Ap-
pendix A. 

loss SW CON TAP P P P= + +  (20)

Therefore, the total loss Ploss under the control of DPS is related to the internal shift 
ratio D1 and the external shift ratio D2. This paper establishes an optimal efficiency model 
to select the optimal parameters D1 and D2 for a specific transmission power. 

The efficiency of IBDC converter is defined as the percentage of the ratio of output 
power to input power: 

=
loss

P
P P

η
+

 (21) 

It can be seen from formula (13) that the given transmission power P0 can be obtained 
by various combinations of D1 and D2, but the total loss of the converter is different under 
each combination, so its efficiency is also different. In order to obtain the combination of 
D1, D2 corresponding to the minimum total loss of the converter, the Lagrange function 
can be established: 

( ) ( ) ( )1 2 1 2 1 2 0, , , ,lossL D D P D D P D D Pλ λ= + −    (22) 

Formula (22) is solved to find the optimal total loss value. The calculation formula is 
as follows: 

( )

1 1 1 1 1

2 2 2 2 2

1 2 0

0

0

, 0

SW CON TA

SW CON TA

P p pL p
D D D D D

P P PL P
D D D D D
L P D D P

λ

λ

λ

∂ ∂ ∂∂ ∂ = + + + =∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂∂ ∂= + + + =∂ ∂ ∂ ∂ ∂
∂ = − =

∂

 (23) 

By substituting formula (13) and formula (19) into formula (23) and solving the root 
of the above equations, the optimal combination (D1, D2), and the efficiency of the IBDC 
converter reaches the maximum. 
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4. Orderly Charging Model of EV Considering IBDC Converter Optimal Efficiency 
At the load layer, this paper takes the electric vehicles under the switch station as the 

research object. In this paper, a double-layer optimal scheduling model for EVs is estab-
lished based on the distributed scheduling architecture. 

4.1. Multi-Level Information Interaction Mechanism 
The principle of distributed scheduling is as follows: each switch station can further 

decompose all transformer area into several areas according to their geographic location, 
each area is dispatched by aggregators, and all aggregators accept the instructions of the 
dispatch center. 

As shown in Figure 7, under the switch station, electric vehicle aggregators spanning 
multiple transformer areas are set up as an information bridge between a single electric 
vehicle and the dispatch center. It not only implements the instructions of the upper-level 
dispatch center, but also guides the lower-level specific electric vehicle charging time. The 
aggregators autonomy model facilitates centralized management of electric vehicles in the 
same area, avoiding the problems of low efficiency and huge data volume caused by the 
direct dispatch of each electric vehicle by the dispatch center. 

EV EV

aggregator

EV EVEV EV
Area 1

Dispatch center

aggregator aggregator

Area 2 Area i
 

Figure 7. Distributed scheduling structure diagram. 

The steps of the multi-level interaction mechanism are as follows: 
Step 1: The user’s charging pile uploads the daily time when the electric vehicle is 

connected to the system, the state of charge at the time of connection, and the time when 
the user is expected to leave the system to the aggregator. 

Step 2: Each aggregator obtains information about all electric vehicles in the area un-
der its jurisdiction, and the dispatch center formulates demand targets according to the 
data integration of each aggregator so as to issue a dispatch plan for each time period to 
each aggregator. 

Step 3: Based on the data uploaded by each electric vehicle, each aggregator’s sched-
uling goal not only requires the minimum variance of the load level under the switch 
station, but also requires the minimum sum of deviations between the actual scheduling 
results of each aggregator and the scheduling plan determined by the scheduling center. 

Step 4: Under each aggregator, by controlling the charging time of all electric vehicles 
in the area, the deviation between the upper-level scheduling plan and the actual sched-
uling results of the lower-level electric vehicles is minimized, and step 4 is returned until 
the given convergence condition is reached. 

4.2. Upper-Level Dispatch Model Considering Load Balance under the Switch Station 
The upper-level dispatch model fully considers the overall load fluctuation level un-

der the switch station, and realizes peak-shaving and valley-filling by formulating a rea-
sonable dispatch plan. Therefore, for the topological structure of the branch layer, the up-
per-level objective function is established. The specific expression is as follows: 
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       (24) 

where PL,t represents the original load level at time t in the network; xj,t represents the 
scheduling plan of the j-th aggregator at the branch layer at time t; Pj,t represents the actual 
scheduling result of j-th aggregator; N represents the total number of aggregators in a 
certain switch station; and λ  represents the penalty coefficient, which is used to restrict 
the deviation between the actual scheduling result and the scheduling plan. 

In addition to satisfying power flow equation constraints and voltage constraints, the 
other upper-level model constraints are as follows: 

[ ], , ,ch , ,
1

0 1,T
n

j t j i j i t
i

x P y t
=

≤ ≤ ∀ ∈  (25) 

where Pj,i,ch represents the charging power of the i-th electric vehicle under the j-th aggre-
gator; yj,i,t represents the state of the i-th electric vehicle under the j-th aggregator connect-
ing to the network at time t; the value is 1 when it is connected (may participate in the 
operation of the distribution network or not), and 0 when it is not connected. 

4.3. Lower-Level Scheduling Model 
In the lower-level dispatch model, this article considers the transmission power loss 

of the IBDC converter, and selects the optimal parameters D1 and D2 for a specific trans-
mission power. In addition, the target of the lower model is taken as a part of the objective 
function of the upper-level. Each aggregator receives the dispatching instructions from 
the dispatch center, and the objective is to minimize the deviation between the actual dis-
patching results of all electric vehicles, which under the jurisdiction of each aggregator 
and the dispatching plan. For the j-th aggregator, the objective function is as follows: 

,

2

low ,
1 1

, ,ch ,

T n

j
t

j i j
i

i ttF P xy
= =

 
= −  

 
   (26) 

where Pj,i,ch represents the rated charging power of the i-th electric vehicle under the j-th 
aggregator; yj,i,t represents whether the i-th electric vehicle under the j-th aggregator par-
ticipates in the dispatching of the distribution network at time t. 

The constraints are as follows: 

, ,dep , ,arr, , 0 j i j ij i t t ty t t<= >   (27) 

where tj,i,dep and tj,i,arr, respectively, represent the time when the i-th electric vehicle under 
the j-th aggregator is connected to the system on the same day (may participate in the 
distribution network operation or not), and the time when it is off the grid the next day is 
used to restrict off-grid electric vehicles from participating in distribution network dis-
patching. 

dep e, ,m, v ax0.9j i tS S≥  (28) 

,max, v, e0 j i tS S   (29) 

where Sev,max represents the maximum capacity of electric vehicles. Formula (28) is to meet 
the next day’s driving capacity demand, and formula (29) is to prevent electric vehicles 
from overcharging. 

,, , 1 , ch , ,chj i t j ij i t P tS S η+ += Δ  (30) 
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where Sj,i,t represents the SOC of the i-th electric vehicle at time t; tΔ  represents a period 
of time, the value is 1; chη represents the charging efficiency, and this parameter is deter-
mined by formula (23) in Section 3. With a given transmission power, find the optimal D1 
and D2 to minimize the power transmission loss of the IBDC converter and obtain the 
optimal efficiency chη . 

4.4. Overall Flow Chart of Hierarchical and Partitioned Optimization 
This paper proposes an EV double-layer scheduling model based on the IBDC con-

verter optimal efficiency model, and establishes the hierarchical and partitioned optimi-
zation model of the feeder–branch–load layer. The specific flow chart is shown in figure 
8: 

iterations number  reached?

Yes

N0

Start

EV daily load 
curve prediction

Load curve in each 
switching station

Load curve under each ring 
net cabinet

Optimize switch position 
between switch stations 

Determination of feeder 
layer topology

Branch switch optimization 
with CNPSO algorithm

Determination of branch 
layer topology

Determine the optimal 
charging efficiency

Determination of daily optimal 
topology based on index score

Determine scheduling plan 
of the upper aggregators

Determine the actual 
scheduling results of EVS

Output actual EV 
scheduling results

Get  topological 
constraints of feeder layer

Determine parameters of 
CNPSO algorithm

Collection of EV arrival 
time and SOC

Feeder layer Branch layer

Load layer

 
Figure 8. Electric vehicle dispatching strategy diagram considering dynamic topology. 

5. Case Study 
In order to verify the effectiveness of the proposed dynamic reconfiguration and elec-

tric vehicle scheduling model, this paper analyzes the cases in Figure 9 and Figure 10 on 
MATLAB R2014b. The system structure diagram is 10 kV medium voltage distribution 
network diagram. In Figure 9, the power point is 35 kV substation, and the shadow part 
is different switching stations. The network contains five switches on the main feeder. In 
the initial state, the black switch represents the closed state, and the white switch repre-
sents the breaking state. In Figure 10, the switch station contains 13 segmented switches 
and three tie switches, and three dispatching aggregators are configured. The dispatching 
aggregators manage 100 electric vehicles, respectively, and the tie switches 14, 15, and 16 
are all disconnected before optimization. 

The parameters of electric vehicle are as follows: the average charging power is 12 
kW, the charging efficiency is 90%, the average battery capacity is 60 kWh, the upper limit 
of battery SOC is 95%, and the lower limit is 5%. For the calculation process and results of 
the orderly charging model of electric vehicles, this paper adopts the per unit (pu) value 
to facilitate calculation and explanation. 
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Figure 9. Topology structure of 10 kV feeder layer. 
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Figure 10. Structure diagram under a switch station. 

5.1. Optimization Results of Feeder Layer Reconstruction 
The structure is powered by T-type series connection, and the Gurobi solver is called 

for optimization by analyzing the total load of each switch station in each period. In the 
actual simulation, the switch station near the substation is generally not used as the trans-
fer object. The final switching operation number is 8, which can achieve load balancing of 
three substations. The results are shown in Table 1. Therefore, the load balancing level is 
improved by adjusting the switching state between switching stations, and the load dif-
ference of the three substations is minimized in one day. 

Table 1. Comparison of feeder layer load balance. 

Scenes Time Load Balance Degree Switch State 
Before optimization 10:00 26.285 MW — 

 20:00 28.466 MW — 

After optimization 10:00 24.922 MW S2, S7 closed 
S3, S6 open 

 20:00 16.235 MW 
S3, S6 closed 
S2, S7 open 

5.2. Topology Reconstruction Results under Switch Station 
Population sizepop = 100; iteration number N = 100; inertia weight is dynamic pa-

rameters. The threshold value is 0.1. It can be seen from Table 2 that after optimization, 
the switches 13, 14, and 15 are open during the period of 5:00 to 12:00, the switches 5, 10, 
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and 15 are open during the period of 12:00 to 21:00, and the switches 11, 15, and 16 are 
open during the period of 21:00~24:00. 

Table 2. Switch action before and after reconstruction. 

Scenes Time Open Switch Number  
Before reconfiguration whole day 14, 15, 16 

 5:00 14, 15, 12 
After reconfiguration 12:00 5, 10, 15 

 21:00 11, 15, 16 

Assuming that the load connected to the lines numbered 4 and 5 in the original dia-
gram are office buildings and other loads, the load is large during the day, so the network 
loss on lines 4 and 5 during the period after 12:00 is relatively large. At this time, it is 
necessary to open the line switch and the part of the load is transferred to the rest of the 
line for power supply. 

Table 3 shows the changes in the network loss before and after optimization. The 
network loss is reduced by 17.42%, which shows that the network loss of the branch layer 
can also be reduced by adjusting the switch state. 

Table 3. Switch action before and after reconstruction. 

Scenes Value of Network Loss Improvement Rate  
Before reconfiguration 202.5193 kWh — 
After reconfiguration 139.5191 kWh 31.11% 

It can be seen from Figure 11 that the traditional particle swarm optimization algo-
rithm may fall into local optimum and the iteration speed is slow. However, in the case of 
increasing the population size, the algorithm proposed in this paper makes iterative speed 
faster by deleting individuals with a higher degree of sharing. The average number of 
iterations can reach convergence at about 10 times. Moreover, while ensuring the speed, 
the global optimal solution is ensured by adding a mixed disturbance near the group ex-
treme value. Therefore, the improved algorithm in this paper is more accurate and effi-
cient. 
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Figure 11. Algorithm iteration number comparison chart. 
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5.3. Orderly Charging Results of Electric Vehicles 
The simulation parameters of the converter in this article are as follows: load R = 100 

Ω, DC capacitance C1 = C2 = 2200 Fμ , switching frequency fs = 20 kHz, and transformer 
leakage inductance L = 7.7 Hμ . It can be seen from Figure 12 that when the power of 60 
kW is given, D1 = 0.14, and the efficiency reaches the highest. The output voltage of electric 
vehicle is 300 V in this paper, so the optimal efficiency in the ordered charging model in 
this paper is 96.2%. 

 
Figure 12. Comparison of converter efficiency under different controls. 

The switch station is mostly residential areas. It can be seen from the Figure 13 that 
electric vehicles were originally charged from 16:00 to 22:00, that is, the electric vehicles 
are charged immediately when residents arrive home. At this time, it is superimposed 
with other original loads, resulting in a large load under the switch station during this 
period of time. In addition, residents use less electricity at night, and electric vehicles are 
already fully charged, so the load is very small from 0:00 to 5:00, resulting in a large peak-
to-valley difference in a day. After optimization, it can be seen from Figure 13 that the 
peak–valley difference is reduced from the original 16.5026 to 13.3174, which greatly im-
proves the load stability of the branch layer and alleviates the phenomenon of adding 
peaks on the peak.  
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Figure 13. Load level changes before and after EV orderly charging. 

Figure 14 shows the initial capacity and the capacity after the final optimization of all 
electric vehicles in aggregator 1. In this paper, the travel scenarios of electric vehicles are 
divided into three types by analyzing the arrival time and expected travel time of electric 
vehicles. Figure 14 illustrates that no matter when the electric vehicle is connected, the 
optimization model in this article can guarantee the travel demand of the electric vehicle 
the next day. 

 
Figure 14. EV capacity variation in aggregator 1. 

After the aggregator receives the dispatching instruction from the dispatch center, 
through double-layer optimization iteration, the actual dispatch results of the three aggre-
gators is shown in Figure 15. The low cost of electricity at night and low load levels cause 
the charging behavior to be more frequent from 0:00 to 10:00 and after 22:00. By formulat-
ing a reasonable orderly charging strategy, the original disordered state of “plug and 
play” is changed. On the premise of meeting the demand of all EVs on the next day, the 
EVs connected during the peak power consumption period are arranged to be charged at 
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night, which not only improves the load level at night, but also eases the power shortage 
during the peak power consumption period. 

 
Figure 15. The actual scheduling results of three aggregators. 

6. Conclusions 
With the access of large-scale EVs in the future, it will inevitably increase the network 

loss of the medium-voltage distribution network and aggravate the imbalance of the dis-
tribution network load. In order to improve this situation, this paper proposes a three-
layer optimization model from the perspectives of network structure and load itself. Each 
layer has its own findings with different priorities. The specific conclusions are as follows.  

Firstly, at the feeder layer, this paper takes the connection relationship between 
switching stations as the research object, and establishes the dynamic reconstruction 
model between stations. By solving this model, it realizes the equalization of the load car-
ried by the substation and avoids the occurrence of continuous heavy load in a certain 
substation. Secondly, at the branch layer, this paper takes the topology structure under a 
certain switch station as the research object, and a dynamic reconstruction plan is formu-
lated for the topology structure. By solving this model, the branch layer network loss is 
effectively reduced, and the loss reduction rate reaches 31.11%. At the same time, this 
paper adopts the CNPSO algorithm to adapt to the larger branch topology scale in the 
future. This algorithm avoids the algorithm trapped in local optimum and improves the 
iterative speed by nearly 20%. Finally, at the load layer, this paper takes the electric vehi-
cles under the switch station as the research object. The first step is to establish an IBDC 
converter optimal efficiency model, accurately calculating the charging power of electric 
vehicles in each period. The second step is to establish a double-layer distributed optimi-
zation scheduling model, which not only effectively reduces the difficulty of directly dis-
patching large-scale electric vehicles by dispatch center, but also formulates a reasonable 
charging strategy, achieving a 19.3% reduction in peak-to-valley difference. The findings 
of this paper are based on the consideration of all the major links in the medium-voltage 
distribution network, including branch layer network loss and optimal charging effi-
ciency, which are rarely studied before. All of these should be present when solving the 
problems of medium-voltage distribution network loss and load fluctuation. 
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Appendix A 
The detailed formulas the switching loss PSW, conduction loss PCON, and transformer 

and auxiliary inductance loss PTA are as follows:  

( ) ( ) ( ){ }
( ) ( )( )

( ) ( )( ) ( ) ( )

1 2 1 2 3 1 2 4 1 5 1

2 2
1 2 1 3 2 4 2 1 2 5 2 2 1 2

2 2 32
1 1 1 2 1 2 1 2

1 2 1 2 1 1

1 1 2

1 1 2 1 4 3 3 4

SW

CON

TA

P m m k D D m k D D m D m D

P h h D h D h D D D h D D D D

P w k D D kD D D k D D

 = − + − + − + − + −      
  = + + − − + − − +  


  = − + − − + − + − 

 (A1)

where m1-m5, h1-h5 and w1 are constants that obtained by formulas (14)–(19). 
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where toff and ton are switch turn-off time and turn-on time, respectively, and VF is the for-
ward voltage drop of diode. Rtr and Rau are winding resistance of the transformer and 
auxiliary inductor, respectively. Ve is the effective volume. Vsat represents the on-state volt-
age drop of IGBT. The remaining parameters are the device’s own parameters, which have 
also been explained in the main text.  
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Appendix B 
The value of the inertia weight value will affect the particle motion state. In order to 

prevent falling into the local optimum, it is necessary to continuously adjust the value 
according to the particle fitness value to increase the diversity of the particles. The specific 
steps are as follows: 

Step 1: Calculate the fitness value of all particles, from which the entropy value be-
tween the particles is calculated, which is used to evaluate the distribution state between 
the particles. The formula for solving the entropy is as follows:  

( )
1

( )
=
n

i

i

fit x E fit
pu=

 −
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 
 (A5)

where fit(x) represents the fitness function; E(fit) represents the average fitness value of all 
particles; and pu is the normalization factor. 

Step 2: When the entropy value is less than a given value, the concentration of parti-
cles is large, and the inertia weight needs to be adjusted to reduce the particle concentra-
tion. The update formula is as follows: 
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(A6)

where T is the maximum number of iterations; t is the current iteration; ω  is the average 
of the maximum and minimum inertia weights. 
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