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Abstract: Indoor solar-heating systems that use ventilated roofs have drawn attention in recent
years. The effectiveness and efficiency of such air-heating systems vary depending on the design and
operation methods. In Japan, by introducing outside air into a ventilated roof cavity and circulating
the air indoors, systems that simultaneously obtain ventilation, solar heating, and heat-storage
effects have been actively developed. The conventional systems intake a large volume of outside
air to increase the solar heat collection effect. However, there is a risk of heat loss and over-drying
when a large amount of cold dry air during winter is introduced. In this paper, plans are presented
for improving these solar heating and heat-storage effects by preventing over-drying using indoor
air circulation via ventilated cavities in the roof and indoor wall. By comparing the results of the
proposed system with those of the conventional system via numerical simulation, the heating load
is found to be reduced by 50% or more by circulating indoor air to the ventilated roof and storing
the heat in the indoor wall. Moreover, an increased relative humidity of approximately 10% was
confirmed by reducing the intrusion of the outside air and keeping the moisture indoors.

Keywords: air circulation; solar-heat storage; ventilated solar roof; hygrothermal control

1. Introduction

The use of renewable energy is urgently needed to conserve energy use in homes.
Technology using air circulation in ventilated cavities has been actively researched to
directly utilize solar heat for indoor heating and hot water. Solar air heat can be effectively
utilized by designing the exterior surfaces and spaces of a building and its air circulation
paths. Furthermore, during the hot season, a cooling effect can be obtained by exhausting
heat to the outside [1]. Depending on the design method and the researcher, solutions have
taken the form of ventilated facades, trombe walls, double skins, etc., and various methods
have been applied according to the climate and the building’s function.

Balocco [2] analyzed the typology of a ventilated facade in a simple steady-state
situation using the finite element method. Jiru et al. [3] applied a calculation method to
an application of the zonal approach to model airflow and temperature in a ventilated
double-skin facade, which was confirmed to provide fast information at low computational
costs. Open-joint ventilated facades have also been suggested, which provide a method
of introducing air into a ventilated facade, as opposed to the conventional method of
introducing air into a sealed cavity. This method creates an air cavity using an open joint by
installing a metal frame on the exterior face of the wall. Via computational fluid dynamics
analysis, it was revealed that the cooling load in the summer at high temperatures was
more effective than the conventional air introduction method [4,5]. Moreover, Sanchez
et al. [6] reported an analysis of the velocity field and turbulent structures of open-joint-
ventilated facades. Full-scale ventilated roof-model tests in the laboratory were conducted
to experimentally assess the thermal performance and physical phenomenon in detail [7–9].
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Maurer et al. suggested a new detailed simulation model of solar collection [10]. Kosny
et al. [11] conducted an experiment to evaluate a ventilated solar roof with photovoltaic
(PV) laminates and phase-change materials (PCM). The roofing technology, a PV–PCM
roof/attic, was compared with an asphalt shingle roof, and 30% heating- and 50% cooling-
load reductions were confirmed. Lee et al. installed a PCM box between the air circulation
paths to facilitate the maintenance of the PCM and combined it with the entire building air
circulation, central air conditioning, and ventilated roof system. As a result, the energy-
saving effect was approximately 30%, and the reduction effect of peak heat load compared
with that of a general house structure was confirmed via radiant cooling and cooling
storage during summer and solar heat collection and heat storage during winter [12,13].
Additionally, the authors have reported a novel system capable of passive dehumidification
and radiative cooling during hot and humid summer months alongside solar heat collection
and humidity control during cold and dry winter months using roof-ventilated cavities and
indoor air circulation [14,15]. Martin-Escudero et al. [16] estimated the energy capabilities
of a photovoltaic ventilated façade coupled to an air-source heat-pump system for heating
and domestic hot water. They reported that the system improved the seasonal performance
factor by 14.8%. Mingotti et al. [17] developed a system that provided buoyancy to induce
natural ventilation by combining a horizontal room-heat source similar to floor heating
and the vertical heat source of a ventilated facade in a multistory building. Using this
system, ventilation was enhanced during hot seasons, and solar heat from the facade was
used indoors during cold seasons. There have been many basic studies on the use of
solar heat in ventilated cavities. Research on design and performance evaluation, which
can be effectively applied to an actual building in combination with other architectural
elements, such as floor spaces and storage methods of heat collected by solar heat, should
be continued.

Recently, a technology that circulates heated air through a roof-ventilated cavity to a
space under the floor and uses it for floor and indoor space heating has been developed in
Japan [18]. This system simultaneously performs ventilation and floor and indoor heating
during winter by heating fresh outside air in the roof-ventilated cavity and blowing the
air under the floor. As an example of research on an air-heat collection type floor-heating
system [19–21], outside air was introduced with a very large ventilation volume of 1.8–2.5
air-change per hour (ACH) when collecting solar heat during the winter. The heat in
the air was stored under the floor and was then naturally exhausted. The conventional
solar air-heating system with a roof-ventilated cavity had a large heat loss and could not
optimize the usage and storage of solar heat. Additionally, excessive introduction of dry
outside air caused the indoor air to dry during heating.

Therefore, the purpose of this study was to propose plans to improve the solar air-
heating and thermal storage effects of the conventional solar heat-air collection-type heating
system and to clarify the enhanced energy-saving effect and thermal environment of the
proposed system. A conventional system that collects solar heat by introducing a large
amount of outside air into the roof ventilation layer and collects solar heat to store it in the
space under the floor is referred to as a Type N system, and one that reduces the volume of
outdoor air and introduces it into a ventilated cavity is a Type A system. A Type B system
is one that stores the collected solar heat in the interior wall instead of the space under
the floor. A Type C system is one that combines Type A and B systems. By combining
these systems, the improved temperature and humidity control effects, including those of
heating-load reduction and heat-storage, are examined. The proposed system is expected
to be applicable to existing houses having a roof-ventilated cavity or a conventional Type
N system.

2. Overview of the System under Consideration
2.1. Conventional System with Glass Solar Thermal Collector

Figure 1 shows the roof composition of an installed glass solar thermal collector. First,
the temperature of the ventilated roof cavity increases, because the roof’s surface, which
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is finished with a black steel plate, and the glass solar thermal collector are exposed to
sunlight during the daytime on a sunny day. The glass solar thermal collector is a roof
surface in which the ridge side is replaced with a glass heat collector panel. Hence, the
outside air introduced into the ventilated cavity is warmed under the eaves. The outside
air warmed in this fashion is exhausted during the summer and is blown under the floor
through a duct during the winter.
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Figure 1. Roof composition with ventilated cavity and glass solar thermal collector (unit: mm).

Figure 2a shows the system diagram of the conventional Type N system during the
daytime when collecting heat. The solar heat is collected and distributed by the air flowing
through areas (1)–(6) in order. (1) When the temperature on the ridge side of the ventilated
roof cavity increases above 30 °C during winter, ~2.5 ACH outside air is introduced from
the eaves to the ventilated roof cavity. (2) The outside air is warmed by the solar heat as
it passes through the ventilated roof cavity and the glass solar thermal collector. (3) The
collected outside air is blown under the floor through a duct. (4) The heat is stored in the
foundation concrete and floor slab. (5) The air under the floor moves into the room through
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a floor outlet in each. (6) The room air is then exhausted by a supply-only ventilation
system. Steps (1)–(6) reflect the daytime airflow for a Type N system.

Figure 2b shows a Type N nighttime (non-heat-collection) system diagram. At night,
the air flows in the order of (1) to (4). (1) Indoor air is taken into the attic space through
the return duct. (2) This air is blown under the floor through the duct. (3) The indoor
air receives the heat stored under the floor from the daytime collection. (4) The air that
receives heat from under the floor returns to the room through the floor outlet. At night, to
secure the required ventilation volume, 0.5-ACH air is moved by exhaust-only ventilation.

Energies 2021, 14, x FOR PEER REVIEW 4 of 13 
 

 

receives the heat stored under the floor from the daytime collection. (4) The air that re-

ceives heat from under the floor returns to the room through the floor outlet. At night, to 

secure the required ventilation volume, 0.5-ACH air is moved by exhaust-only ventilation. 

  

(a) (b) 

Figure 2. Air circulation route of Type N: (a) heat collection operation during daytime; (b) heat release during nighttime. 

2.2. Improvement Plan 1: Type A (Indoor Air Intake) 

Figure 3 shows the Type A (indoor air intake) system diagram. The volume of outside 

air introduced into the roof ventilation layer in (1) is suppressed to 0.5 ACH, the required 

ventilation amount. (1′) the remaining ~2-ACH ventilation air enables an increase in the 

amount of heat storage by increasing the collected heat, owing to the introduction of in-

door air into the roof ventilation layer. Additionally, the nighttime operation of the Type 

A system uses the heat stored from the daytime as with the Type N system. 

  

(a) (b) 

Figure 3. Air circulation route of Type A: (a) heat collection operation during daytime; (b) heat release during nighttime. 

2.3. Improvement Plan 2: Type B (Heat Storage Wall + Indoor Ventilation) 

Figure 4a shows a daytime system diagram of the Type B (heat storage wall + indoor 

ventilation) system. With Type B, steps (3)–(5) are changed from Type N. With Type N, 

the heat collection air is blown under the floor for storage. However, in Type B (3), the 

heat collection air is blown to the ventilated cavity in the indoor heat-storage wall (4). 

Glass solar 

collector

Fan

Exhausted by 

supplied air

Duct

Foundation concrete 

(heat storage )

Living room

Ventilated 

roof

outside air

introduction

(1)

(2)

(3)

(4)

(5)

(6)

Return 

duct

Glass solar 

collector

Ventilated 

roof

Exhausted by fan

Living room

Foundation concrete 

(heat storage )

Fan

Duct

Supplied by 

exhausted air

Indoor air

introduction(1) (2)

(3)

(4)

Glass solar 

collector

Ventilated 

roof

outside air 

introduction

Exhausted by 

supplied air

Fan

Duct

Living room

Foundation concrete 

(heat storage )

Take in 

indoor air

(1)

(2)

(3)

(4)

(5)

(6)

(1’)
Return 

duct

Glass solar 

collector

Ventilated 

roof

Exhausted by fan

Living room

Foundation concrete 

(heat storage )

Fan

Duct

Supplied by 

exhausted air

Indoor air

introduction(1) (2)

(3)

(4)

Figure 2. Air circulation route of Type N: (a) heat collection operation during daytime; (b) heat release during nighttime.

2.2. Improvement Plan 1: Type A (Indoor Air Intake)

Figure 3 shows the Type A (indoor air intake) system diagram. The volume of outside
air introduced into the roof ventilation layer in (1) is suppressed to 0.5 ACH, the required
ventilation amount. (1′) the remaining ~2-ACH ventilation air enables an increase in the
amount of heat storage by increasing the collected heat, owing to the introduction of indoor
air into the roof ventilation layer. Additionally, the nighttime operation of the Type A
system uses the heat stored from the daytime as with the Type N system.
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Figure 3. Air circulation route of Type A: (a) heat collection operation during daytime; (b) heat release during nighttime.
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2.3. Improvement Plan 2: Type B (Heat Storage Wall + Indoor Ventilation)

Figure 4a shows a daytime system diagram of the Type B (heat storage wall + indoor
ventilation) system. With Type B, steps (3)–(5) are changed from Type N. With Type N, the
heat collection air is blown under the floor for storage. However, in Type B (3), the heat
collection air is blown to the ventilated cavity in the indoor heat-storage wall (4). Table 1
summarizes the thermal properties of the normal wall (indoor Type N wall, plasterboard)
and the indoor thermal storage wall (indoor Types-B and -C wall, concrete). (5) The air is
then blown directly into the room from the outlet opened at the bottom of the wall. This
system aims to prevent the collected heat from being lost under the floor while directly
using the radiant heat from the heat-storage wall.

Energies 2021, 14, x FOR PEER REVIEW 5 of 13 
 

 

Table 1 summarizes the thermal properties of the normal wall (indoor Type N wall, plas-

terboard) and the indoor thermal storage wall (indoor Types-B and -C wall, concrete). (5) 

The air is then blown directly into the room from the outlet opened at the bottom of the 

wall. This system aims to prevent the collected heat from being lost under the floor while 

directly using the radiant heat from the heat-storage wall. 

Figure 4b shows a nighttime system diagram of the Type B system. At night, as with 

Type N systems, indoor air is first taken into the attic space through the return duct. Then, 

(3) the indoor air receives the heat stored in the indoor heat-storage wall from the daytime 

heat collection operation, and (4) the air is returned to the room. 

Table 1. Thermal properties of normal indoor wall (Type N) and indoor heat-storage wall (Types 

B and C). 

 Normal Wall (Type N) 
Heat-Storage Wall  

(Types B and C) 

Thickness [mm] 12 20 

Conductivity  

[W/m K] 
0.105 1.2 

Specific heat 

[J/kg K] 
1880 840 

Specific weight [kg/m3] 724 2220 

Moisture conductivity 

[kg/m∙s∙Pa] 
7.610 × 10−12 7.610 × 10−12 

Moisture capacity 

[kg/m3(kJ/kg)] 
1.910 × 10−2 1.905 × 10−2 

 

  

(a) (b) 

Figure 4. Air circulation route of Type B: (a) heat collection operation during daytime; (b) heat release during nighttime. 

2.4. Improvement Plan 3: Type C (Type A + Type B) 

Figure 5a shows the Type C system diagram during the daytime, and Figure 5b 

shows the system diagram of Type C during the nighttime. Type C is a combination of 

Type A and Type B, and additional energy-saving effects can be expected by taking indoor 

air into the ventilated roof cavity and using the indoor heat-storage wall. 

Heat storage wall

Glass solar 

collector

Ventilated 

roof

Exhausted by 

supplied air
outside air

introduction

Fan

Duct

Living room

(1)

(2)

(3)

(4)

(5)
Heat storage wall

Living room

Duct

Glass solar 

collector

Ventilated 

roof
Fan

Return 

duct

Exhausted by fan

Supplied by 

exhausted air

Indoor air 

introduction

(1)
(2)

(3)(4)

Figure 4. Air circulation route of Type B: (a) heat collection operation during daytime; (b) heat release during nighttime.

Table 1. Thermal properties of normal indoor wall (Type N) and indoor heat-storage wall (Types B
and C).

Normal Wall (Type N) Heat-Storage Wall
(Types B and C)

Thickness [mm] 12 20
Conductivity

[W/m K] 0.105 1.2

Specific heat
[J/kg K] 1880 840

Specific weight [kg/m3] 724 2220
Moisture conductivity

[kg/m·s·Pa] 7.610 × 10−12 7.610 × 10−12

Moisture capacity
[kg/m3(kJ/kg)] 1.910 × 10−2 1.905 × 10−2

Figure 4b shows a nighttime system diagram of the Type B system. At night, as with
Type N systems, indoor air is first taken into the attic space through the return duct. Then,
(3) the indoor air receives the heat stored in the indoor heat-storage wall from the daytime
heat collection operation, and (4) the air is returned to the room.

2.4. Improvement Plan 3: Type C (Type A + Type B)

Figure 5a shows the Type C system diagram during the daytime, and Figure 5b shows
the system diagram of Type C during the nighttime. Type C is a combination of Type A
and Type B, and additional energy-saving effects can be expected by taking indoor air into
the ventilated roof cavity and using the indoor heat-storage wall.
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Figure 5. Air circulation route of Type C: (a) heat collection operation during daytime; (b) heat release during nighttime.

3. Simulation Accuracy Verification

Temperature and relative humidity of houses installed with Type N systems operated
in Fukuoka City, Japan, were measured. The housing model for the numerical analysis was
based on an example of a real house with a Type N system installed. The accuracy of the
simulation was verified by comparing it with measured values. The numerical simulation
was conducted using the temperature, humidity, and heat-load prediction software, THERB
for HAM [22]. Figure 6 shows the floor plan of the reviewed house, which is a two-story
wooden home located in Fukuoka, Japan. Tables 2 and 3 summarize the overview and
building envelope information of the reviewed house. Table 4 summarizes the simulation
conditions. To verify the accuracy of the simulation compared with the measured values,
the 2020 Fukuoka meteorological data provided by the Japan Meteorological Agency were
used, and standard year (2001–2010) data were used for numerical analysis using the
simulation presented in the next section. The amount of heat and moisture generated in-
doors is based on Japanese energy-saving standards [23]. Figure 7 shows the results of the
comparison of the simulated values with the measured temperature and humidity values
of the living room (living + dining + kitchen room). The measured values were expressed
at 1 h intervals using a circle mark. Because the field measurement was conducted with res-
idents living in the homes, the various ventilation preferences and living schedules caused
slight differences in measurements. However, the simulated values agreed sufficiently for
numerical analyses. In those, only the spaces in which the air circulation path could be
clearly grasped were assumed to be the indoor room volume: under-floor space, 1st floor,
and open ceiling space of the 1st and 2nd floors.
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Figure 6. Plans and sections of reviewed house (unit: mm): (a) first-floor plan; (b) second-floor plan;
red squares indicate the indoor wall where the heat storage wall is to be considered for Types B and
C. In this paper, “Living + Dining + Kitchen room” refers to the Living room (yellow square, room
volume: 63.53 m3); (c) schematic cross-section.

Table 2. Overview of the reviewed house.

Overview

Target area Fukuoka, Japan
Total floor area [m2] 92.82

Structure Wooden construction
Year of completion 2018

Family structure [people] four people

Table 3. Building envelope overview of the reviewed house (the top is the outdoor side; the bottom is the indoor side).

Building Envelope Overview Roof Overview

Siding (14 mm) Galvalume steel plate (0.4 mm)
Ventilated cavity (21 mm) Ventilated cavity (45 mm)
Moisture-permeable sheet Moisture-permeable sheet

Plywood (9 mm) Plywood (9.2 mm)
Cellulose fiber insulation

(120 mm, 55 kg/m3) Moisture-permeable sheet

Moisture-permeable sheet Cellulose fiber insulation
(185 mm, 55 kg/m3)

Moisture-permeable sheet
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Table 4. Simulation conditions.

Condition

Target area Fukuoka, Japan
Weather condition EA weather data 1

Air-flow rate
of ventilated roof 250 m3/h

Roof ventilation start temperature 30 °C
Roof ventilation stop temperature 25 °C

1 Expanded AMeDAS weather data of Japan.
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Figure 7. Comparison of measured value and simulated value: (a) temperature; (b) relative humidity;
(c) absolute humidity.

4. Simulation Results
4.1. Comparison of Roof Ventilation Layer and Room Temperature

Figures 8 and 9 present graphs that compare the ventilated roof cavity and living-
room air temperatures of Types A, B, and C with those of Type N. The Expended AMeDAS
weather data of Fukuoka (standard year) were used. In Type C systems, which are more
effective than Type N, the ventilated cavity temperature increased by ~2.0–4.1 °C, and
the room temperature increased by ~1.0–3.6 °C. Additionally, in February, as shown in
Figure 10, it was found that the heat-load reduction was the highest with Type C, and it
was possible to reduce the load by ~54% compared with Type N.
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Figure 8. Comparison of ventilated roof-cavity temperature between Types N and A (February).
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Figure 9. Comparison of living-room temperature by each type (February).
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Figure 10. Comparison of sensible heat load by type (living room, February).

4.2. Examination of Overdrying Prevention Effect

Figure 11 shows the relative and absolute humidity of Type N and A living rooms.
The amount of moisture generated indoors is reflected using energy-saving standards [20].
Compared with Type N, Type A, which circulates indoor air through the ventilated roof
cavity, increased the absolute humidity by approximately 1 g/kg′ and the relative humidity
by about 10%. Japan’s winter months are cold and dry. Thus, the absolute humidity of the
outside air is low. Reducing the amount of dry outside air introduced to circulate indoors
enables the control of the indoor humidity by recovering the moisture generated in the
room during the cold and dry seasons.
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Figure 11. Over-drying prevention effect: (a) relative humidity; (b) absolute humidity (February).

4.3. Difference Caused by the Thickness of the Heat-Storage Wall

Figure 12 shows the room-side surface temperature of the heat-storage wall when its
thickness is changed within the range of 10–50 mm, and Figure 13 shows the difference
in heating load (22 °C for 24 h). The internal temperature of the Type N interior wall is
expressed as the normal inner wall. It was found that the thicker the wall, the higher the
heat storage effect up to a thickness of 25 mm. However, if it is too thick, the temperature
of the wall will not easily increase; the heat load may instead increase.
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Figure 12. Influence of heat-storage wall thickness on room temperature (February).
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Figure 13. Effect of heat-storage wall thickness on heat load (living room, February).
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4.4. Difference Caused by the Thickness of the Heat-Storage Wall

According to Japan’s Energy-saving standard-area classification, Japan is divided into
eight areas based on the demand for insulation performance. The colder the area, the lower
the number. Additionally, the areas are classified according to the amount of insolation
from the Heating-period solar radiation area classification (H category). The higher the
number, the higher the solar radiation. Among the regions in areas 1–7 of the energy-saving
standard-area classification, regions belonging to the same regional classification but also
belonging to a different heating-period solar radiation area classification (H1–H3) were
selected as the target areas for the numerical analysis.

Figure 14 shows the difference in heating load (22 °C for 24 h) depending on the
area. Even in areas having the same energy conservation standards, the amount of load
reduction was greater in areas having more solar radiation. It was confirmed quantitatively
that the sensible heat-load reduction effect of this system increased in areas enjoying more
solar radiation.
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5. Conclusions

We proposed an improvement plan for the effects of solar heat collection and storage
of the Type N floor-heating system. The simulation accuracy was confirmed using field-
measurement values, and a numerical analysis was conducted to examine the improved
effects of the improved system. When utilizing solar heat by introducing outside air into a
ventilated roof, ventilation and heating effects were obtained simultaneously, but the heat
collection decreased as the flow rate increased during cold and dry winters. Additionally,
the heat-storage effect was reduced via heat loss when the air was blown into the space
under the floor to store heat. An increase in the amount of dry outside-air intake was shown
to create an overdried indoor environment during heating. Therefore, in the proposed plan,
the introduction of outside air was limited to a standard ventilation volume of 0.5 ACH,
and indoor air was circulated to the ventilated roof. Furthermore, the collected heat was
stored in the ventilated cavity of the indoor wall, thereby increasing the amount of solar
heat collected and heat stored by reducing heat loss. Moreover, the indoor humidity was
increased by minimizing the introduction of dry outdoor air and keeping the moisture that
was generated indoors.

As a result, the room temperature was increased by 3.6 °C, and the relative humidity
of the room was increased by approximately 10% compared with that of the conventional
Type N. Furthermore, it was found that in the southern area (Area 7), having very high
amounts of solar radiation (H-3), it was possible to reduce the load on Type C systems
by ~80% compared with that of Type N. Because the installation costs depend on the
contractor’s skill, as reported in our previous paper [11,14] regarding the construction case
of introducing indoor air instead of outside air into the roof’s ventilated cavity, it is judged
that there will be no significant difference in installation cost provided the installer has the
required technical skill. The difference in electricity bill related to power consumption will
vary depending on the specifications of the air conditioner and the characteristics of the
equipment; however, it will be similar to the reduction ratio of the heat load between the
proposed and conventional systems.
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In this study, a simulation model was verified using the measured values. However,
to better clarify the effect of the proposed system, it is necessary to also perform an
experimental review by actually measuring a house in which a conventional system is
installed and another in which the proposed system is installed under the same conditions.
It is also necessary to examine the clear differences according to the amount of heat and
moisture in the room, as well as to measure the temperature and humidity of the ventilated
cavity in the roof and interior walls, which include the paths for air circulation and the
indoor air.
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