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Djurović, S. Wind Turbine Generator

Controller Signals Supervised

Machine Learning for Shaft

Misalignment Fault Detection: A

Doubly Fed Induction Generator

Practical Case Study. Energies 2021,

14, 1601. https://doi.org/10.3390/

en14061601

Academic Editor: Riccardo Amirante

Received: 18 February 2021

Accepted: 10 March 2021

Published: 13 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Electronic Engineering, University of Manchester, Manchester M1 9PL, UK;
ahmed98570@gmail.com (A.A.-A.); Sinisa.Durovic@manchester.ac.uk (S.D.)
* Correspondence: yingzhao.wang@manchester.ac.uk; Tel.: +44-7419993538

Abstract: With a continued strong increase in wind generator applications, the condition monitoring
of wind turbine systems has become ever more important in ensuring the availability and reduced cost
of produced power. One of the key turbine conditions requiring constant monitoring is the generator
shaft alignment, which if compromised and untreated can lead to catastrophic system failures. This
study explores the possibility of employing supervised machine learning methods on the readily
available generator controller loop signals to achieve detection of shaft misalignment condition.
This could provide a highly noninvasive and low-cost solution for misalignment monitoring in
comparison with the current misalignment monitoring field practice that relies on invasive and costly
drivetrain vibration analysis. The study utilises signal datasets measured on a dedicated doubly fed
induction generator test rig to demonstrate that high consistency and accuracy recognition of shaft
angular misalignment can be achieved through the application of supervised machine learning on
controller loop signals. The average recognition accuracy rate of up to 98.8% is shown to be attainable
through analysis of a key feature subset of the stator flux-oriented controller signals in a range of
operating speeds and loads.

Keywords: condition monitoring; shaft misalignment detection; supervised machine learning; wind
generator; angular misalignment

1. Introduction

Offshore wind generation is one of the fastest growing renewable sources in scale with
an approximately 30% annual deployment increase since 2010 and is set to become the
largest source of electricity in the European Union by 2040 [1]. In addition, the traditional
onshore wind power market remains strong and keeps expanding at a steady pace [2].
Further success and the adoption of large-scale wind generation will be determined by
its reliability and price. In this regard the high operation and maintenance (O&M) cost is
one of the key challenges for modern wind turbines (WT), originating largely from their
exposure to harsh ambient conditions in remote locations. This is especially pertinent
to offshore WTs, where access is limited and maintenance costs high due to complicated
repair infrastructure requirements imposed by the device location and scale. The O&M
cost is estimated to account for up to 30% of entire offshore farm lifetime cost [3]. To
mitigate this problem, condition monitoring techniques are continuously being developed
to enable lower costs, pre-scheduled maintenance, and thus reduce the downtime losses
and avoid the high unplanned maintenance expense through a predictive maintenance
approach. The key WT subassemblies that require effective monitoring in this respect are its
drivetrain elements (e.g., bearings, generator, gearbox), which are in modern WT systems
normally equipped with dedicated and costly condition monitoring systems [4]. Improved
monitoring of these components has thus attracted considerable research interest [5–7].
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The generator shaft misalignment is one of most common problems in practical WT
drivetrains; this condition relates to appropriate alignment of its critical components,
i.e., the WT rotor, gearbox (where present) and generator shafts [8]. In general, shaft
misalignment is characterised as a condition in which the shaft of the driving machine and
that of the driven machine are not aligned with the same centerline. It is reported to be
responsible for 50% of all rotating machinery problems [9] and can in WT drivetrains result
in undesired forces leading to damage or destruction of bearings, seals, and couplings, and
thus eventually the gearbox and the generator failure [8]. Therefore, the monitoring and
diagnosis of shaft alignment is critical in WT drivetrains. This is especially pertinent to
WTs located in harsh and remote environments, where effective misalignment monitoring
could help reduce the associated downtime and repair cost implications [10,11].

The WT generator shaft alignment is typically inspected once a year utilizing costly
laser alignment tools as part of a maintenance program to validate the existing misalign-
ment levels and thus schedule the corresponding repair action [8]. Furthermore, the laser
tools employed for inspection are only suitable for use when the generator is not oper-
ating. These, therefore, cannot be used to enable online alignment monitoring [12,13].
Consequently, online vibration monitoring using piezoelectric accelerometers is generally
employed in WT drivetrains to identify mechanical faults, including shaft misalignment;
this is typically achieved by observing the relevant spectral components of vibration sig-
nals at multiples of shaft rotational speed [9,14]. However, vibration sensing systems
are generally costly and invasive, requiring sensors to be in physical contact with the
monitored device structure, and while effective, the vibration analysis based diagnostic
reliability can be affected by the generator transient operation and limitations in dynamic
range [13]. Alternative approaches for shaft misalignment diagnosis are therefore con-
stantly being investigated. These include methods based on the application of drivetrain
thermal monitoring techniques [15–17], where, for example, infrared thermometers observ-
ing the coupling temperature were employed in [11] for misalignment detection; however,
this was found to also be sensitive to other heat sources in the drivetrain. While the thermal
monitoring methods can generally be effective in a known environment, they impose
requirements for what can be costly and sensitive thermal monitoring devices and could
be challenged in effective application in harsh and variable environmental conditions
characteristic of WTs. A strain gauge was used in [18] to predict shaft misalignment via
measuring displacement in the vicinity of couplings, but this approach was shown to be
constrained by the sensor location requirements. The Fiber Bragg grating (FBG) strain
sensing application on the generator frame was investigated in [19], where misalignment
recognition was undertaken by observing different orientations of machine frame strain
spectral components at multiples of shaft rotational speed; while promising, this method
remains relatively invasive and relies on the usage of a costly FBG sensing system. The
motor current signature analysis (MCSA) as a minimally sensor dependent and invasive
diagnostic tool has been explored to diagnose shaft misalignment in conventional elec-
tric machines by investigating rotational speed related harmonic contents in the terminal
current signals [20–22]. The available MCSA academic studies were however undertaken
on small scale machinery, and larger test systems are needed to contribute better under-
standing of possible fault effects manifestation and its generality. An investigation on a
30 kW doubly fed induction generator (DFIG) was reported in [23], where terminal currents
and controller loops signals were evaluated, but no significant or consistent signature at
rotational speed sidebands, generally deemed characteristic of shaft misalignment, could
be observed in the spectrum with the presence of fault. The general interest in development
of noninvasive and competent condition monitoring methods for shaft misalignment in
wind generator systems and other rotary electric machine applications remains strong but
further research is needed to explore the potential of using electrical signal embedded
changes for fault monitoring purposes.

Machine Learning (ML) is a method used to generalise data by learning from a set of
features to find the underlying correlation between them and thus predict new labels. This
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offers new opportunities for classification and understanding of diagnostic information in
electric machinery condition monitoring applications. A number of machine fault diagnosis
applications reported in the literature applied unsupervised learning, such as successful
fault detection using advanced AI clustering applied in [24] to detect rotor broken bars and
bearing failures via MCSA at different operating conditions. Furthermore, a study in [25]
applied successful clustering techniques on vibration data from different rolling bearing
elements by using principal component analysis to detect the type of faults with respect
to the change in rotational frequency. A further paper shown in [26] used unsupervised
clustering technique to identify stator-winding short, rotor-winding short, and brush faults
on a wound-rotor induction generator using stator and rotor current and voltage signatures.
On the other hand, supervised learning has been used in [27]: regression and a non-linear
artificial neural network (ANN) were applied to detect generator failures in wind turbines.
It was established that the ANN performed better than the regression models. Furthermore,
a novel methodology in [28] applied multi-label classification for diagnosing and classifying
the severity of misalignment and imbalance via vibration and current signatures on an
inverter-driven cage induction machine. The dataset was processed, and two models were
developed to detect the type and severity of faults by using a decision tree, classifier chain,
and K-Nearest Neighbor (KNN). It was found that the classifier chain and KNN performed
better than the decision tree in fault diagnosis, achieving a 99% accuracy for predicting the
severity of the faults.

Santos et al. [29] considered using a Support Vector Machine (SVM) and ANN classifi-
cation to detect rotor misalignment and imbalance in variable speed and load conditions.
Vibration, electrical torque and mechanical signals, including speed measurements, were
acquired at two-levels of misalignment and four levels of imbalance introduced on a test
system using an induction motor electrical drive and a parallel and planetary gearbox. It
was determined that linear SVM performed better than ANN and other SVM’s kernels
(e.g., Gaussian and Stamp) with an accuracy of 98%. In addition, ANN takes longer to
train and tune compared to SVM, suggesting that it is computationally costly. Moreover,
the SVM and decision tree were used in [30] for the diagnosis of mechanical faults related
to bearing and shaft on a test system utilising a variable speed DC motor with a flexibly
coupled shaft. The shaft is supported with two ball bearings at the end. It was noted that
classifiers performed well in diagnosing faults associated with 12 different conditions and
reported an accuracy between 93 and 99%; however, the findings need further validation
in the transient state.

The study in [31] applied the ANN with the CSA framework to diagnose mechanical
rotor eccentricity for variable speed conditions. It was discovered that the ANN performed
well in diagnosing healthy and faulty conditions with an accuracy between 93 and 98%,
although lower accuracy was reported when predicting increasing severity. However,
validation of this method is required in real case data. Likewise, [32] proposed a method-
ology for detecting wear and misalignment in a journal bearing. It revealed that ANN
performed well in diagnosing a faulty condition with further work planned on modelling
with different parameters to distinguish between misalignment and bearing wear.

Conversely, various papers reported WT fault detection using existing data from
the turbine’s Supervisory Control and Data Acquisition System (SCADA). For example,
fault detection and diagnosis of excitation error, feeding fault, generator heating faults,
and air cooling malfunction were examined in [33] on WTs in Ireland using generator
SCADA data. Fault detection was based on two classes (healthy and faulty). The Sup-
port Vector Machine (SVM) was applied, and promising results obtained in relation to
distinguishing between healthy and faulty conditions, with recall scores above 80% and
advanced detection claimed of up to 24 h before the occurrence of failures. Furthermore,
in [34], a study was conducted to develop generator brush fault diagnostic models based
on boosting tree and ensemble models such as Random Forest. The data are extracted
from the SCADA of 27 WTs with sampling performed every 10 min. Accuracy between
82 and 97% was observed and advanced detection of up to 12 h reported. These studies
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clearly indicate considerable interest exists in the intelligent application of ML methods for
practical condition monitoring purposes in wind turbine systems.

While the reported literature confirms the potential of supervised and unsupervised
learning application for analysis of diagnostic signals, and thus diagnosis of WT drivetrain
and general electric machinery faults, considerable further work is needed to explore
the full potential of this approach. Of particular interest is to advance the non-invasive
nature of diagnosis through analysis of those diagnostic signals that are readily available in
electric drives and require no additional sensing hardware for monitoring. In this regard the
signals embedded in the WT generator controller loops provide an attractive opportunity
for minimally invasive condition monitoring as they are already monitored and recorded by
the controller hardware and logic. They hence require no further hardware nor impose extra
expense to access for diagnostic purposes but can, in practical applications, be challenging
to access due to manufacturer imposed logic restrictions on drive controller design, which
has partly impaired research efforts on their diagnostic exploration. Furthermore, the
diagnostic signatures in the controller signals require further understanding; while they
have been explored for signature analysis-based electrical fault monitoring in widely used
WT DFIGs [35–37], their application for misalignment fault detection remains largely
unresearched. The existing limited research [23] demonstrates that conventional fault
physics-based signature analysis in DFIG controller signals is of very restricted potential
for effective misalignment fault diagnosis and that more advanced data analysis methods
are needed to ascertain and explore their diagnostic potential.

This study investigates the potential of supervised machine learning models’ applica-
tion for identification of misalignment fault specific changes in WT DFIG controller loops’
signals and hence controller signal based misalignment fault diagnosis. To this end, a
specialized purpose built DFIG experimental system that allows full access to controller
signals and experimental emulation of the shaft angular misalignment fault is used in this
work to obtain the datasets of healthy and faulty conditions signals in a range of typical
operating points. These are then analyzed by a number of different supervised machine
learning techniques to extract fault specific data classifiers that can be employed to enable
misalignment fault diagnosis. The diagnostic performance of individual machine learning
techniques is then compared to identify the best performing ones, and further analysis
undertaken on training dataset volume requirements and diagnostic feature importance
of controller signals for required dataset size reduction. The results demonstrate that
an average misalignment fault recognition accuracy of up to 98.8% is possible through
machine learning analysis of a key feature subset of DFIG controller signals in the current
control loop.

2. Methodology

This section details the DFIG experimental apparatus employed in this study, the types
of DFIG signals/data analysed, the data analysis methodologies consideration, and finally
the general diagnostic algorithm and data modelling procedure followed in this work.

2.1. Experimental Test Rig Description

The DFIG test rig includes a three-phase, 415 V, four-pole 30 kW wound rotor induction
machine (WRIM) whose rotor windings are interfaced to the grid via a back-to-back voltage
source converter composed by two CT UNIDRIVE SP-4401 units [38]. A 40 kW DC load
motor is directly coupled to the DFIG and operated by a DC drive as a prime mover to
provide a desired speed and load profile in tests. To emulate the behavior of practical
DFIG systems for wind power generation, a real-time vector control routine (i.e., stator
flux-oriented control, SFOC) is implemented on the testing DFIG utilizing commercial
converters manipulated in a purpose developed algorithm via a dSPACE 1103 real-time
platform [39,40].

A suite of LEM LA 55P/SP1 current and LV 25-600 voltage Hall sensors are fitted to the
WRIM to monitor the relevant stator and rotor electrical signals. The controller loop signals



Energies 2021, 14, 1601 5 of 15

and other relevant terminal and mechanical signals are extracted via the dSPACE platform
in tests and utilized for supervised machine learning. The rotor angular position and
velocity is captured via a 1000 ppr stub shaft mounted incremental encoder. A simplified
schematic diagram of the DFIG test rig is shown in Figure 1, and an image of the laboratory
test system in Figure 2.

Figure 1. Simplified schematic diagram of the laboratory test rig.

Figure 2. Overall picture of the laboratory test rig.

The test rig was mechanically modified to enable experimental emulation of the angu-
lar shaft misalignment condition. This was practically achieved by fitting appropriately
dimensioned shims underneath the WRIM feet [19,41], sized from the test system geometry
and the target amount of angular misalignment; using this approach enabled the one-
degree angular shaft misalignment condition to be practically established. A commercial
laser alignment tool (TKSA 51) was used to validate that the correct amount of misalign-
ment had been achieved. The alignment tool was also used to ensure there was no offset
alignment present in the system during tests.

2.2. Data Formatting

Three types of DFIG data were analyzed in this study: the controller loop signals,
the terminal signals, and the mechanical signals. Subsequently, for each operating point,
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the machine health condition was defined with numeric labels denoting the nature of the
operating state (i.e., healthy, faulty), as shown in Table 1.

Table 1. Numeric labels in the dataset and their meanings.

Meaning Numeric Label

Healthy 0
1◦ Misalignment 1

Six controller loop signals from the DFIG SFOC controller were acquired using the
dSPACE platform for the sake of data analysis. These include stator active power P (W),
stator reactive power Q (Var), the dq-axis rotor current components Idr, Iqr[A], and the
dq-axis error signals for the rotor current controllers Idrerr, Iqrerr (A). The mechanical signals
dataset consists of two signals: the shaft mechanical speed and position angle (electrical
radians). The terminal signals dataset includes the stator and rotor phase currents, Isa and
Ira (A), respectively, and the stator voltage Vsa (V). The analyzed datasets are summarized
per signal type in Table 2.

Table 2. Summary of the data signals types.

Type Signals

Controller loop P (W) Q (Var) Idr (A) Iqr (A) Idrerr (A) Iqrerr (A)
Mechanical n (RPM) θ (rad)

Terminal Isa (A) Ira (A) Vsa (V)

For illustration purposes, the time domain data of select analysed experimental signals
are presented in Figure 3. It can be noted that that no apparent fault indicators can be
identified through observation of the time domain signal data. In addition, the spectral
analysis of the controller and terminal signals reported in [23] has shown that no consistent
spectral signatures arising from angular misalignment can be identified in these signals.

2.3. Model Selection

It was demonstrated that SVM, ANN, and models based on tree structures are the most
common algorithms used for CM and fault diagnosis in WTs [42]. This study will compare
the diagnostic performance of data analysis performed by the following algorithms: the
models based on a decision tree (single decision tree), the bagging models (Random Forest),
the boosting algorithms (Catboost and XGBoost), the SVM, and the logistic classifier. The
fundamentals of these and their fit to the application explored in this study are briefly
reviewed in this section for the sake of clarity.

The decision tree is a common supervised learning algorithm used for both regression
and classification tasks. The drivers for decision tree application in this work are its faster
training time and capability to enable root cause analysis in fault diagnosis [43]. Here, the
data split is based on a set of rules deduced from the best data feature (Root) according
to the impurity, defined as the feature to maximise the information gain. The splitting
continues until all of the leaves are pure classes [43].

Conversely, the Random Forest is constructed from multiple uncorrelated decision
trees operating in parallel. The decision is based on the majority of trees’ votes providing
improved data generalization compared to single decision tree methods: the greater the
number of estimators (i.e., trees); however, the longer the training time and hence, the
higher the computational cost [44,45]. Unlike Random Forest, the gradient boosting models
are ensemble trees that operate in sequence. The process begins with training a single
decision tree to obtain the predictions, and the residual error is then fed to the following
tree for training. This cycle is repeated until the number of required trees is reached and
the final decision based on the sum of all trees’ predictions. Currently, there are various
gradient boosting algorithms, such as Catboost and XGBoost, which are commonly used in
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ML applications due to the high performance and lower training time demands compared
to Random Forest [46,47]. Logistic regression is used to classify binary dependent variables
by utilizing a logistic function [48]. Finally, the SVM essentially finds the best hyperplane
to divide the data into two classes (i.e., true or false) [48].

Figure 3. Healthy and one-degree misalignment time domain spectra: controller P (a), Idr (b), Idrerr (c), and terminal Isa (d),
Ira (e) signals at @ 1340 RPM and 50% load.

2.4. Diagnostic Method and Modelling Technique

The idea explored in this work is that of application of ML methods on signals em-
bedded within the DFIG controller loops to explore the possibility of extracting diagnostic
classifiers from these that could enable the recognition of shaft angular misalignment fault.
The study also evaluates the potential of ML application on DFIG terminal and mechanical
signals for the same purpose and for cross-correlation with the diagnostic performance of
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controller signal-based data analysis. To this end, the signals from the test system, including
primarily those residing in the DFIG drive programmable logic controller (PLC) embedded
SFOC controller loops, but also the mechanical and terminals signals considered in the
study, are measured and fed to a dedicated computer where ML processing and analysis
took place. This consisted of the following general steps: the signals are exported as CSVs
format, and then imported to Jupyter notebook to execute machine learning algorithms.
The algorithms were selected and coded through Jupyter notebook using Python. Next, the
algorithms are trained using 80% of the data and the remaining 20% used in the evaluation
stage where accuracy was calculated. The fundamental steps used in the analysis and their
integration with the employed experimental system are illustrated in Figure 4.

Figure 4. Signals extraction on the doubly fed induction generator (DFIG) operation including
controller loop, mechanical, and terminals signals.

The experimental tests were performed under two different conditions: with the
shaft with a 1◦ angular misalignment introduced by fitting shims underneath the WRIM
frame. To capture the conditions in different regions of the operating range, the DFIG
was driven at the following typical operating speeds in the sub- and super-synchronous
range: 1340 RPM, 1440 RPM, 1550 RPM, and 1590 RPM. For each operating speed, the
measurements of the analyzed signals (as specified in Section 2.2) were taken under three
different loads (current), i.e., for a 25%, 50%, and a fully loaded machine (100%). All
recordings were sampled at a sampling frequency of 5 kHz for approximately 14 s. Table 3
summarizes the operating conditions for which the measurements were taken.

Table 3. Summary of the machine operating conditions.

Operating Condition Speed RPM Nominal Load (Current)

Healthy 1340, 1440, 1550 and 1590 25%, 50%, and 100%
1◦ Misalignment 1340, 1440, 1550 and 1590 25%, 50%, and 100%

A simplified flowchart of the data modelling process is shown in Figure 5. The overall
process starts with setting the speed and load of each machine condition. The data are
then labelled according to the numerical machine condition as showed in Table 1 (i.e., 0
for heathy and 1 for faulty data) and then combined and shuffled. Next, the X features
and y labels are defined. The features are scaled using standard scaling to bring the data
to the same level while maintaining the normal distribution, thus preventing prolonged
training time. Subsequently, the features and labels are split for training (80% of the data)
and testing (20% of the data). The X train and y train are then fed into the fitting stage
where different classifiers are used, including decision tree, Random Forest, Catboost,
XGBoost, SVM, and Logistic classifier. The algorithms are taken from the Scikit-learn,
Catboost, and XGBoost libraries. Once the fitting step is completed, the classifier is used to



Energies 2021, 14, 1601 9 of 15

predict the X_test’s labels and to compare them with true y_test in the evaluation stage.
The results were evaluated using validation accuracy. The accuracy metric is the simplest
and most common classification metric defined by the proportion of correct predictions
to the total number of predictions. Accuracy is typically used when the classes are well
balanced; although, in the case of unbalanced classes, other metrics (i.e., precision, recall,
and F1-score) can become important. In this study, only the accuracy matrix was used
because the data were equally balanced.

Figure 5. Simplified modelling process flowchart.

3. Results and Discussion
3.1. Controller Loop Signals

Firstly, the analysis was undertaken to confirm whether the presence of misalignment
fault can be indicated clearly by analysis of controller loop signals. To this end, multiple
recorded controller signals datasets were analysed as described in Section 2.4. The obtained
results are presented in Table 4. The presented data illustrate that the algorithms give
accurate results for most of the analysed load and speed conditions. The accuracy of
misalignment fault condition recognition is seen to range from 94% to 99% across the board,
with the exception of the 25% load at 1340 RPM operating point, where apart from the SVM
and the boosting models, all other models exhibit a more significant accuracy drop to the
71–86% levels. Overall, the results of measured controller signal analysis indicate that it is
possible to clearly distinguish between the healthy and faulty operating conditions, and
thus achieve a reliable diagnosis of misalignment on the test system studied in this work.
Here, the highest accuracy is attained using the SVM model (min accuracy 97%, average
accuracy 98.8%), closely followed by Catboost (min accuracy 93%, average accuracy 97.4%)
and XGBoost (min accuracy 91%, average accuracy 98%). It was noted that the DT, Logistic
classifier, and boosting models took a relatively shorter training time compared to RF and
SVM, which may bring a useful economical consideration when considering deployment.
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Table 4. Validation accuracy of all six measured signals in different operating conditions.

Speed (RPM) 1340 RPM 1440 RPM 1550 RPM 1590 RPM
Load (%) 25% 50% 100% 25% 50% 100% 25% 50% 100% 25% 50% 100%

Decision Tree 86 98 99 99 99 99 99 99 99 99 99 99
Catboost 93 99 99 96 97 98 97 98 98 98 98 98
XGBoost 91 98 99 97 98 99 99 99 99 99 99 99

Random Forest 85 96 99 94 96 97 97 98 98 98 98 98
Linear SVM 97 99 99 99 99 99 99 99 99 99 99 99

Logistic Classifier 71 99 99 98 98 97 99 99 93 96 99 99

It is crucial to analyse the different features selected for training as this can identify
the most relevant feature that indicates the fault condition. Therefore, as an example,
the decision tree model was used for 1340 RPM, 50% loaded machine to calculate the
information gain (i.e., feature importance) for each data feature and the results shown in
Figure 6. The data show that the Iqrerr and Iqr signals contribute the most to the decision
process, with a slight contribution of the Idrerr and Idr and a minimal contribution by P and
Q. Based on these findings, the dataset was tested with only Iqr and Iqrerr and the accuracy
reported in Table 5. The obtained validation accuracy is seen to range from 97% to 99%
across the board, with noticeable improvements in comparison to the results obtained by
using all the six signals. The reason behind this is that the remaining signals are introducing
noise to the data so that when they are removed, the model recognition is enhanced. The
exception is the 25% load at 1340 RPM operating point, where some results exhibit a more
significant drop in accuracy to the 77% levels. Here, the highest overall accuracy is attained
using the Random Forest model (min accuracy 97%, average accuracy 98.8%), closely
followed by the Decision Tree (min accuracy 96%, average accuracy 98.7%) and XGBoost
(min accuracy 86%, average accuracy 97.9%).

Figure 6. Feature importance of Catboost classifier at 1340 RPM and 50% loaded machine.

3.2. Mechanical Signals

The mechanical signals consist of shaft rotational angular position and shaft speed.
Data analysis was applied to these to explore whether fault presence can be indicated
clearly using these signals. The results showed high validation accuracy ranging from 94%
to 99% in the cases where the machine was operating at 1340 RPM, whereas for the other
considered speeds, the performance was slightly lower with accuracy ranging from 75% to
85% and a considerable loss of accuracy obtained by the SVM and the logistic classifier. It
was noted that models based on tree structures showed better performance compared to
the SVM and logistic classifier. Generally, mechanical signals were able to detect the faulty
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points clearly at 1340 RPM. Table 6 shows a summary of validation accuracy in different
operating conditions.

Table 5. Validation accuracy of using only Iqr and Iqrerr in different operating conditions.

Speed (RPM) 1340 RPM 1440 RPM 1550 RPM 1590 RPM
Load (%) 25% 50% 100% 25% 50% 100% 25% 50% 100% 25% 50% 100%

Decision Tree 96 99 99 99 99 99 99 99 99 99 99 99
Catboost 77 97 99 97 97 98 97 97 98 97 98 98
XGBoost 89 98 99 98 99 99 98 99 99 99 99 99

Random Forest 97 99 99 99 99 99 99 99 99 99 99 99
Linear SVM 76 99 99 99 99 99 99 99 99 99 99 99

Logistic Classifier 77 99 99 99 99 99 99 99 99 99 99 99

Table 6. Summary of validation accuracy in different operating conditions using mechanical signals.

Speed (RPM) 1340 RPM 1440 RPM 1550 RPM 1590 RPM
Load (%) 25% 50% 100% 25% 50% 100% 25% 50% 100% 25% 50% 100%

Decision Tree 95 94 94 75 76 76 78 79 79 82 80 80
Catboost 94 94 94 78 77 76 81 82 82 85 84 84
XGBoost 99 95 94 80 78 78 85 85 85 86 85 85

Random Forest 99 94 93 76 76 75 83 84 84 84 82 83
Linear SVM 99 83 83 75 75 74 79 79 79 68 67 66

Logistic Classifier 99 82 83 72 72 71 78 78 78 66 66 67

3.3. Terminal Signals

This sub-section analyses the terminal signal dataset. The results demonstrate a low
validation accuracy in most of the cases, ranging from 50% to 63%, as shown in the results
summarised for the different operating conditions analysed in Table 7. In general, the
performance of models based on tree structures is seen to be stronger than the SVM and
logistics classifiers in terms of validation accuracy. It can be seen that modest detection
accuracy rates can be achieved from the analysis of terminal signals when compared
to those attained from the controller and mechanical signals. The maximum accuracy
observed is 63% (average 59.3%) and is obtained by the Random Forest algorithm, which is
substantially lower than that obtained by this algorithm from mechanical signal analysis
(min 75%, average 84.4%) and controller signal analysis (min 85%, average 96.1%).This
illustrates a much lesser potential of terminal signals to be employed for misalignment
diagnostic purpose based on machine learning.

Table 7. Summary of the validation accuracy using terminal signals in different operating conditions.

Speed (RPM) 1340 RPM 1440 RPM 1550 RPM 1590 RPM
Load (%) 25% 50% 100% 25% 50% 100% 25% 50% 100% 25% 50% 100%

Decision Tree 57 56 56 55 54 54 57 58 54 57 56 55
Catboost 59 57 59 58 58 57 60 60 57 60 58 57
XGBoost 58 57 58 57 56 55 59 59 56 60 58 56

Random Forest 60 59 60 59 58 57 61 63 57 61 59 57
Linear SVM 50 50 50 50 50 52 50 50 49 51 51 51

Logistic Classifier 50 50 50 50 50 50 50 50 50 51 51 50

3.4. Data Size

Finally, it is essential to estimate how many data are required to enable effective
fault diagnosis from an implementation and operational perspective, as the more data
required, the higher the computational cost would be. To evaluate the data requirements,
the validation accuracy was computed for different testing portions of the available datasets
using all the classifiers considered in this work for an illustrative arbitrary operating point
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(1340 RPM, 50% loaded), shown in Figure 7. It can be noted that, for example, the scores
reduced from 97.8% to 94.5% and from 96.4% to 92.5% when percentage of training dataset
was lowered from 90% to 10% using the Decision Tree and Random Forest, respectively.
In addition, it can be noticed that the rest of the classifiers also exhibit an accuracy rate
reduction with the reduction in the training dataset size; however, this is observed to
be limited and lower than 1%. Overall, the models can still perform well with a smaller
training dataset suggesting that their practical implementation would not be expected to
impose significant training dataset requirements.

Figure 7. The validation accuracy vs. training portion.

4. Conclusions

This study demonstrates the general feasibility of a highly noninvasive methodology
for monitoring wind generator shaft misalignment through supervised machine learning
analysis of the readily available generator controller signals. The study is undertaken
on a medium scale doubly fed induction generator laboratory test rig allowing practical
emulation of the angular shaft misalignment and full access to controller signals.

The paper utilizes the datasets of signals, measured in healthy and misalignment fault
operating conditions in a number of operating points on the examined test system to classify
the misalignment condition specific features in three generator signals group subsets,
namely, the controller loops signals, the terminal signals, and the mechanical signals. The
analysis employs a number of leading classifiers to evaluate the individual groups of signals
diagnostic potential and cross compare it, with the main focus on diagnostic exploitation
of the controller signals. It was found that, overall, misalignment condition detection
using controller loop signals achieved by far the best validation accuracy, observed at
a level of up to 98.8% average accuracy with consistent diagnosis. Moreover, using the
embedded feature selection method to select the most appropriate set of features allowed
consistent results to be achieved while maintaining high average accuracy levels by using
only Iqr and Iqrerr controller loop signals for misalignment detection. This allows for a less
computationally demanding establishment of the proposed diagnostic scheme. Conversely,
machine learning analysis of neither the terminal nor mechanical signals was able to
provide consistently high accuracy in recognition of misalignment fault and showed very
limited potential for this application. In addition, it was noted that models can still perform
well with a smaller training dataset, with an approximately 1% accuracy rate reduction
observed for most of the classifiers with the reduction in the training dataset size. This
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suggests that their practical implementation would not be expected to impose significant
training data requirements.

The findings of this study indicate that supervised machine learning application of
DFIG controller loop signals may have potential to provide a reliable and highly non-
invasive approach to monitoring shaft misalignment; the method would require no ad-
ditional sensing to be established as it utilizes signals that are readily available within
controller loops and necessitate no additional expense to capture. The practical application
of the examined diagnostic scheme in a wind turbine system would be expected to impose
a modest cost requirement. This would exclusively be related to the need for ensuring
the availability of generator drive PLC computational capacity required to enable the ML
based diagnostic analysis of the controller loop signals; these are already monitored and
manipulated within the PLC registers for the purpose of achieving real time control. The
extracted diagnostic information could effectively be integrated into the drive’s existing
communication protocols and fed to an external wind turbine or farm level supervisory
medium using existing hardware. The implementation expense of an ML based diagnostic
scheme utilizing controller signals would thus be expected to compare very favorably to
that of the current field practice that relies on utilization of dedicated and costly drivetrain
acceleration monitoring and analysis platforms.

Future research needed to further explore the potential of this work in WT generators
and establish its generality would involve the analysis of misalignment fault signals from a
range of different practical DFIG system designs, including analysis of different levels and
types of misalignment (e.g., offset misalignment) and generator dynamic operating regimes.
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