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Abstract: This paper presents a computationally efficient novel heuristic approach for solving the
combined heat and power economic dispatch (CHP-ED) problem in residential buildings considering
component interconnections. The proposed solution is meant as a substitute for the cutting-edge
approaches, such as model predictive control, where the problem is a mixed-integer nonlinear
program (MINLP), known to be computationally-intensive, and therefore requiring specialized
hardware and sophisticated solvers, not suited for residential use. The proposed heuristic algorithm
targets simple embedded hardware with limited computation and memory and, taking as inputs
the hourly thermal and electrical demand estimated from daily load profiles, computes a dispatch
of the energy vectors including the CHP. The main idea of the heuristic is to have a procedure that
initially decomposes the three energy vectors’ requests: electrical, thermal, and hot water. Then, the
latter are later combined and dispatched considering interconnection and operational constraints.
The proposed algorithm is illustrated using series of simulations on a residential pilot with a nano-
cogenerator unit and shows around 25–30% energy savings when compared with a meta-heuristic
genetic algorithm approach.

Keywords: combined heat and power; co-generation; energy storage system; energy management;
heuristics; genetic algorithm; low-cost computing platform

1. Introduction

Buildings equipped with multi-energy systems are an increasing trend due to the
high energy efficiencies that could be achieved. In particular, the combined heat and
power (CHP) systems that generate both electrical and thermal energy exploiting their
inherent operating cycle [1,2] are vital components. There have been concerted efforts
from building owners to replace single energy generators with higher efficiency CHP
units. In comparison with traditional electrical and heat-only units, the CHP units can save
10–40% of the costs of generation, which means an equal amount of heat and electricity
production with less fuel [3]. While this transition has increased CHP deployments across
buildings (residential, commercial, and institutional), there are concerns regarding their
return on investments. In addition, coordinating CHP units with roof-top solar, energy
storage devices, and other components is important for building energy management.
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The CHP economic dispatch (CHP-ED) that aims to minimize fuel cost/consumption
respecting constraints (operating and physical) is seen as a promising solution to guarantee
fast return on investments [4]. However, multi energy systems (MES) scheduling, due to
nonlinearity and non-convexity, is a quite challenging optimization problem [5]. Solving
CHP-ED problem requires specialized hardware and sophisticated algorithm/solvers
with large computation resources, long solution time, and sensitivity to initial conditions,
thereby making their adoption in buildings difficult. In general, the need for a scalable
and simple scheduling approach for solving CHP-ED problems is widely recognized in
industry (see, [6–9] and references therein) especially for the building level units. This
investigation aims to propose one of such approaches for deploying CHP-ED problems on
simple embedded hardware with minimum memory and computing power.

Contributions

The main contributions of the paper are:

1. A fast heuristic algorithm for single CHP plant to address residential CHP-ED prob-
lems. The main idea here is to decompose the problem into three parts: electrical,
domestic hot water, and heat demands. Then, a suitable heuristic is designed to
combine them:

2. A linear single CHP algorithm incorporating thermal and electrical demands and a
holistic model for capturing the interactions among energy vectors in a building.

3. Illustrating the proposed heuristics on a nano-cogenerator and multi-energy systems
in a building.

The paper is organized as follows: in Section 2, relevant papers from the literature
will be revised; Section 3 presents the mathematical model of the CHP system and an
evaluation criterion; Section 4 proposes a benchmarking optimization problem for the
proposed heuristic method; finally, in Section 6, the results of some numerical experiments
are showed.

2. Literature Review

The achievement of a stable economic growth where the possible increase of energy
consumption and greenhouse gas emissions can be handled in a sustainable perspective is
one of the main aspects the principal policy-makers are focused on today. In particular, the
sustainable economic growth should be pursued with policies appealing also for emerging
economies so as to maximize their impact worldwide. For instance, Larissa et al. [10] show
that the aim of achieving a low carbon economy or a green economy is inherent with the
concept of sustainable development. It also calls for preventing the depletion of natural re-
sources, which should benefit future generations. The authors also believe that the adjusted
net savings constitute one of the means to attain this aim. They highlight that the policy
makers should promote new policies in accordance with the other elements of adjusted net
savings, for the purpose of increasing the gross domestic product, consolidating a strong
level of sustainable economic growth and reducing CO2 emissions and greenhouse gas
effects. Ioan et al. in [11] argue that the sustainable economic growth is a desirable goal
for every economy, as it helps to implement the Paris Agreement on global warming [12].
Sustainable economy includes certain core principles such as the consumption of renew-
able and non-renewable resources without depriving society of future benefits, sustainable
human development, sustainable investment, and innovation. Specifically, sustainable
development means achieving development without environmental degradation. In this
context, sustainable growth suggests a transformation of the brown economy into a green
or low-carbon economy.

The energy sector is the main contributor to global warming with 42% share of green
house gas emissions [13]. To reduce the environmental impact of the energy sector, it is nec-
essary to target not only the energy supply but also the energy end-use. Policies have been
globally implemented to encourage the decarbonization of energy supply by incentivizing
the switch to less polluting fuels (e.g., from coal to gas) and the deployment of wind and
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solar renewable power plants [14]. Concerning the decarbonization of the energy end-use,
instead, policies and incentives have been widely studied and already implemented in the
industrial/commercial sector, while the residential sector is often not considered despite
its potentially significant role in emissions reduction [15]. One option to reduce the carbon
emissions associated with the electric demand of a residential facility is through on-site
Variable Renewable Energy (VRE) generation. Renewable sources such as solar and wind
could be exploited on-site to generate fuel-free electricity, reducing the annual energy costs
and the CO2 emissions [16]. However, electricity demand accounts only for around 30%
of the total EU industrial energy consumption [17], while the remaining 70% consists of
thermal energy demand at various temperatures. Heat is a relatively carbon intensive end-
use since it mostly relies on fossil fuels: e.g., in 2000, the majority of the final consumption
of heat in Europe was from oil (59%) and gas (24%). By 2018, the share of heat produced
from gas increased to 40% and the share of heat from oil decreased to 42%, but, despite this
switch, CO2 emissions related to the heating sector increased by 6.4% [18].

Among the many, one possible solution for reducing the environmental impact of
both electricity and heat demand is Combined Heat and Power (CHP). CHP is an efficient
and cleaner way to generate electrical power and heat energy from a single fuel source.
In order to utilize CHP units more efficiently, the economic dispatch problem is applied
to determine the optimal combination of the power and heat sources’ outputs to satisfy
heat and power demand of a system, simultaneously, accounting for and operational
constraints.

The CHP-ED approach presented in this research work complies fully with the sus-
tainable energy development strategies that typically involve three major technological
changes: energy savings, efficiency improvements in the energy production, and maxi-
mization of the integration of renewable energy sources via fossil fuels’ usage reduction.

Existing approaches for solving CHP-ED problems could be broadly discerned into:
(i) mathematical programming based techniques, (ii) heuristics, (iii) meta-heuristics, and
(iv) hybrid techniques.

Mathematical programming and, in particular, linear programming (LP) models have
been the traditional tool to model CHP-ED problems thanks to their ability to capture
complex switching behaviors [19,20]. In addition, the mixed integer linear programming
(MILP) technique has been used in [21] for scheduling CHP units in residential buildings.
Steen et al. [20] apply the MILP technique to assess the viability of integrating the dis-
tributed energy resources with a thermal energy storage (TES) system. Wouters et al. [22]
used MILP to identify the optimal design of the existing grid infrastructures through
integration of renewable energy units and microgrids. In [23,24], residential application
based energy management systems (EMSs) are presented. Ford et al. [25] show that home
energy market products may help users to save energy through load shifting with the trade
off of potential benefits comfort, convenience, and security. However, other mathematical
programming approaches such as Benders decomposition [26], Lagrangian relaxation [27],
branch-and-bound algorithms [28,29], and mixed-integer nonlinear programming [30] have
also been studied for CHP-ED problems. The main objective in these works is to minimize
the operational costs for meeting energy demand over the entire planning horizon [31].
However, their implementation is cumbersome.

This could be overcome by heuristic and meta-heuristic methods. In the past, such
methods have shown promise as well for CHP-ED problem [32].

Rafique et al. [23] employs a genetic algorithm (GA) for a smart home energy manage-
ment to obtain electrical and gas resources optimal scheduling. Instead, Allegrini et al. [33]
developed a model based software tools that addresses district-level energy systems.
Ahmadi et al. in [6] presented a multi-objective optimization technique which was solved
using a GA-based fuzzy decision algorithm. Alomoush et al. [34] presented an improved
stochastic fractal search algorithm to solve the CHP-ED optimization problem by sat-
isfying different inequality and equality constraints and interdependent limits. The al-
gorithm handled the constraints by penalizing infeasible solutions during the iterative
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process, where the constrained CHP-ED problem is transformed into an unconstrained one.
Nazari et al. [35] presented a “whale optimization algorithm” (WOA) for solving the CHP-
ED problem; WOA is a new meta-heuristic approach for solving optimization problems,
inspired by the social behavior of humpback whales. The authors proved WOA efficiency,
feasibility, and capability of obtaining better solutions with respect to other meta-heuristics
optimization techniques in terms of operational cost and its implementation ability at larger
scales. Maleki et al. [36] propose a GA-based improved penalty function formulation to
solve the CHP-ED problem. However, their applicability to EMS is arguable due to their
solution times, and parameter initialization effects on the solution.

Hybrid algorithms combine meta-heuristics and mathematical approaches to solve
the CHP-ED problem, but their complexity is still high. The heuristic based solvers provide
advantages over existing approaches [37] in that they can treat the complex behaviors
and reduce computational costs. Notwithstanding this, building the right heuristic is
challenging, especially in the presence of operational and physical constraints. To the best of
our knowledge, a heuristic approach which could be implemented on simple hardware has
not been fully explored for the multi-vector scheduling problems for building applications.

3. System Description and Modeling

Figure 1 depicts the considered CHP system architecture along with the relevant
energy flows of all the energy vectors involved. The system consists of a nano co-generation
unit (CHP) which provides both electrical and thermal energy. The other thermal units
consist of a thermal solar panel (TSP), a heat exchanger (HE), a thermal energy storage
(TES) and a heat pump (HP). The electrical system comprises photo-voltaic panels (PVs),
wind turbines (WTs), electrical storage systems (ESSs). Furthermore, the water pumps
PM1, PM2, and PM3 are reported as they either enable or disable the corresponding flow
toward the downstream system and will be operated according to the heuristic strategy
here developed. This section describes the model of the system used in this study. The total
power required by the system is equal to the sum of the demands for electric, heating, and
hot water powers. The description of the parameters, the electric powers, and the thermal
power requests used in the proposed formulation are described in Tables 1–3.

Table 1. System model parameters.

Parameters Description

∆t Sampling time [h]

δCHP ON-OFF state of the nano co-generation unit (CHP)

δHP ON-OFF state of the heat pump (HP)

PCHP CHP Output Electrical power

Q̇CHP CHP Output thermal power [kW]

σCHP Operational state of the CHP

Pmax
CHP Rated power output of CHP [kW]

δPM1(k) ON-OFF state of the Water Pump 1

δPM2(k) ON-OFF state of the Water Pump 2

δPM3(k) ON-OFF state of the Water Pump 3

PPM1(k) Water Pump 1 rated electrical consumption [kW]

PPM2(k) Water Pump 2 rated electrical consumption [kW]

PPM3(k) Water Pump 3 rated electrical consumption [kW]

SOCESS Electrical storage system (ESS) State of charge [kW h]

SOCmin
ESS Minimum value of SOCESS

SOCmax
ESS Minimum value of SOCESS
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Table 1. Cont.

Parameters Description

ηC Charging efficiency of ESS

ηD Discharging efficiency of ESS

PESS,Ch ESS rated charging power [kW]

PESS,D ESS rated discharging power [kW]

SOCHE State of charge of the heat exchanger [kW h]

Q̇HP→HE Heat pump to heat exchanger thermal power shunting [kW]

PRHE Electrical power of the thermal energy storage resistor [kW]

σRHE Resistor heat-power ratio

Q̇HE→TES Thermal power flow from heat exchanger-thermal energy storage [kW]

SOCTES State of charge of thermal energy system [kW h]

Q̇HP→TES Heat pump to thermal energy storage thermal power flow [kW]

δRTES ON-OFF state of the thermal energy storage resistor

δRHE ON-OFF state of the heat exchanger resistor

σRTES Heat-power ratio of the resistor associated with thermal energy storage

PRTES Electrical power of the thermal energy storage resistor [kW]

cF Fuel cost [ACL−1]

VHE Heat exchanger tank volume [L]

THE Heat exchanger temperature [K]

Tset
HE Set point temperature of the heat exchanger [K]

VTES Tank volume of the thermal energy storage [L]

TTES Thermal energy storage temperature [K]

Tset
TES Set point temperature of the thermal energy storage [K]

Q̇min
HP Heat pump minimum thermal flow [kW]

Q̇max
HP Heat pump maximum thermal flow [kW]

THP Heat pump temperature [K]

Tamb Ambient temperature [K]

Table 2. Electric powers.

Power Forecasts Description

PPV Solar power production [kW]

PW Wind power production [kW]

PD Electric demand [kW]

Table 3. Thermal powers.

Forecasts Description

Q̇TSP Thermal solar panel production [kW]

Q̇DH Heat demand [kW]

Q̇DHW Hot water demand [kW]
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Figure 1. System Architecture. The yellow lines represent the gasoline (fuel) flows, and the green lines represent the electrical energy
flows, while red lines represent the thermal energy flows.

3.1. Nano Co-Generation Unit

We let the ON-OFF state of the CHP at the time instant k be identified by the binary
operating signal δCHP. Thus,

δCHP(k) = 1 =⇒ Pmin
CHP ≤ PCHP(k) ≤ Pmax

CHP, (1)

where Pmax
CHP and Pmin

CHP are the maximum and minimum rated output powers of the CHP.
When the CHP is in the ON state, the produced heat that is recovered through a water
jacket from the exhaust output is

Q̇CHP(k) = σCHPδCHP(k)PCHP(k), (2)

where 0 < σCHP < 1 is the heat-to-power conversion ratio of the CHP. The water flow
inside the water jacket is controlled by a water pump (PM1), whose operation regulates the
water flow from the CHP to the HE. Thus,

δCHP(k) = 1 ⇐= δPM1(k) = 1, δCHP(k), δPM1(k) ∈ {0, 1}, ∀k, (3)

where δCHP(k) is the logical variable used to model the state of the CHP, while δPM1(k)
is the PM1 logical state variable. In other words, in order to use the available energy
efficiently, PM1 can be ON only if CHP is ON.
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3.2. Electrical Storage System

The ESS is modeled by considering its state of charge SOCESS(k) at each instant k.
The dynamical model is

SOCESS(k + 1) = SOCESS(k) +
(

ηCPESS,C(k)−
1

ηD
PESS,D(k)

)
∆t, (4)

where PESS,C(k) is the charging power, PESS,D(k) is the discharging power, ηC, ηD ∈ (0,1)
are the charging and discharging efficiencies of the system, respectively. It has to be
noted that the charging and discharging powers, and the storage capacity are bounded.
The upper and lower limit can be depicted using the followingsimple constraints:

Pmin
ESS,C ≤ PESS,C(k) ≤ Pmax

ESS,C,

Pmin
ESS,D ≤ PESS,D(k) ≤ Pmax

ESS,D,

SOCmin
ESS ≤ SOCESS(k) ≤ SOCmax

ESS ,

(5)

where the SOCmin
ESS , and the SOCmax

ESS are the minimum and the maximum SOCESS within
the range of 10% and 90%, respectively.

3.3. Heat Exchanger

In this study, the HE is storage, capable of supplying domestic hot water, and the water
mixer is installed inside it. For the description of the SOC dynamics, we use a single-mass
model [38], i.e.,

SOCHE(k + 1)− SOCHE(k)
∆t

=Q̇CHP(k) + Q̇TSP(k) + Q̇HP→HE(k) + δRHE(k)σRHEPRHE − Q̇HE→TES(k)

− Q̇DHW(k)− Q̇HE,LOSS(k),
(6)

where SOCHE(k) is state of the charge of the HE (kWh), Q̇DHW is hot water demand (kW),
Q̇HE→TES is the thermal power from the HE to the TES (kW), Q̇CHP is the thermal power
output of the CHP (kW) at time instant k, Q̇HP→HE(k) is the transfer of the thermal power
from the HP to the HE, PRHE is the rated electrical power (kW) consumption by the resistor
(RHE) if it is operating, i.e., δRHE(k) = 1, 0 < σRHE < 1 is the power-to-heat conversion
factor of the RHE and Q̇HE,LOSS(k) is the loss term and depends upon the temperature
difference between the HE and the ambient, and also on the heat loss coefficient and the
surface area of the HE. The relation between SOCHE(k) and the temperature of the heat
exchanger THE is given by

SOCHE(k) = VHEρwCw(THE(k)− Tset
HE), (7)

where VHE is the volume of the HE and Tset
HE is the minimum set-point temperature.

In addition, to maintain the minimum set-point temperature, the following constraint
is imposed:

SOCHE(k) ≥ 0. (8)

3.4. Thermal Storage System

Similar to the HE, the TES SOC is modeled as

SOCTES(k + 1)− SOCTES(k)
∆t

= Q̇HP→TES(k) + Q̇HE→TES(k) + δRTES(k)σRTESPRTES − Q̇DH(k)

− Q̇TES,LOSS(k), (9)

where SOCTES(k) is the state of charge of the TS (kWh), Q̇DH is the heat demand (kW),
Q̇HE→TES is the thermal power from the HE to the TES (kW), Q̇HP is the thermal power
output of the HP (kW), and Q̇HP→HE(k) is the transfer of the thermal power from the HP
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to the TES, PRTES is the rated electrical power (kW) consumption by the resistor (RTES) if it
is operating, i.e., δRTES(k) = 1, 0 < σRTES < 1 is the power-to-heat ratio of the RTES and
Q̇TES,LOSS(k) is the loss and depends upon the temperature difference of the TES and the
ambient, and also on the heat loss coefficient and the surface area of TES. Similar to the HE,
the SOCTES(k) and TTES relation is given by

SOCTES(k) = VTESρwCw(TTES(k)− Tset
TES), (10)

where VTES is the volume of the TES and Tset
TES is the minimum set-point temperature.

In addition, for the TES, the following constraint is imposed to maintain the minimum
set-point temperature,

SOCTES(k) ≥ 0. (11)

3.5. Heat Pump

The HP is operated by electricity and, considering its coefficient of performance (COP)
and operating state δHP(k),is modeled as

Q̇HP(k) = COPHP × PHP(k),

δHP(k)Q̇min
HP ≤ Q̇HP(k) ≤ δHP(k)Q̇max

HP , δHP(k) ∈ {0, 1}.
(12)

In general, the COPHP can vary according to the operating point of the HP as

COPHP = Ψ
[
Q̇HP(k)

]
, (13)

where the nonlinear function Ψ[·] can be obtained by analyzing the PHP v.s Q̇HP curve.
However, we assume the COP value to be constant in the operating range considered.

3.6. Heat Pump Shunting between Heat Exchanger and Thermal Energy Storage

Both the HE and the TES can store thermal energy from the HP by proper shunt-
ing. The shunting operations are modeled by means of two binary signals denoted as
δHP→HE(k), δHP→TES(k) and the auxiliarybinary variable δshunt(k) as

δHP→HE(k) = 1 =⇒ Q̇HP→HE(k) = Q̇HP(k),

δHP→TES(k) = 1 =⇒ Q̇HP→TES(k) = Q̇HP(k).
(14)

The following integer linear constraint denotes that only a single operation mode of
the shunting is allowed at each time k:

δHP→HE(k) + δHP→TES(k) = δshunt(k). (15)

3.7. Power Balance

For benchmarking purposes, a GA optimization problem is also set up and presented
later. The essence of the optimization model is to meet the thermal and electrical demands
with renewable generation, using the CHP as a last option and, in case this happens,
effectively exploiting the combined generation of heat and electrical power. In order to
achieve a realistic optimal control policy, the following power balance equations must be
satisfied ateach time-step k:

PD(k) ≤ PPV(k) + PW(k) + PCHP(k)− PESS,Ch(k) + PESS,Dis(k)− PHP(k)− PPM1 δPM1(k)

− PPM2 δPM2(k)− PPM3 δPM3(k)− PRTESδRTES(k)− PRHEδRHE(k),

Q̇DH(k) ≤ Q̇HP→TES(k) + Q̇HE→TES(k) + δTES(k)σRTESPRTES +
SOCTES(k)

∆t
,

Q̇DHW(k) ≤ Q̇HP→HE(k) + δRHE(k)σRHEPRHE + Q̇CHP(k) + Q̇TSP(k)− Q̇HE→TES(k) +
SOCHE(k)

∆t
,

(16)

where PPM1 , PPM2 , PPM3 are the power consumptions of PM1, PM2 and PM3, respectively.
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4. Proposed Heuristics Formulation

The objective of the proposed heuristic energy dispatch strategy is to provide ON/OFF
commands to the CHP system under investigation. The flow chart in Figure 2 describes
the controller decision process.

The CHP system has to be operated the least possible without sacrificing the comfort
in terms of electric, heat, and hot water. The overall problem is to decide how to effectively
meet the electric and thermal demands of the commercial building by answering the
following questions:

1. When should each equipment be switched on or off, and how much should
it produce?

2. When should the electric and thermal storage be charged or discharged?

Figure 2. Energy management system schematic.

The CHP operation schedule is calculated with the proposed heuristic-based algorithm
for heat, hot water, and electric demand and presented in the next subsections. It is worth
mentioning that the heuristics developed for heat and hot water demand satisfactions
consider the electrical energy consumption of the equipments i.e., the heat pump and the
water pumps.

4.1. Heuristic Algorithm Module for Heat Demand Satisfaction

The heuristic algorithm is detailed in Figure 3 and described as follows:

Step 1 The heat demand Q̇DH(k) is first compared with the thermal energy stored in TES,
by checking SOCTES.

Step 2 In case Q̇DH(k) is not achievable with the available SOCTES only, the algorithm is
designed to set PM2 to ON state, connecting HE with the TES so that both thermal
storage are used.

Step 3 If Q̇DH(k) can not be satisfied even with HE and TES, the heat pump will be set to
its ON state to cover the mismatch between the Q̇DH(k) and the available thermal
energy in the storage.

Step 4 If the Q̇DH(k) is not achieved with the available thermal power from heat pump,
and thermal storage, the controller set the thermal resistor to ON state (δRTES = 1).

Step 5 As a last resort, if Q̇DH(k) at a certain time is so large it can not be satisfied with the
storage, the generation units, the thermal resistor, and the heat pump, the CHP will
be set to ON state to meet the requested heat demand.
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Figure 3. Heat demand satisfaction module.

4.2. Heuristic Algorithm Module for Hot Water Demand Satisfaction

The heuristic algorithm for hot water demand satisfaction is detailed in Figure 4 and
described as follows:

Step 1 The hot water demand Q̇DHW(k) is first compared with the thermal solar panel
generation Q̇TSP(k), and the thermal energy stored in HE, by checking SOCHE.

Step 2 If Q̇DHW(k) is not achievable with the available SOCHE, and Q̇TSP(k), the heat pump
is set to ON state so that the additional thermal power is shunted towards HE to
meet the required Q̇DHW(k).

Step 3 If Q̇DHW(k) is not achieved with the available thermal power from heat pump and
thermal storage, the controller sets the thermal resistor to ON state (δRHE = 1).

Step 4 In case Q̇DHW(k) is achievable through the available energy from generation, stor-
age, heat pump, and thermal resistor, the fuel cost of the CHP would be saved.
Contrarily, CHP will be ON to fulfill the demand as a last resort.

Figure 4. Hot water demand satisfaction module.
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4.3. Heuristic Algorithm Module for Electric Demand Satisfaction

The heuristic algorithm for the electric demand satisfaction is showed in Figure 5.
The objective is to minimize the usage of the CHP while satisfying all the system constraints
and maximizing utilization of the power coming from the renewable sources. Since the
nature of the renewable sources is intermittent, a backup battery is used for storing energy
surpluses. The heuristic algorithm for electric demand satisfaction is described as follows:

Step 1 At each time k, the available PRES(k) is first checked in order to meet electric demand
PD(k), as well as the power needed to charge SOCESS to its maximum level.

Step 2 In the second step, PRES(k) is compared with the electric demand PD(k) only.
If PD(k) cannot be satisfied with it, the batteries act as a backup source in order to
satisfy the power balance equation.

Step 3 In case PD(k) cannot be met with the renewable sources as well as with the battery
SOCESS, then the CHP is switched ON in order to meet that electric demands.

Figure 5. Electrical demand satisfaction module.

5. A GA-Solved Optimization Problem for Benchmarking

We compared the proposed heuristic approach with the performance of the popular
meta-heuristic GA minimizing the power produced by the CHP, and hence its operation
cost. The vector u(k) aggregates all the decision variables at time instant k, and is defined as

u(k) =
[
δCHP(k) δHP(k) δRHE(k) δRTES(k) δPM1(k) δPM2(k) δPM3(k)

δHP→TES(k) δHP→HE(k)
]>

. (17)

Mathematically, the minimization problem computed at each time instant k is defined as

min
u(k)

PCHP(k), (18)

s.t.

Constraints (4)–(11), (14)–(16),

u(k) ∈ {0, 1}9,

where PCHP(k) represents the co-generator output power; assuming a constant price of the
fuel and a constant efficiency of the CHP, such minimization is equivalent to minimizing
the cost of CHP fuel.

GA is an evolution-based population direct search method which mimics the natural
crossover and selection process [39–42] of a biological population to solve optimization problems.
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Similar to other meta-heuristic optimization process, GA starts searching the solution
space with a set of candidate solutions or seeds, otherwise known as population vectors.
In our problem, we implement real-coded GA (RCGA), which improves the computational
efficiency [41,42]. There exist different types of crossover and mutation strategies to gener-
ate off-spring vectors for subsequent generations and for preserving diversity within the
candidate solutions. However, the practice shows that the choice of a certain type of tech-
niques is largely based on experiments and dependent upon the problem specifications. In
particular, the adaptive selection of a particular crossover or mutation from their ensemble
is adopted to enhance the performance of RCGA. The selection of an off-spring from a
particular cross-over or mutation is dependent upon the objective function value as well
as the degree of constraint violation. For a detailed description and understanding of the
working mechanism and principles of RCGA, the reader can refer to [41]. The algorithm
takes into account the following steps:

Step 1 Read the electric and thermal power requests, maximum number of iterations, and
population size.

Step 2 Generate an initial population P0. The chromosomes length is equal to the number
of decision variables in Equation (17).

Step 3 Check the constraints that correspond to the individuals in P0. Infeasible solu-
tions are then removed from the solution space through the assignment of a large
penalty cost.

Step 4 Evaluate the “fitness function” for individuals in P0 using the objective func-
tion in Equation (18). The population is then indexed by the iteration number i
(i.e., population = Pi).

Step 5 Generate a new pool of candidate solution Pi+1 through the application of the
operators selection, crossover, and mutation to Pi [42].

Step 6 Check the constraints formulation for all the individuals mentioned in Pi+1.
Step 7 Evaluate the objective function for all the individuals listed in Pi+1. The less

constraint-violating solutions from Pi and Pi+1 will be retained.
Step 8 If the solution with the best objective value remains unchanged for a significant

number of iterations, the algorithm goes to report the results at step 9, if not, it goes
to step 5.

Step 9 Report the results.

6. Simulations and Numerical Results
6.1. Simulation Setup

The parameters taken in this study for the controller setup are as follows: The fuel
cost considered is assumed to be a constant, 1.54 [AC/L]. Meanwhile, we take solar and
wind power generations data with 1 h time resolution from literature. To generate power
and heat, the default heat-power ratio of the CHP system under investigation is assumed
to be 1:1. In this study, the proposed heuristic approach is implemented and compared
with the standard GA meta-heuristic algorithm using MATLAB R2020a on a laptop with
anIntel Core (TM) i7-7700 HQ 2.8 GHz processor and 16 GB of memory.

6.2. Test Runs

In order to prove the efficiency of the proposed heuristics, a series of test runs have
been performed for a 24 h period. Specifically, extensive simulation scenarios have been
conducted to compare the results obtained with the proposed heuristics against a genetic
algorithm solver. Related histogram is reported showing the effectiveness of the proposed
approach in energy cost saving. Before reporting such a cumulative comparison, two
selected comparison scenarios among the ones considered are reported in details, to
highlight the behaviors of the two different algorithms. It can be clearly seen from the
simulations that both the thermal and the electric demands have always been satisfied
either directly with the thermal panel, PVs, wind generator, with the stored electrical and
thermal energy, or as a last resort with the CHP unit.
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6.3. Example 1

Figure 6 depicts the electric and thermal generations data from the renewable sources
(WTs, PVs, TSP) considered in this numerical example.

0 5 10 15 20 25
Time-[h]
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0.5
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1.5
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[k
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]

Figure 6. Thermal and electric power generation.

6.3.1. Heat Demand Satisfaction

In order to prove the efficacy of the implemented controller, the operational ON/OFF
signals of the CHP system under investigation are shown for a case with frequent mismatch
between available system thermal energy and the heat demand over the 24 h simulation.
Figure 7 shows that the heat load through the proposed heuristic algorithm is met mostly
with the thermal energy stored in the thermal energy storage tank, followed by the energy
from the heat exchanger storage by switching on PM2 or from the heat pump depending
on the battery state of charge. In order to meet the demand, the Figure 7 top panel shows
that the CHP unit is switched ON at hour 11 only, i.e., in one hour over 24 h simulations.
Contrarily, the frequent switching of the CHP unit for heat load satisfaction through GA
can be seen in Figure 7. It can be observed that the daily cost obtained by the proposed
heuristic algorithm is 3.42 AC, which is less than the one obtained with the GA 5.28 AC.
The heuristics performance is also more appealing than the performance of the GA algo-
rithm, in terms of execution time, as it will be showed later in Section 6.5.

6.3.2. Hot Water Demand Satisfaction

Figure 8 shows the proposed heuristics and the GA for a hot water demand satisfaction
simulation of the residential facility. It can be observed that the hot water demand is present
for all 24 h of the day, while the available thermal power from solar thermal panel, as given
in Figure 6, is only available between the hours 7–19. In that case, for the first 6 h, the
hot water demand is met with the heat exchanger storage, as shown in Figure 8. It can
be observed that the thermal energy level in the heat exchanger is at the minimum level
between hours 9–10, 18–19, and 21 in the proposed heuristics simulations, while, for the GA,
it is at the minimum between the hours 7, and 19–22. Therefore, the controller depending
on the battery state of charge (SOCESS) switches the HP to ON for delivering mismatched
thermal power. In conclusion, Figure 8 shows that, for all 24 h, the available thermal energy
from the renewable resources, HE storage, and from HP is always greater than the requested
demand. Thus, no CHP operations are seen towards hot water demand satisfaction.



Energies 2021, 14, 1588 14 of 22

0 5 10 15 20 25Time-[h]
0

5

10

[k
W

]
0

5

10

[k
W

h
]

Heuristics Heat Demand Satisfaction

0 5 10 15 20 25Time-[h]
0

5

10

[k
W

]

0

5

10

[k
W

h
]

GA Heat Demand Satisfaction

Figure 7. Heuristics and GA heat demand satisfaction numerical results.

0 5 10 15 20 25
Time-[h]

0

5

[k
W

]

0

5

10

[k
W

h
]

Heuristics Hot Water Demand Satisfaction

0 5 10 15 20 25Time-[h]

0

5

[k
W

]

0

5

10

[k
W

h
]

GA Hot Water Demand Satisfaction

Figure 8. Heuristics and GA hot water demand satisfaction numerical results.

6.3.3. Electric Demand Satisfaction

To examine the effectiveness of the proposed heuristic algorithm for the electrical
power demand satisfaction case, a 24 h electrical energy demand scenario has been con-
sidered. In Figure 9, it is possible to notice that, during the hours when solar or wind
production is higher than the electric and thermal demands, both the heuristics and the
GA controllers switch the batteries to charging state subject to the current level of SOCESS
(Figure 9). As per the goal of the system, the priority is given to the power demand satis-
faction with the renewable energy sources or with the batteries or a combination of both.
In case the power demand is still higher than the electrical energy available in the system,
then the controller switches the CHP unit to ON in order to balance the power equation.

Figure 9 shows the SOCESS. The batteries supply power to the electrical demand
when there is low or nearly zero renewable energy resources. Furthermore, as HP is
operated by electricity, the batteries also supply power to the heat pump that contributes
to heat and hot water demand satisfaction as shown in Figure 7, and Figure 8, respectively.
The controller switches the batteries to discharging mode during the hours with frequent
mismatch between solar or wind generation and electric load demand. We stress that the
electric demand for both the heuristics and the GA is met only with the system available
electric energy.
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Figure 9. Heuristics and GA electric demand satisfaction numerical results.

6.3.4. Water Pumps

Figure 10 shows the water pumps PM1, PM2, and PM3 switching states given by the
heuristics and the GA algorithms. As shown in Figure 1, all three water pumps control
the flow of hot water throughout the network. The water pump PM1 is placed between
the exhaust of CHP and HE. The water pump PM2 is placed between HE and TES and
is responsible for supplying hot water from HE to TES in case TES has storage scarcity.
Similarly, the water pump PM3 operates only when there is a heat demand signal.
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Figure 10. Heuristics and GA water pumps numerical results.

6.4. Example 2

In order to show the effectiveness of the proposed heuristics, a stressing plant scenario
with limited availability of the renewable powers has been considered. In this scenario,
the controller due to low renewable generations mostly relies on the energy available in
the storage, or on the CHP unit that has to be switched ON in order to fulfill electric and
thermal demands. The electric and thermal generation data from the renewable sources
(WTs, PVs, TSP) considered are shown in Figure 11.
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Figure 11. Thermal and electric power generation for Example 2.

6.4.1. Heat Demand Satisfaction

For the stressing plant scenario, the analysis has been conducted through simulations
for a day with less renewable availability. As explained above, the purpose is to supply
both the electric and thermal loads appropriately via exploiting the renewable production,
the electric and thermal storage capacity, and the CHP unit.

Figure 12 shows that both the heuristics and the GA supply the heat load correctly.
Initially, the heuristic algorithm switches the HP ON because of the hot water demand
(detailed later in the next section). In the following hours, if the system available thermal
energy for heat demand satisfaction is below the heat load, the shortfall is made up by
switching ON the CHP unit, as can be seen during the hours 7, 11 and 17. On the other
hand, the GA turns ON the CHP unit during the hours 6, 9–13, and 15 for heat load
satisfaction, as can be seen in the panel below of Figure 12. It is observable that the cost
obtained by the proposed heuristic algorithm for a day with limited renewable sources
is 10.16 AC, which is a slightly higher than the one obtained for the same day with the
GA 9.80 AC. However, the performance of the heuristics in terms of execution time is more
appealing than that of the GA, as will be showed later in Section 6.5.
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Figure 12. Heuristics and GA heat demand satisfaction numerical results for Example 2.

6.4.2. Hot Water Demand Satisfaction

The residential hot water demand satisfaction through the heuristics and the GA is
reported in Figure 13. The hot water demand spans all 24 h of the day, while the renewable
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sources are very limited. In order to supply the hot water load, during the first 3 h, both the
control strategies exploited the heat exchanger storage SOCHE. Any mismatch between the
available system thermal energy and the hot water demand has been supplied by switching
ON the (HP) depending on the battery state-of-charge SOCESS. It is also possible to notice
that the heuristics algorithm relies on the HP less than the GA, thus resulting in more
utilization of the renewable sources and the thermal storage. In this way, the heuristic
algorithm saves the battery SOCESS for the future electric load, and at the same time avoids
the conversion of the HP from electric to thermal, when possible. Figure 13 shows that the
heuristics supplied the hot water demand by exploiting more the SOCHE, and relied less
on the HP operations. On the other hand, the GA frequently switched ON the HP in order
to balance the mismatch between the Q̇TSP and the hot water demand. The frequent HP
switching in GA resulting in more Q̇HE−TES supply than the heuristics for the heat demand
satisfaction. In conclusion, with the proper coordination of both the storage (SOCHE and
the SOCHE), and with the use of HP, both the heuristics and the GA supplied hot water
demand correctly.
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Figure 13. Heuristics and GA hot water demand satisfaction numerical results.

6.4.3. Electric Demand Satisfaction

Figure 14 shows the electric demand satisfaction for both control strategies. In the
scenario at hand, the renewable data and the reference power demand are such that both
exceeding and missing power are considered, with a power flow towards or from the
storage. In order to show the effectiveness of the implemented heuristics, the unit commit-
ment has been shown for a case with frequent imbalances between the reference demand
and the limited available renewable power over the 24 h simulation. In Figure 14, it is
possible to notice that the renewable power available from the wind and the photo voltaic
are mostly less than the requested load. Therefore, in order to supply the electric load, both
the heuristics and the GA controllers switch the batteries to discharging state subject to
certain constrains on the battery bank SOCESS, and no CHP unit working is observed.
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Figure 14. Heuristics and GA electric demand satisfaction numerical results.

6.4.4. Water Pumps

Similar to the previous example, Figure 15 shows the heuristics and the GA water
pumps PM1, PM2, and PM3 switching states. In comparison to Figure 10, the frequent
switching of water pump PM1 can be observed, as the absence of the renewable sources
led the controllers to frequently operate the CHP unit in order to fulfill both the electric
and the thermal demands.
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Figure 15. Heuristics and GA water pumps’ numerical results.

6.5. Algorithms Comparison

This subsection summarizes the performance of the proposed heuristic algorithm and
those of the GA. Fifty test runs of the system under study have been conducted over a 24 h
simulation period. As representative examples, two of them have been reported in the
previous sections. The obtained results are summarized in Table 4. In all the considered
scenarios, both the heuristic and the meta-heuristic GA meet the electric and thermal
demands of the residential facility. The heuristics and the GA cost per scenario is reported
in Figure 16. Furthermore, the cost percentage gain of both approaches with respect to
each other has also been reported in Figure 17. From Table 4, it is observable that the
proposed heuristics in comparison with the optimally designed GA, competed reason-
ably well in terms of fuel costs minimization, despite the fact it uses a very simplified
system model compared to the GA. Furthermore, the simulation time of the proposed
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algorithm in all fifty scenarios is almost 300 times faster than the execution time taken
by the GA. Hence, the proposed heuristic algorithm is deployable both on standard and
low-performance hardware, contrary to a standard meta-heuristics strategy which cannot
run on low-performance hardware.
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Figure 16. Heuristics and GA cost per scenario.
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Table 4. Heuristics and GA test runs comparison. The CHP unit, the HP, and the thermal stor-
age operating ranges considered in the test runs are 5 [kW], 4 [kW], and 10 [kW h], respectively.
The average cost and the CPU time of the heuristics over 50 test runs are 6.48 AC, and 0.45 s, respec-
tively, while the average cost and the CPU time for the GA are 5.97 AC, and 127.15 s, respectively.

Table Frame No. 1

Algorithm Values Case 01 Case 02 Case 03 Case 04 Case 05 Case 06 Case 07

Heuristics Cost Value AC 3.38 3.78 5.42 3.42 4.78 7.22 3.22

CPU Time (s) 0.42 0.40 0.50 0.41 0.43 0.44 0.39

GA Cost Value AC 2.87 3.12 4.78 2.87 3.98 6.87 2.89

CPU Time (s) 123.12 120.72 120.1 123.15 123.75 122.45 121.05

Table Frame No. 2

Algorithm Values Case 08 Case 09 Case 10 Case 11 Case 12 Case 13 Case 14

Heuristics Cost Value AC 6.98 10.16 9.27 8.09 8.27 9.90 6.94

CPU Time (s) 0.41 0.40 0.49 0.42 0.42 0.41 0.41

GA Cost Value AC 6.68 9.80 8.79 8.68 7.87 9.55 6.47

CPU Time (s) 127.13 120.72 122.10 121.05 124.70 123.75 123.75

Table Frame No. 3

Algorithm Values Case 15 Case 16 Case 17 Case 18 Case 19 Case 20 Case 21

Heuristics Cost Value AC 7.16 6.16 6.97 3.13 4.85 4.77 5.48

CPU Time (s) 0.42 0.41 0.50 0.41 0.44 0.41 0.38

GA Cost Value AC 7.18 5.75 7.45 3.80 4.33 5.12 5.08

CPU Time (s) 124.02 120.27 119.51 122.65 120.75 121.95 123.75

Table Frame No. 4

Algorithm Values Case 22 Case 23 Case 24 Case 25 Case 26 Case 27 Case 28

Heuristics Cost Value AC 3.38 6.378 5.41 6.23 5.42 3.97 4.43

CPU Time (s) 0.38 0.49 0.50 0.44 0.43 0.40 0.41

GA Cost Value AC 4.07 6.75 4.88 6.77 4.98 3.23 3.82

CPU Time (s) 112.12 121.52 119.01 129.55 118.47 125.95 121.05

Table Frame No. 5

Algorithm Values Case 29 Case 30 Case 31 Case 32 Case 33 Case 34 Case 35

Heuristics Cost Value AC 4.01 9.43 7.16 5.27 5.42 4.78 4.87

CPU Time (s) 0.37 0.44 0.45 0.49 0.39 0.44 0.44

GA Cost Value AC 4.18 8.75 6.83 5.83 4.98 4.93 5.25

CPU Time (s) 130.12 121.92 116.10 114.50 121.05 123.45 126.32

Table Frame No. 6

Algorithm Values Case 36 Case 37 Case 38 Case 39 Case 40 Case 41 Case 42

Heuristics Cost Value AC 3.11 4.47 4.77 5.43 5.22 6.15 3.97

CPU Time (s) 0.41 0.40 0.40 0.49 0.53 0.40 0.42

GA Cost Value AC 3.43 4.07 4.23 5.05 4.87 6.47 3.43

CPU Time (s) 121.21 120.27 125.10 121.57 123.50 119.73 120.67

Table Frame No. 7

Algorithm Values Case 43 Case 44 Case 45 Case 46 Case 47 Case 48 Case 49

Heuristics Cost Value AC 6.77 8.39 6.77 5.93 8.08 7.54 5.43

CPU Time (s) 0.46 0.46 0.50 0.49 0.42 0.49 0.42

GA Cost Value AC 5.92 8.89 6.15 6.83 6.93 6.96 5.17

CPU Time (s) 113.42 118.20 119.56 123.59 121.67 120.50 121.95
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7. Conclusions

This paper proposes a fast heuristic approach for solving the CHP-ED problem consid-
ering that the presence of multiple energy vectors through a novel was the computational
efficient model of the system. The proposed heuristics were compared with Genetic Al-
gorithm (GA), a meta-heuristic approach. The results show that the heuristic approach
implies higher costs with respect to the GA; however, with the major benefit of being com-
putationally simpler and faster so as to be run also on low-cost, low-performance platforms.
Implementing the heuristics on an embedded hardware and studying implementation
aspects are future paths for this investigation as well as the handling of renewable gen-
eration and load forecasts, to some extent, and the optimal tuning of the thresholds for
improved performances.
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