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Abstract: Symplectic geometric mode decomposition (SGMD) is a newly proposed signal processing
method. Because of its superiority, it has gained more and more attention in the field of fault
diagnosis. However, the similar component reorganization problem involved in this method has
not been clearly stated. Aiming at this problem, this paper proposes the SGMD-CS method based
on the SGMD method and the cosine similarity (CS) and has been compared and verified on the
simulation signal and the actual rolling bearing signal. In addition, in order to realize the intelligent
diagnosis of the wind turbine bearing fault, the symplectic geometric entropy (SymEn) is extracted
as the fault feature and input it into the AdaBoost classification model. In summary, this paper
proposes a new wind turbine fault feature extraction method based on the SGMD-CS and AdaBoost
framework, and the validity of the method is verified by the rolling bearing vibration data of the
Electrical Engineering Laboratory of Case Western Reserve University.

Keywords: rolling bearings; symplectic geometric mode decomposition; cosine similarity; symplectic
geometric entropy; AdaBoost

1. Introduction

As a clean energy source, wind power has developed rapidly in recent years because
of its many advantages such as renewable energy and low pollution. With the continuous
increase in the capacity of wind turbine machines around the world, the structure of
these units has become increasingly complicated and coupled with their long-term use
under harsh conditions, this places higher requirements on the fault diagnosis of wind
turbines. Especially wind turbine bearings, as a key component for converting wind energy
into electrical energy, have high failure rates and maintenance costs. In order to increase
the output of wind turbines and reduce operation and maintenance costs, bearing status
monitoring and fault diagnosis are essential to ensure the reliable and stable operation
of wind turbines [1]. Because the fault will produce vibration, the vibration signal is
collected by using the vibration sensor and analyzed to extract the hidden fault information
to provide a basis for identifying the type of bearing fault. Regarding the placement
of the sensors, literature [2] and [3] gave a new method to diagnose the damage of the
transmission system bearings, that is, to measure vibration at the tower instead of the
gearbox, which makes the measurement easier. And through the discussion of actual cases
to study the reliability and effectiveness of this method for bearing fault detection.

No matter where the sensors are arranged, due to the randomness of wind energy, the
load and speed of the bearing of the wind turbine will change accordingly, so the collected
fault signals have the characteristics of nonlinear and nonstationary. The sampled vibration
signal can be regarded as a time series, and a time series usually consists of different
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patterns. By decomposing it into a series of simple component sequences, judging and
reconstructing these simple components, a large amount of information about the original
state can be obtained. To obtain simple component sequences and reduce complexity, an
effective signal decomposition method is needed that can separate components from the
original signal effectively.

In the early days, the commonly used signal processing methods were fast Fourier
transform and wavelet transform. The latter is based on wavelet basis functions, which
can be regarded as adding a scale factor to the window function of the short-time Fourier
transform (STFT), which makes up for the shortcomings of STFT. Therefore, it has been
widely used in processing non-stationary signals. With the development of wavelet,
wavelet packet, second-generation wavelet, multiwavelet, empirical mode wavelet, and
flexible wavelet are proposed and applied one after another. Literature [4] compared the
fast Fourier transform and wavelet transform comprehensively when monitoring the wind
turbine bearing, reflecting the advantages of wavelet transform.

Since the choice of wavelet basis function in wavelet transform is based on experience
and does not have adaptability, it has an important influence on the signal analysis results.
Empirical mode decomposition (EMD), a new type of adaptive signal time-frequency
processing method proposed by N.E. Huang and others in 1998 was based on the timescale
characteristics of the data itself to decompose the complex signal into a finite number of
intrinsic mode functions (IMF) [5]. Once this method was proposed, it has been widely
used, but modal aliasing and end effects have appeared in the process of application.
Therefore, many relevant scholars have done a lot of research here [6–8]. In addition,
the local mean decomposition (LMD) proposed based on EMD has also been applied.
It compensates for the shortcomings of the EMD method to a certain extent, mainly by
adaptively decomposing the multi-component signal into several product functions (PF) [9].
This method is also widely used as an adaptive decomposition method [10].

The symplectic geometric spectrum method is a relatively new method of time series
decomposition based on symplectic space compared to the traditional time series method
based on Euclidean space. In symplectic geometry, since the symplectic matrix similar
transformation is a normal transformation, it will not destroy the characteristics of the orig-
inal time series, so when dealing with nonlinear problems, it has a better processing effect
than singular spectral decomposition [11,12]. Regarding this method, relevant scholars
have done a lot of research. Literature [13] estimated the embedding dimension of the sym-
plectic geometric spectrum method and discussed the robustness of the method to noise,
sequence length, and sampling interval in the study of time series. Literature [14] combined
the symplectic geometry method and the principal component analysis method to study a
chaotic time series. Literature [15] introduced the symplectic geometric spectral regression
technique for the prediction of a nonlinear time series. The literature [16] and [17] decom-
posed the time series into the sum of some independent components based on symplectic
geometry theory and derived a framework of this method. The literature [18] and [19]
introduced the symplectic geometry algorithm to fault diagnosis and obtained good results.
In addition, the method was introduced to modal parameter identification [20], vibration
feature parameter identification for structural health monitoring [21], and the analysis of
athlete’s surface EMG signals [22].

In the process of decomposing the original time series using the symplectic geometry
method, the initially obtained components are not completely independent, so components
with the same characteristics need to be reorganized. Regarding how to reorganize, most of
the literature does not give a detailed description. Literature [23] used an iterative approach,
starting with the first component and looking for similar components with it. When the
normalized mean square error (NMSE) of the residual signal and the original signal is
less than the given threshold, the iteration stops, and the final recombination components
are determined. However, there is still no clear description on how to determine similar
components. In this paper, the cosine similarity (CS) is introduced to measure the similarity
between components for the problem of component reorganization. As a method of
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measuring similarity, cosine similarity is widely used in file comparison and text mining
but rarely used in signal processing [24,25]. This paper introduces cosine similarity for
the first time in the decomposition process of the symplectic geometric spectrum and
constructs a cosine similarity matrix to seek components with the same characteristics and
reorganize them.

The traditional fault diagnosis method based on the aforementioned signal processing
technology has some shortcomings, and with the development of artificial intelligence
technology, this brings new ideas to fault identification [26]. In this paper, based on
the SGMD-CS method and machine learning theory, through calculating the symplectic
geometric entropy as a feature vector and transporting it to the constructed AdaBoost
classifier, so as to obtain intelligent fault diagnosis [27]. The main contributions and novelty
of this paper are as follows:

(1) Aiming at the problem of recombination of similar components obtained by using
the SGMD algorithm, the cosine similarity is introduced into the SGMD algorithm
to obtain the SGMD-CS algorithm. The effectiveness of the method is verified by
simulation signals and actual rolling bearing fault signals.

(2) Based on the SGMD-CS algorithm, SymEn is constructed as the extracted fault fea-
ture vector.

(3) Using Adaboost algorithm to realize automatic identification of bearing failure modes.
(4) A complete fault diagnosis flowchart of rolling bearings is given, and experimental

research and comparative analysis are carried out.

The structure of this paper is as follows: In Section 2, the theoretical part of the
symplectic geometry algorithm is introduced, and combining the symplectic geometry
algorithm with cosine similarity is discussed. In Section 3, by verifying the simulation
signal, the superiority of the SGMD-CS method in terms of signal decomposition is affirmed.
In Section 4, we introduce the symplectic geometric entropy and AdaBoost algorithm based
on decision trees. In Section 5, we adopt the data of Case Western Reserve University’s
Electrical Engineering Laboratory implemented fault diagnosis, highlighting the validity
of the proposed method. Finally, in Section 6, we summarize the entire article.

2. Symplectic Geometry Algorithm

The core concept of the symplectic geometry algorithm uses the symplectic matrix
to perform QR decomposition to find the eigenvalues of the Hamiltonian matrix. The
algorithm is mainly divided into three steps: phase space reconstruction, symplectic QR

decomposition, and diagonal averaging transformation. Where, J = J2n =

[
0 +In
−In 0

]
.

2.1. Symplectic Theory

Before introducing the symplectic geometry method, some basic definitions and
theorems are given.

Definition 1. S as a valid matrix; if JSJ−1 = S−T , then S is a symplectic matrix.

Definition 2. H as a valid matrix; if JHJ−1 = −H−T , then H is a Hamiltonian matrix.

Theorem 1. For any symplectic matrix An×n , a new matrix M =

(
A 0
0 −AT

)
can be

constructed, and M is also a Hamiltonian matrix.

Theorem 2. Assuming the Household matrix H, where H = H(k, w) =

(
P 0
0 P

)
, P =

In − 2wwT

wTw
, w = (0, · · · , 0; wk, · · · , wn)

T 6= 0, H is a symplectic unitary matrix.

Next, the symplectic geometry method is introduced in detail.
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(1) Phase space reconstruction

For an original time series such as x = x1, x2, · · · xn, n is the length of the signal. Based
on Takens embedding theory [28], a one-dimensional signal can be reconstructed into a
multidimensional signal by means of the method of delay. Thereby, a trajectory matrix X is
constructed, which contains all dynamic information of the time series:

X =

 x1
...

xm

x1+τ
...

xm+τ

· · ·

· · ·

x1+(d−1)τ
...

xm+(d−1)τ

 (1)

where d is the embedding dimension and τ is the delay time, n = m + (d− 1)τ. Obviously,
choosing a different embedding dimension and delay time will result in a different trajec-
tory matrix. Here, we refer to the method in [29] to determine the d value by calculating the
power spectral density (PSD) of the time series and set τ = 1. To be precise, the frequency
of the maximum peak is estimated by the PSD method. If the normalized frequency is lower
than the given threshold 10−3, d is set to n

3 ; otherwise, the value is set to d = 1.2× Fs
fmax

,
and Fs is the sampling frequency.

(2) Symplectic QR decomposition

This step is the core of the symplectic geometry method [30].
To obtain the Hamiltonian matrix, the covariance matrix A is first obtained by per-

forming an autocorrelation analysis of the trajectory matrix:

A = XTX (2)

Then, the Hamiltonian matrix M will be constructed from matrix A:

M =

(
A 0
0 −AT

)
(3)

It is proven that there is a Householder matrix, H =

(
Q
0

0
Q

)
, where the matrix

Q can be composed of a real symmetric matrix A, and the matrix H is also a symplectic
geometric orthogonal matrix. Then:

HMHT =

(
Q 0
0 Q

)(
A 0
0 −AT

)(
Q 0
0 Q

)T

=

(
QAQT 0

0 −QATQT

)
=

(
B 0
0 −BT

) (4)

where B is an upper Hessenberg matrix,
(
bij = 0, i > j + 1

)
; it is easy to obtain the following:

λ(A) = λ(B) = λ2(X).
The eigenvalues of B can be calculated as λ1, λ2, · · · λd, according to the properties of

the Hamiltonian matrix, and the eigenvalues of the matrix X are obtained as:

σi =
√

λi(i = 1, 2, · · · , d) (5)

where λ1 > λ2 > · · · > λd, λi in descending order, and the distribution of λi represents
the spectral distribution of matrix A, where the smaller value is usually considered as the
noise components. Qi(i = 1, 2, · · · , d) is the eigenvector corresponding to the eigenvalues
of matrix A, and the transformation coefficient is calculated by the following formula:

Si = QT
i XT(i = 1, 2, · · · , d) (6)
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Then:
Zi = QiSi(i = 1, 2, · · · , d) (7)

The corresponding reconstruction matrix Xi = ZT
i can be obtained, and then trajectory

matrix X can be expressed as:

X = X1 + X2 + · · ·+ Xd (8)

(3) Diagonal averaging transformation

The dimension of the obtained initial component matrix is m × d. Through diagonal
averaging, the reconstruction matrix Xi can be transformed into d sets of time series with
length n, and the sum of the d sets of time series with length n is the original time series x.
The specific implementation method is as follows:

For any element xij(1 ≤ i ≤ d, 1 ≤ j ≤ m) in the matrix Xi, let d∗ = min(m, d), d∗ =
min(m, d). If m < d, get x∗ij = xij; otherwise, x∗ij = xji Then the elements yk(k = 1, 2, · · · , n)
in the corresponding time series Yi are calculated as shown in Equation (9):

yk =



1
k

k
∑

p=1
x∗p,k−p+1 1 ≤ k ≤ d∗

1
d∗

d∗

∑
p=1

x∗p,k−p+1 d∗ ≤ k ≤ m∗

1
n−k+1

n−m∗+1
∑

p−k−m∗+1
x∗p,k−p+1 m∗ < k ≤ n

(9)

Based on Formula (9), the matrix Xi is converted into a series of Yi(y1, y2, · · · , yn).
Therefore, through diagonal averaging, we can transform the trajectory matrix X into a
series of length n:

Y = Y1 + Y2 + · · ·+ Yd (10)

2.2. SGMD-CS Algorithm

During the decomposition of symplectic geometric models, we have obtained
{Y1, Y2, . . . , Yd}; in these d sets of initial components, some components may have the
same periodic component, frequency component, and characteristics. Therefore, these com-
ponents are not completely independent of each other, and these initial components with
the same characteristics need to be reconstructed by other methods. This paper introduces
cosine similarity here during the reconstruction process. The definition is as follows:

Yij = cos θij =
Yi ·Yj

‖Yi‖ ·
∥∥Yj
∥∥ 1 ≤ i ≤ d, 1 ≤ j ≤ d (11)

Due to the interference of environmental factors, the signal often contains many noise
components, so we should separate the useful components from the noise components.
The specific method is as follows:

First, the noise components are separated. In the previous step, we can obtain d
sets of initial components, and the new d sets of constructed components linebreak N f =

∑
f
i=1 Yi( f = 1, 2, · · · , d) can be obtained by adding the first f sets of components. By

calculating the cosine similarity Nk,k+1 = cos θk,k+1 =
Nk ·Nk+1

‖Nk‖·‖Nk+1‖
(k = 1, 2, · · · d− 1) of

two adjacent constructed components, when the value of the cosine similarity reaches a
threshold and changes slowly, it can be approximated that the threshold corresponding
to the demarcation point k is a turning point for reconstructing the effective components.
Before this point, the component contains most of the information of the original signal,
which should be retained for subsequent analysis; after this point, it can be regarded as
noise. Second, the remaining effective k sets of components are recombined between similar
components. By constructing a cosine similarity matrix, similar components are combined
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to determine the final symplectic geometric components. The cosine similarity matrix
constructed is as follows:

CSM =


1 Y12 . . . Y1k

Y21 1 . . . Y2k
...

... . . .
...

Yk1 Yk2 · · · 1

 (12)

Obviously, the cosine similarity matrix (CSM) is a symmetric matrix, and the diagonal
elements are all the same. Through this matrix, the components with higher similarity are
recombined.

In summary, the flowchart of the SGMD-CS algorithm is shown in Figure 1.

Figure 1. Flowchart of the symplectic geometric mode decomposition-cosine similarity (SGMD-
CS) method.

3. Simulation Analysis

To verify the effectiveness of the proposed method, we refer to paper [20] to construct
the complex amplitude modulation and frequency modulation signal to verify the SGMD-
CS method. The constructed simulation signal is shown as Equation (13):

x1(t) = 2 sin(60πt)× (1 + 0.5 sin(2πt))
x2(t) = sin(120πt)
x3(t) = 0.5 cos(10πt)
x(t) = x1(t) + x2(t) + x3(t)

(13)

x(t) includes an amplitude modulation and frequency modulation component, a sine
component, and a cosine component. The time-domain waveform of the simulation signal
is shown in Figure 2a, and the frequency-domain waveform of the simulation signal is
shown in Figure 2b:

Using the proposed SGMD-CS method to decompose the simulation signal, the de-
composition results are shown in Figure 3.
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Here, taking the decomposition of the simulation signal as an example, each parameter
in the decomposition process is explained. First, for the given simulation signal, we
set the sampling frequency to 1000 and convert it into an original time series with a
length of 1000. By calculating the power spectral density, fmax is estimated to be 29.7852,
so the value of d is equal to 40. That is, after a series of transformations, 40 sets of
initial components are finally decomposed. We need to reorganize the 40 sets of initial
components with similar characteristics. To reduce the amount of calculation, we need
to construct the signals N f = ∑

f
i=1 Yi( f = 1, 2, · · · , 40) and calculate the cosine similarity

cos θk,k+1(k = 1, 2, · · · 39) of two adjacent constructed signals, which is shown in Figure 4. It
can be seen that cos θk,k+1 = 1(k ≥ 6), cos θ6,7 = 1 shows that the information between N6
and N7 is similar roughly. In other words, the information contained in the sum of the first
6 sets of components can be regarded that they already contain most of the information of
the original series. So, the demarcation point k = 6 is a turning point for reconstructing the
effective components, only the first 6 components need to be reconstructed.

Figure 2. Simulation signal. (a) Time domain; (b) Frequency domain.

Figure 3. The decomposition results of SGMD-CS. (a) Time domain; (b) Frequency domain.
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Figure 4. Cosine similarity of adjacent constructing components.

Next, component reconstruction is performed by constructing a cosine similarity
matrix for the first six components. Since the elements in the matrix represent the similarity
between any two components, it is a symmetric matrix. For simplicity, only the elements
above the main diagonal are listed. The color block diagram drawn according to the cosine
similarity matrix is shown in Figure 5.

Figure 5. Matrix graph of cosine similarity.

It can be clearly seen from Figure 5 that the cosine similarity of the first component
and second component is 0.9901, which can be considered that the two components are
similar, and they are reorganized as SGC1. Similarly, the cosine similarity between the
third component and the fourth component is 0.9970, and they are regrouped into SGC2.
The fifth component and the sixth component, with a similarity of 0.9713, are recombined
into SGC3. The final decomposed components are shown in the first three waveforms of
Figure 3. The fourth waveform represents the remaining component, that is, the sum of the
initial components from the seventh to the fortieth component. The sum of these four parts
is equal to the original simulated signal.

For comparison, the constructed simulation signals are decomposed with the LMD
and EMD algorithms. The results of the decomposition are shown in Figures 6 and 7.

Decomposing the simulation signal by these three methods and comparing the ob-
tained time-domain and frequency-domain waveforms, it can be seen that the SGMD-CS
method can separate the trend components of the original simulation signal very well,
and the components of the decomposition are almost equivalent to the components of the
original signal. There is no doubt that the decomposition result is quite good. Moreover,
the LMD method decomposes the original simulated signal into four components. It can
be clearly seen in Figure 5 that the components PF1 and PF2 produce modal aliasing. The
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30 Hz and 60 Hz components appear simultaneously in PF1; this situation is called under-
decomposition. In addition, the 30 Hz component appears in PF1 and PF2, and the 5 Hz
component appears in PF2 and PF3; this situation is called over-decomposition. We can also
find that the amplitude of some components is reduced, so the decomposition result is not
ideal compared to the previous method. Similarly, the EMD method is used to decompose
the simulated signal, and the decomposition result is shown in Figure 6. It can be seen
that the decomposition obtains 8 components. Similar to LMD, under-decomposition and
over-decomposition also occur during the decomposition process, and the decomposi-
tion result is not ideal. After analysis, regardless of whether the LMD or EMD is used,
these two methods are not as effective as the SGMD-CS method for decomposing the
simulation signal.

Figure 6. The decomposition results of local mean decomposition (LMD). (a) Time domain; (b) Frequency domain.

Figure 7. The decomposition results of empirical mode decomposition (EMD). (a) Time domain; (b) Frequency domain.
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To further verify the similarity between the components decomposed by the SGMD-CS
method and the components of the original simulated signal, the waveforms decomposed
by the two approaches are drawn in Figure 8. It can be seen from the figure that the
error of the decomposition result is smaller when using the proposed method, so this
method can better strip the trend components of the complex signals. Therefore, in the
wind turbine fault diagnosis process, the SGMD-CS method is first used to decompose the
vibration signal collected by the sensor, thereby extracting the fault information hidden
in the original signal, providing necessary materials for subsequent fault diagnosis, and
improving the accuracy of fault diagnosis correspondingly.

Figure 8. Time domain waveforms of real components and SGMD-CS decomposition components.

4. Feature Classification
4.1. AdaBoost Theory

Boosting, as a meta-algorithm framework, is an important integrated learning tech-
nique that can reinforce weak learning classifiers, whose prediction accuracy is only slightly
higher than that of random guessing, into strong predictors with high prediction accuracy.
These weak classifiers can be any classifiers, such as decision trees, simple linear logistic
classifiers, simple SVM classifiers, etc. This approach has been successfully applied to solve
problems such as object detection, text analysis, and data mining. The most widely used
boosting algorithm is AdaBoost, which was proposed by Freund and Schapire in 1996 [31].
As one of the best-supervised classification algorithms, it has been widely used to solve
complex classification problems because of its simple concept [32,33].

Considering decision trees are resistant to overfitting since trees often have large
edges and limited complexity, therefore, in this paper, we choose decision trees as the basic
classifiers [34].

The specific algorithm steps are as follows:

• Step 1: Calculate the input.

(1) Given training set (x1, y1), · · · (xm, xm), where xi ∈ X, yi ∈ {−1,+1}.
(2) Weak learning algorithm.

• Step 2: Calculate the output H f inal(x).

(1) Initial weight distribution of training data.

D1(i) =
1
m
(∀i), i = 1, 2, · · · , m (14)

(2) For t = 1, · · · , T, using the training data set with weight distribution Dt to
learn, we obtain a weak classifier.

ht(x) : X → {−1,+1} (15)
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(3) Calculate the classification error rate on the training data set ht(x).

εt = Pri∼Dt [ht(xi) 6= yi] (16)

(4) Calculate the coefficient of ht(x).

αt =
1
2

ln(
1− εt

εt
) (17)

It is worth noting that αt > 0.
(5) Update the weight distribution of the training data set.

Dt+1(i) =
Dt(i)

Zt
×
{

e−αt i f yi = ht(xi)
eαt i f yi 6= ht(xi)

= Dt(i)
Zt

exp(−αtyiht(xi) )

(18)

where Zt is the normalization factor.
(6) Construct a linear combination of basic classifiers to obtain the final classifier.

Hfinal(x) = sign

(
∑

t
αtht(x)

)
(19)

4.2. Feature Vector Selection

To obtain as much fault information as possible and improve the accuracy of fault
diagnosis, many scholars have excelled in extracting feature vectors, trying to extract the
fault features from various angles. Multidimensional feature vectors are selected frequently;
however, due to the redundant information, the accuracy of fault diagnosis is reduced,
which has forced scholars to seek various dimensionality reduction methods to further
handle the selected feature vectors. Literature [35] extracted the fault information in the
time domain, frequency domain, and time-frequency domain and then reduced the data
through PCA to extract the fault features more comprehensively and realize the accurate
identification of faults. In this article, unlike the concepts adopted by previous scholars,
we do not consider how to select multidimensional feature vectors. Instead, we consider
whether we can choose low-dimensional feature vectors to achieve a similar effect. This
places higher requirements on choosing the feature vectors.

Here, we adopt entropy to construct a low-dimensional feature vector. Entropy
can usually be used to describe and quantify the degree of confusion in the system. At
present, there are many estimation methods about entropy, such as approximate entropy,
sample entropy, fuzzy entropy, etc., and they are widely used in various fields to measure
the complexity of time series [36–38]. In this paper, calculate the symplectic geometric
entropy by combining the SGMD-CS algorithm proposed above with the entropy, and
select this index as the feature vector. The specific implementation steps are as follows:
first, decompose the collected signal. Then, select the first two components decomposed to
calculate the corresponding symplectic geometric entropy. Finally, the two-dimensional
feature vector SymEn = [e1, e2] is input into the subsequent classifier for fault classification
and recognition.

In the second section, we introduced the symplectic geometry algorithm. Through
this algorithm, the eigenvalues of the real symmetric matrix A constructed by the trajectory
matrix X can be obtained, and the values of λ1, λ2, · · · , λd decrease in sequence. The
distribution of λi represents the spectral distribution of matrix A. Then, the probability
of energy distribution in different directions can be defined as p1, p2, · · · pd, which are
calculated as follows:

pi =
λi

d
∑

i=1
λi

(20)
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where d is the embedding dimension, 0 ≤ pi ≤ 1,
d
∑

i=1
pi = 1, and pi describes the uncer-

tainty of entropy in different directions.
Then, the symplectic geometric entropy can be defined as follows:

SymEn = −
d

∑
i=1

pi log(pi) (21)

Through formula (20) and formula (21), we can calculate symplectic geometric entropy
as a feature vector to characterize the fault information. Finally, Figure 9 shows the complete
fault diagnosis process.

Figure 9. Flowchart of fault diagnosis.

5. Experimental Analysis
5.1. Experimental Arrangement and Data Description

In this paper, the vibration data of rolling bearings at the Electrical Engineering
Laboratory of Case Western Reserve University are selected, and the experimental platform
is shown in Figure 10. Motor bearings were seeded with faults using electro-discharge
machining (EDM). Faults ranging from 0.007 inches in diameter to 0.021 inches in diameter
were introduced separately at the inner raceway, rolling element (i.e., ball), and outer
raceway. The specifications of the rolling bearing tested in the experiment and related
characteristic frequencies are shown in Table 1.
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Figure 10. The test stand: 1. Fan end bearing; 2. Electric motor; 3. Drive end bearing; 4. Torque
transducer/encoder; 5. Dynamometer.

Table 1. Bearing specifications.

Class Deep Groove Ball Bearing

Type 6205-2RS JEM SKF
Position Drive end

Sampling frequency f s (Hz) 12,000
Inside diameter (inches) 0.9843

Outside diameter (inches) 2.0472
Thickness (inches) 0.5906

Ball diameter (inches) 0.3126
Pitch diameter (inches) 1.537

Rotation frequency (Hz) fr
Inner ring defect frequency fi (Hz) 5.4152 × f r
Outer ring defect frequency fo (Hz) 3.5848× fr
Rolling element frequency fb (Hz) 4.7135× fr

Number of rolling elements 9

5.2. Signal Preprocessing

The proposed SGMD-CS method is applied to actual rolling bearing signals to prove
its effectiveness and feasibility, so it can be used to realize the fault diagnosis of wind
turbine bearings. The specific technical parameters of the analyzed bearing are shown in
Table 2. Extract 12,000 data points for analysis.

Table 2. the specific technical parameters of analyzed bearing.

Parameters Value

Data 105.mat
Fault diameter 0.007”

Approximate motor speed 1797 rpm
Rotation frequency 29.95 Hz

Inner ring defect frequency 162.19 Hz
Motor load 0 hp

The time-domain waveform of the analyzed inner ring fault rolling bearing signal
is shown in Figure 11. It is decomposed by the SGMD-CS method, and the first two
symplectic geometric components are spectrum analyzed, as shown in Figure 12. Taking
the amplitude spectrum of SGC2 as an example, the spectrum line at 161.9 Hz can be clearly
seen from the figure. Because 161.9 Hz is close to the theoretical value 162.19 Hz, which is
the inner ring fault frequency of rolling bearing, it can be considered that the inner ring
fault has been identified. In addition, the sidebands of the high-order harmonics of the
inner ring fault frequency are prominent and can be clearly observed, whose amplitude are
modulated by fr.
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Figure 11. Time domain analysis result of rolling bearing with inner fault.

Figure 12. The decomposition results of SGMD-CS: (a) Time domain; (b) Frequency domain.

For comparison, the LMD and EMD methods are used to process the fault signal in the
same way. The decomposition results are shown in Figures 13 and 14. It can be seen from
the figure that there are so many interference components with large amplitude that the
characteristic frequency of the fault is almost submerged in the noise signal. Characteristic
frequency cannot be accurately identified, which brings certain difficulties to the judgment
of the fault of the rolling bearing.

Figure 13. The decomposition results of LMD: (a) Time domain; (b) Frequency domain.
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Figure 14. The decomposition results of EMD: (a) Time domain; (b) Frequency domain.

5.3. Classification of Different Fault Types

In the previous section, a series of comparative experiments were conducted to verify
the effectiveness of the proposed SGMD-CS method for processing rolling bearing fault sig-
nals. According to the flow chart of fault diagnosis process shown in Figure 8, this method
is combined with machine learning to realize the intelligent diagnosis of bearing faults.

In order to classify the different fault categories of the bearing, the original vibration
signal data of each fault type is taken to intercept the first 50 windows, each window
contains 1024 points, so as to obtain 50 fault samples for every type of fault. For each
sample, the SGMD-CS method is used to decompose, the first two SGC components are
selected for analysis, and the symplectic geometric entropy is calculated. Therefore, for four
different fault types, the entire data set contains 200 samples, and the classification accuracy
is verified by the five-fold cross-validation method. At the same time, in order to verify
the validity of the symplectic geometric entropy as the extracted feature, approximate
entropy, sample entropy, and fuzzy entropy are used for comparison. The specific data set
description is shown in Table 3.

Table 3. Description of experimental dataset.

Fault Type Data Fault Diameter
(Inches)

Motor Load
(HP)

Rotation
Frequency (r/min) Class Label

Inner ring fault
(IRF) 171.mat 0.014 2 1750 1

Outer ring
fault (ORF) 199.mat 0.014 2 1750 2

Ball element
fault (BF) 187.mat 0.014 2 1750 3

Normal (NOR) 099.mat 0.014 2 1750 4

Take one of the experiments as an example for specific analysis. Figure 15 shows the
classification results of the model for different extracted feature vectors in the form of a
confusion matrix. For the classification model that uses symplectic geometric entropy as
the feature vector, the classification accuracy rate is 97.5%, and one misjudgment occurs
because the rolling element fault is misjudged as normal. In terms of the approximate
entropy is used as the feature vector, the classification accuracy rate is 95%, 2 misjudgments
occur between the rolling element fault and the normal state. Using sample entropy as the
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feature vector model, the classification accuracy rate is 90%. There are 4 misjudgments, and
3 misjudgments are relevant to rolling element fault. For the model that uses fuzzy entropy
as the feature vector, the classification accuracy rate is only 70%, and there are 12 misjudg-
ments, of which 8 misjudgments are related to the rolling element fault. To evaluate the
performance of the classifier only from the index of accuracy, it can be considered that the
symplectic geometric entropy as the extracted fault feature has a certain validity, while
the fuzzy entropy calculated as the extracted fault feature under this condition performs
poorly. In addition, we can also find that most of the misjudgments are related to the rolling
element fault.

Figure 15. The confusion matrix: (a) SymEn; (b) ApEn; (c) SampEn; (d) FuzzyEn.

In order to comprehensively evaluate the classification effect of different models, four
common evaluation indicators are used as shown in Figure 16. They are accuracy, precision,
recall, and F1-score. Based on the four indicators, it is not difficult to draw the same
conclusion as the previous one, that is, extracting the symplectic geometric entropy of the
bearing vibration signal as a feature vector is extremely superior and more stable. The
specific values of each evaluation index are shown in Table 4.

Similarly, the comparative results of other experiments are analyzed to avoid obvious
deviations in a single experiment. In all experiments, calculate the mean and standard
deviation of the experimental results under different evaluation standards, as shown in
Table 5. On the whole, the accuracy of model that uses symplectic geometric entropy as
the feature vector is the highest, followed by approximate entropy and sample entropy,
and the accuracy of fuzzy entropy is the lowest. Other evaluation criteria also roughly
conform to this law. And no matter which evaluation standard is used, the value of
rolling element fault is lower than that of the other three fault types, so it is prone to
misjudgment. Even under this kind of unfavorable conditions, the symplectic geometric
entropy still has advantages than the other three types of entropy, reflecting its advantages
in feature extraction.

The above experimental results show that the wind turbine fault feature extraction
method based on the SGMD-CS and AdaBoost framework proposed in this paper is
correct and effective, which has a certain significance for the bearing fault identification
of wind turbines and then provide a corresponding basis for a technician to carry out
maintenance work.
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Figure 16. Evaluation criteria: (a) Accuracy; (b) Precision; (c) Recall; (d) F1-score.

Table 4. Result of classification.

SymEn ApEn SampEn FuzzyEn

Accuracy 97.50 95.00 90.00 70.00
Precision 100.00 100.00 91.67 63.64

Inner ring Recall 100.00 100.00 100.00 63.64
F1-score 100.00 100.00 95.65 63.64

Precision 100.00 100.00 100.00 61.54
Outer ring Recall 100.00 100.00 100.00 100.00

F1-score 100.00 100.00 100.00 76.19

Precision 100.00 88.89 100.00 33.33
Ball element Recall 88.89 88.89 66.67 11.11

F1-score 94.12 88.89 80.00 16.67

Precision 92.31 91.67 78.57 92.31
Normal Recall 100.00 91.67 91.67 100.00

F1-score 96.00 91.67 84.62 96.00

Table 5. Result of statistics.

SymEn ApEn SampEn FuzzyEn

Accuracy 93.00 ± 5.12 91.00 ± 4.54 88.50 ± 7.83 67.50 ± 3.95

Precision 89.67 ± 10.83 88.14 ± 11.39 88.14 ± 11.39 51.90 ± 21.18
Inner ring Recall 100.00 ± 0.00 97.78 ± 4.97 97.78 ± 4.97 49.83 ± 14.68

F1-score 94.27 ± 6.13 92.32 ± 7.08 92.32 ± 7.08 49.21 ± 13.09

Precision 96.00 ± 8.94 96.57 ± 4.80 93.70 ± 8.80 69.31 ± 13.17
Outer ring Recall 92.35 ± 8.39 92.57 ± 12.99 96.57 ± 4.80 88.70 ± 7.29

F1-score 94.08 ± 8.27 93.99 ± 7.24 94.88 ± 5.09 76.88 ± 7.74

Precision 88.95 ± 12.08 85.99 ± 14.17 86.48 ± 16.34 50.33 ± 17.89
Ball element Recall 88.82 ± 10.58 77.10 ± 15.24 67.84 ± 25.46 36.72 ± 21.71

F1-score 88.71 ± 10.31 80.52 ± 12.79 74.57 ± 21.12 41.10 ± 20.40

Precision 98.46 ± 3.44 94.40 ± 5.48 85.48 ± 11.12 98.46 ± 3.44
Normal Recall 89.27 ± 6.67 95.83 ± 5.89 90.00 ± 10.87 92.35 ± 7.48

F1-score 93.43 ± 2.20 95.09 ± 5.45 87.44 ± 9.99 95.10 ± 3.37

6. Conclusions

This paper proposes a fault feature extraction method for wind turbines based on the
SGMD-CS and AdaBoost framework, which has been improved and optimized as follows:



Energies 2021, 14, 1555 18 of 19

1. To address the problem of similar component recombination in the symplectic geo-
metric decomposition process, the cosine similarity is introduced into this method,
the SGMD-CS method is proposed, and a block diagram of the method is given. The
effectiveness of this method is verified by constructing a complex AM-FM signal
and comparing it with the decomposition results of the LMD and EMD methods.
The results show that the decomposition error of this method is small, and the trend
components of the original signal can be better stripped, so this method is suitable for
the analysis of nonlinear time series. In addition, the characteristics of this method
have also been compared and verified on actual rolling bearing fault signals.

2. When addressing the problem of using high-dimensional feature vectors when ex-
tracting fault feature information, there will be data redundancy, and the diagnosis
accuracy will be reduced. In this paper, based on the SGMD-CS method, the sym-
plectic geometric entropy is calculated as a low-dimensional feature vector and sent
to the AdaBoost classification framework based on decision trees. According to the
given fault diagnosis flow chart, taking the rolling bearing vibration data of Case
Western Reserve University’s Electrical Engineering Laboratory as an example, a high
classification accuracy rate is obtained by discriminating and classifying the fault type.
At the same time, compared with sample entropy, approximate entropy, and fuzzy
entropy, symplectic geometric entropy is highlighted as a measure that can effectively
extract fault information, thereby making the diagnosis more accurate.
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