
energies

Article

Field Application of Microbial Self-Healing Cement Slurry in
Chunguang 17-14 Well

Lixia Li 1, Tianle Liu 1,*, Guosheng Jiang 1, Changliang Fang 1, Jiaxin Sun 1, Shaojun Zheng 1, Haodong Liu 1,
Ekaterina Leusheva 2, Valentin Morenov 2 and Nikolai Nikolaev 2

����������
�������

Citation: Li, L.; Liu, T.; Jiang, G.;

Fang, C.; Sun, J.; Zheng, S.; Liu, H.;

Leusheva, E.; Morenov, V.; Nikolaev,

N. Field Application of Microbial

Self-Healing Cement Slurry in

Chunguang 17-14 Well. Energies 2021,

14, 1544. https://doi.org/10.3390/

en14061544

Academic Editor: F. Pacheco Torgal

Received: 21 February 2021

Accepted: 9 March 2021

Published: 11 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China;
llx1039304620@cug.edu.cn (L.L.); jianggs@cug.edu.cn (G.J.); fangcl@cug.edu.cn (C.F.);
jiaxinsun@cug.edu.cn (J.S.); sjzheng212@cug.edu.cn (S.Z.); gcxylhd@cug.edu.cn (H.L.)

2 Department of Petroleum Engineering, Saint-Petersburg Mining University, 199106 Saint Petersburg, Russia;
Leusheva_EL@pers.spmi.ru (E.L.); morenov@spmi.ru (V.M.); nikinik@mail.ru (N.N.)

* Correspondence: liutianle2008@163.com; Tel.: +86-15327185363

Abstract: Due to the inappropriate treatment of dairy wastewater, which can easily cause under-
ground water pollution, there is an increasing need for a novel approach to reuse dairy wastewater.
The technology of microbially induced calcium carbonate precipitation with environmentally friendly
characteristics and high efficiency has been widely used for underground infrastructure remediation.
However, there is a lack of in-depth research on the application of this technology under extreme
underground environments, such as the borehole of oil wells with high temperature, high pressure,
alkaline, and aerobic conditions. In addition, to reduce the cost of this technology when applied on a
large scale, we adopted dairy wastewater to cultivate bacteria. Then, we put the bacterial solution
into cement slurry in the borehole to improve the cementing quality. In this paper, the rheology
properties, mechanical strength, permeability, porosity, and pore distribution of microbial cementing
slurry were studied. Moreover, we applied this microbial cement slurry in the Chunguang 17-14
well of China, and the sealing channeling ability of cement sheath on site was evaluated. The results
showed that dairy wastewater could serve as an alternative medium to provide nutrients and energy
for the growth of bacteria with low cost. Additionally, the microbial cement slurry exhibited a good
right-angle thickening performance and high mechanical strength. The field application displayed
an anti-gas channeling ability after microbial remediation. The application of dairy wastewater
incubated bacteria to cement slurry not only provides an alternative method for the reuse of dairy
wastewater but is also conducive to prolonging the lifespan of oil wells.

Keywords: microbially induced calcium carbonate precipitations; self-healing properties; cement
slurry; field application

1. Introduction

With the development of technology and living levels, the amount of dairy wastewater
is increasing at the same time [1]. The annual treatment cost involving electricity, medicine,
labor, and maintenance accounts for about 5% of the production cost [2]. As is well known,
dairy wastewater causes underground water pollution and ecological destruction if it
is disposed without appropriate treatment [3,4]. In recent years, bacterial degradation
has been reported to be a more popular way to alleviate underground water pollution.
However, there is a lack of investigations on the reuse of dairy wastewater-incubated
bacteria, thus resulting in a high loss of nutrients.

Additionally, cement is a common material to be used underground, such as in the
wellbore, a typical extreme underground environment with a high cost of artificial mainte-
nance for cracking [5–7]. The development of micropores in the internal structure of cement
stone and low early strength could result in microfractures and crack propagation [8]; there-
fore, it is often encountered with the channeling of oil, gas, and water layers [9,10]. Much
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work has been conducted for the improvement of the properties of cement slurry with
chemical additives [11]. However, considering the risk of environmental pollution caused
by chemical admixtures, there is an urgent need for a more environmentally friendly,
efficient, and economical method to alternate chemical additives [12]. Moreover, carbon
dioxide emissions are produced during the production of cement [13]. In recent years, a
new environmental technology based on microbially induced calcium carbonate precipita-
tion (MICP) has been widely used in the field of geological engineering, such as limestone
remediation [14,15], soil consolidation [16,17], foreshore slopes stabilization [18], rock frac-
ture repairing [19], concrete healing [20–34], and leakage remediation underground [35,36].
All these investigations indicate the potential of the application of bacterial spores as a
self-healing agent in cement slurry under an extreme environment. As is well known, un-
derground conditions are usually high temperature, high pressure, hypoxic, and alkaline,
such as in the wellbore, a typical underground environment that is extremely rigorous
for the survival of microorganisms. However, most previous research has been focused
on the surface crack repairing and self-healing of concrete in the atmosphere and room
temperature. Additionally, the cost of this MICP technology is mainly derived from media
which limit its application on site. Achal [29] proposed that dairy wastewater can be an
alternative medium to cultivate bacteria in the laboratory, but the survival rate of bacteria
in underground conditions, such as high temperature and high pressure, has not been
discussed to date.

In this paper, we applied microbial cement slurry in the Chunguang 17-14 well that
locates in the western Junggar basin uplift of China. The buried depth of the heavy oil
reservoir in the Chunguang oilfield is 900–1100 m, and the average thickness of the reservoir
is 3.1 m. The interlayer is thin, and the longitudinal oil–water relationship is complex. The
viscosity of degassed crude oil at the reservoir temperature is between 34,542.95 mPa·s
and 61,051.2 mPa·s. The crude oil is extra-heavy and has a high viscosity, which is usually
developed by thermal exploitation. Figure 1a exhibits the results of a neutron logging
test at a depth of 960–1004 m in the Chunguang 17-14 well, which indicated that the
channeling problems due to the poor quality of cementation outside the pipe occurred in
the section of 850–1150 m depth of the wellbore. As is well known, cementation quality
directly determines the lifespan and recovery of oil and gas. Figure 1b shows the curve
of temperature and pressure in the sediments maintained in a range of 45.8–48.1 ◦C and
6.049–6.141 MPa, respectively. It is considered as an extreme environment for the survival
of most bacteria, especially in comprehensive conditions with high temperature, high
pressure, low oxygen concentration, and high alkaline. Therefore, we applied microbial
cement slurry with dairy wastewater in the channeling section of the Chunguang 17-14
well on-site to investigate its healing ability.

Meanwhile, to promote the technology of MICP in underground engineering on a large
scale in an environmentally friendly and economical way, the growth of bacteria and urease
activity in dairy wastewater, as well as the viability of bacteria in the cement slurry, were
compared to standard media and nutrient broth media under a simulated underground
environment. Moreover, we investigated the performance of well cement slurry with
bacterial treatment, including the thickening time, mechanical strength, permeability, and
porosity, in the laboratory. The fact that microbial cement slurry with dairy wastewater
can be successfully applied to the wellbore with an extreme underground environment
indicates a bright prospect for the technology of microbially induced calcium carbonate
in engineering.



Energies 2021, 14, 1544 3 of 19

Figure 1. (a) Neutron logging in Chunguang 17-14 well before biotreatment; (b) the temperature and pressure in the section
of cementing problem.

2. Materials and Methods
2.1. Microorganism and Medium

In this paper, we adopted mutated bacteria which were domesticated from a typical
urease-producing microorganism named sporosarcina pasteurii (ATCC11859), and the
initial bacteria were purchased from the Chinese Microbial Network. The mutated bac-
teria could survive at 70 ◦C and keep high enzymatic activity in an alkaline and anoxic
environment for a long time. The following experiments and tests were based on mutated
bacteria. The components of dairy wastewater include 16.5 g/L lactose, 12.6 g/L protein,
2.6 g/L fat, 350 mg/L calcium, and 8 g/L NaCl, which were resourced from the dairy
factory in Wuhan, China. After collecting the dairy wastewater from the factory, the coarse
filtration treatment was carried out first to remove the insoluble bulky matrix in the dairy
wastewater, such as hair lumps. Then, we put it in the disperser and stirred it at high speed
to promote the dissolution of suspended organic matter. Next, the initial dairy wastewater
culture medium was obtained after fine filtration once again. The content of the component
in the initial dairy wastewater culture medium was tested at the same time. Finally, the
initial dairy wastewater was sterilized, cooled, and then inoculated with microorganisms
that can produce urease for further research. The standard medium (15 g/L casein peptone,
5 g/L soy peptone, and 5 g/L NaCl) and nutrient broth medium (10 g/L casein peptone,
3 g/L beef extract, and 5 g/L NaCl) purchased from Beijing Aoboxing Biotechnology Co.
LTD were compared to dairy wastewater in this paper. Additionally, the urea played an
important role as a trigger for the metabolic processes of this microorganism; thus, 20 g/L
urea was added into these three kinds of media, respectively, to provide carbon resources.

2.2. Calcium Resources

In the manufacture of microbial cement slurry, the calcium ions were added by calcium
chloride encapsulation. Assuming that carbonate generated from the decomposition of
urea can react with calcium ions completely and considering the effect of encapsulation on
the property of well cement slurry, the dosage of calcium chloride encapsulation in G-class
well cement was suggested at 3~3.5%. The calcium chloride was encapsulated by polyvinyl
alcohol (PVA), and the content of calcium chloride in the encapsulation was 75.45~82.5%.
Figure 2 exhibits that the initial release time of calcium chloride was 255 min, which meets
the requirement of microbial cementation operation.
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2.3. Cultivation and Growth Test

The optical density value at the wavelength of 600 nm (OD600) is widely used to
characterize microbial growth. The mutated bacteria were cultivated in three media,
respectively, at 50 ◦C, 6.5 MPa, pH 13, and 1.1% oxygen concentration for 24 h. In this
experiment, an ultraviolet-visible spectrophotometer (756CRT, Shanghai Yidian Analytical
Instrument Co., Ltd., Shanghai, China.) was used to measure the OD600 value at intervals.

Figure 2. The release property of calcium chloride encapsulation.

Conductivity was recorded to measure the urease activity. The hydrolysis of urea
liberates ionic products from non-ionic substrates according to the following Equation (1).
First, 1.5 mL of bacterial solution was mixed into the 13.5 mL of 1.6 M urea solution. At
room temperature, the change of conductivity within 5 min was monitored by the conduc-
tivity meter, and the average change of conductivity per minute (mS/min) was obtained.
According to the empirical value obtained by Whiffin [37], a change of conductivity of
1 ms/min corresponds to the amount of urea hydrolysis of 11 mM urea hydrogenated per
minute. The average change of conductivity per minute (mS/min) can be converted into
the amount of urea hydrolyzed by urease per unit of time (mM urea) and multiplied by
the dilution multiple 10. This value is used to express urease activity. Therefore, specific
urease activity can be obtained according to the following Equation (2):

H2N − CO− NH2 + 2H2O urease→ 2NH+
4 + CO2−

3 (1)

Speci f ic Urease Activity
(
mM urea hydrolysed · min−1· OD−1)

=
Urease Activity (mM urea hydrolysed · min−1)

Biomass(OD600)

(2)

Additionally, we also tested the changes of BOD and COD of dairy wastewater after
incubating bacteria by a BOD detector (typed GY-B780, manufactured by Shanghai Cong Yi
Electronics and Technology Co., Ltd., Shanghai, China.) and COD fast detector (typed GY-
K200, manufactured by Shanghai Cong Yi Electronics and Technology Co., Ltd., Shanghai,
China.), respectively.

2.4. Preparation and Curing of Cement Stone

Microbial cement slurry was prepared in a water-to-cement weight ratio of 0.44,
the water was replaced by the bacterial solution, and the addition of calcium chloride
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encapsulation was 3%. In this paper, the G-class oil well cement without adding bacterial
solution was regarded as the control group. First, all the materials were mixed at a speed
of 4000 rps/min. Then, the cement paste was poured into molds with dimensions of
40 × 40 × 40 mm, 40 × 40 × 160 mm, and ø25 × 100 mm according to the standards of the
American Petroleum Institute (API); the rheology property was tested at the same time.
When the cement slurry began to set, the specimens were cured in a water bath kettle
at 50 ◦C, 6.5 MPa. The specimens were not removed from the kettle until the strength,
permeability, and porosity of cement stone were tested. The simulated cultivation and
curing environment in the following experiments in the laboratory was based on the
wellbore conditions.

2.5. Rheology Property of Cement Slurry

The cement slump was measured by a slump tester (TLD-A, manufactured by Tianjin
Yaxing Automation Experimental Instrument Factory, Tianjin, China.) according to the
standard of GB/T50080-2002. The thickening time at 30 and 100Bc was tested, respectively,
by a high-temperature and high-pressure (HTHP) consistometer (NZCJ, manufactured by
Tianjin Nithons Technology Co., Ltd.) at 50 ◦C, 6.5 MPa. The fluid loss of the cementing
slurry was evaluated by a fluid loss testing instrument (NJSQ, manufactured by Tianjin
Nithons Technology Co., Ltd.) according to the API standards. The anti-gas channeling
performance of cement slurry can be determined by the performance numeric of cement
slurry (SPN). The calculation formula of SPN is Equation (3):

SPN = FL(API)×
√

t100Bc −
√

t30Bc√
30

(3)

FL(API): API fluid loss of cement slurry, mL;
t100Bc: thickening time at 100Bc of cement slurry, min;
t30Bc: thickening time at 30Bc of cement slurry, min.
The criteria for the determination of the anti-gas channeling performance of cement

slurry are the following: SPN is in 0–3, the anti-gas channeling performance is perfect; SPN
is in 3–6, the anti-gas channeling performance is medium; SPN is beyond 6, the anti-gas
channeling performance is poor.

2.6. Compressive Strength

The compressive strength and flexural strength of the cement specimens after curing
for 3, 7, and 28 days were measured using an automatic compression and bending mechan-
ical tester (COMPTEST 3000, manufactured by Jinan Zhongchuang, Co. Ltd., Shandong,
China) based on the API standard, respectively. All trials were conducted in three parallel
runs and then averaged.

2.7. Permeability and Porosity

The permeability of the cement stone with curing age was tested by combined porosity
and permeability equipment (manufactured by Jiangsu Kedi Co., Ltd., China) based on
Darcy law in the method of gas injection with a constant flow. The demission of specimens
to the porosity and permeability was ø25 × 100 mm. Then, the change of pore distribution
of specimens at 3 days was tested by X-ray micro-CT (Nano Voxel-3000, manufactured by
Sanying Precision Instruments Co., Ltd., China). The beam energy was 150 kV. The samples
were put on the rotation stage with a rotated speed in 1◦ per steps. After the scan in a circle
of 360◦, 1440 projections were recorded by the 16-bit 1920 × 1536-pixel flat panel detector,
and the pixel size was 13.93 µm. Then, the images were reconstructed and analyzed.

2.8. Viability of Bacteria in Cement Stone

After the mechanical strength test, the fragments of cement stone were collected and
pulverized. The viability of bacteria in cement stone was tested by the most probable
number (MPN) technique, as shown in the literature of Clarke and Owens [38]. The growth
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of positive bacteria correlated with the turbidity of the medium. Therefore, the viable
bacteria can be estimated by the turbidity test.

2.9. Morphological Characteristics

The fragments of cement stone were dried in an oven for 24 h and then cooled;
the morphological characteristics of precipitations in cement specimens were observed
under Scanning Electron Microscopy (Phenom G6 Pro, manufactured by Phenom Scientific
Instrument Co., Ltd., Eindhoven, Netherlands) 500 and 5000 times, respectively. The
composition of crystals in cement stone was analyzed by Energy Dispersive Spectrometer
(EDS). The precipitations in liquid medium were finely ground with an agate bowl until
all passed through the 200 target sieves (the mesh size is 75 µm), and then it was put
into the dryer for 24 h. The phase composition of the samples was analyzed by a D8 full-
automatic XRD instrument made in Brooke, Germany. The scanning rate was 0.15 s/step,
and 2 θ = 10◦~90◦.

3. Results and Discussion
3.1. Effects of the Medium on the Growth of Bacteria

As shown in Figure 3a, the growth of bacteria in dairy waster was relatively close
to the bacteria in standard medium and nutrient broth medium. The concentration of
bacteria in dairy wastewater in the stabilization period was approximately similar to the
other two media, and there was no obvious difference among these three media. It is worth
mentioning that the growth of bacteria in the dairy wastewater medium was relatively
rapid and vigorous, which could shorten the time of application. Figure 3b shows that the
domesticated bacteria could keep high urease activity, which is paid much more attention in
practical engineering applications, and a similar trend was observed with the growth curve
of bacteria. However, the specific urease activity of the bacterial solution was the inverse,
as shown in Figure 3c, and it was decreased with the increase in bacterial concentration.
With the increase in time and bacterial concentration, the activity of urease in bacterial
solution was increased, and the ability of catalyzing urea hydrolysis was also increased.
According to the analysis, the specific urease activity of bacteria is mainly affected by the
concentration of substances in the culture medium. From the calculation formula (2), it can
be seen that the concentration of microorganisms gradually increased, but the change rate
of the total urease activity of bacteria was much slower than the OD600 value. Therefore,
the specific urease activity was decreased.

The results showed that dairy wastewater could provide the nutrients for the metabolism
of bacteria at a low cost; see Table 1. Compared with the standard medium and nutrient
broth medium, the preparation of microbial cementing slurry with the same volume of dairy
wastewater needs to consume more dairy wastewater. However, dairy wastewater has a
wide range of sources, so there is no cost. Additionally, we considered the additional cost
of dairy wastewater pretreatment. The comprehensive cost was calculated, and the results
showed that the cost of using dairy wastewater to cultivate microorganisms and prepare
microbial cementing slurry was lower, which is more suitable for large-scale application.

3.2. Changes of COD and BOD in Dairy Wastewater

Table 2 exhibits that the COD and BOD of dairy wastewater were significantly de-
creased after the incubation of bacteria. As is well known, protein, fat, and lactose in
dairy wastewater are the main reasons for high COD and BOD. The protein, fat, lactose,
and other nutrients in dairy wastewater could be used as carbon and nitrogen sources
by microorganisms. Therefore, the COD and BOD in dairy wastewater were effectively
reduced because of the metabolism of bacteria. Additionally, we found that the value of
pH after the incubation of bacteria was increased. It is believed that the nitrogen sources
including protein and urea were hydrolyzed into NH4

+ and CO3
2− by the mutant bacteria,

which resulted in the accumulation of OH− in the microenvironment eventually. They were
below the direct emission standard of dairy wastewater. Therefore, it is an environmentally
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friendly method to prevent the underground water from being polluted by the reuse of
dairy wastewater by the degradation of bacteria.

Figure 3. (a) Growth curve of bacteria in different media; (b) urease activity of bacteria in different
media with time; (c) specific urease activity of bacteria in different media with time.
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Table 1. The comparison of cost and effect of different media on well cement slurry.

Media Mass of Media/1
kg G-Cement

Media
(USD/kg)

Additional Cost
(USD /kg)

G (USD
/kg)

Total Cost
(USD /kg)

SM + G 0.006 40 0 0.09 40.09
NB + G 0.018 20 0 0.09 20.09
DW + G 0.5 0.0002 0.0003 0.09 0.0913

Note: Additional cost means cost of pre-treatment for media before cultivation and transportation. Prices of
products and costs were calculated by the market value.

Table 2. Changes of COD, BOD, and pH in dairy wastewater.

COD (mg/L) BOD (mg/L) pH

Before incubation 2200 1209 5–6
Emission standard 150 30 6–9
After incubation 94 15 8–9

The metabolism process of bacteria with dairy wastewater is displayed in Figure 4.
First, nutrients, such as protein, fat, and lactose, in dairy wastewater were decomposed into
small molecular substances by a special enzyme, and then they were transported through
the cytoderm into the cytoplasm of bacteria. The smaller molecules were absorbed and
utilized to synthesize new substrates, such as macromolecules and other cell components.
Urease was the product of metabolism in the cytoplasm, and it was transported to the
outside of the cell wall through the function of the compatriot. In this process of catabolism,
the energy was generated, and it was used to synthesize proteins such as urease and other
macromolecular substances needed by microbial cells. Additionally, they were used to
synthesize metabolic by-products, such as acids, CO2, and NH3. Moreover, the energy was
produced for the respiration, motility, and transportation of nutrients. Therefore, the more
nutrients were in media, the more energy and urease were produced at the same time.

Figure 4. The metabolic process of microorganisms utilizing dairy wastewater.

3.3. Rheology Property of Microbial Cement Slurry

We found that the slump of microbial cement slurry with standard medium and
nutrient broth medium was slightly increased compared to that of the control group without
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biotreatment, but the microbial cement slurry with dairy wastewater was decreased in
Table 3. Meanwhile, the thickening time of microbial cement slurry with dairy wastewater
and standard medium was significantly shortened at 30Bc and 100Bc respectively; therefore,
the right-angle thickening property was very important for the efficiency of cement slurry.
Nevertheless, the thickening time of microbial cement slurry with nutrient broth was
prolonged, and it had a negative impact on the rheology of cement slurry. It can be inferred
that the fluidity of microbial cement slurry with dairy wastewater was reduced because the
thickening property was improved compared to that of the control. The thickening time of
G-class cement slurry in the wellbore was too long to form enough strength, and it might
harm the ability of cement sheath to resist channeling outside the casing pipe.

Table 3. Rheology property of microbial cement slurry.

Medium Slump/cm t30Bc/min t100Bc/min FL/mL SPN

SM 21 258 268 28 1.58
NB 22 261 274 30 2.18
DW 19 252 259 22 0.88

C 20 259 269 24 1.35

Moreover, the API fluid loss of microbial cement slurry with standard medium and nu-
trient broth medium was increased, while the microbial cement slurry with dairy wastew-
ater was slightly decreased compared to that of the control. As is well known, this is
unfavorable to the quality of cementing, as excessive API fluid loss causes serious leakage
of cement slurry in the formation near the wellbore, resulting in huge economic losses. The
SPN values of microbial cement slurry mixed with three kinds of media separately were all
in the range of 0~3, which showed perfect anti-gas channeling performance, especially the
specimens with dairy water. It can be concluded that the dairy wastewater incubated with
this mutated bacterium has a positive effect on the rheology of the cement slurry.

3.4. Mechanical Strength of Microbial Cement Stone

We found that the compressive strength and flexural strength of microbial cement
stone were higher than those of the control due to the precipitations formed by bacteria in
cement stone, as shown in Figure 5a,b. There was a difference between microbial cement
slurry with dairy wastewater and the other two media. The early compressive strength
and flexural strength of microbial cement stone with dairy wastewater were increased
by 10.14% and 11.81%, respectively, compared to those of the control after curing for 3
days. As shown in Figure 3a, the growth of bacteria in the three media was similar, and the
carbonate content hydrolyzed by urea was consistent; however, the carbonate from protein
in dairy wastewater was much higher than that in the other mediums. Additionally, there
was a large amount of calcium that was not contained in the other media. Therefore, due
to the protein and initial calcium content in dairy wastewater, the mechanical strength
of microbial cement stone with dairy wastewater was higher than the other two groups
with the other two media, respectively. Additionally, the mechanical strength of microbial
cement stone with the curing age was studied. We found that the mechanical strength of
all groups was increased with time. After curing for 7 and 28 days, the mechanical strength
was improved compared to the early strength at 3 days. The compressive strength and
flexural strength of microbial cement stones were higher than those of the control at 28
days. Therefore, the high mechanical strength indicates the better durability of microbial
cement stone in an extreme environment.

The results showed that dairy wastewater could be an alternative medium to cultivate
bacteria and exhibited a much higher efficiency of calcium carbonate precipitations. The
mechanical strength of microbial cement was significantly improved, and it was beneficial
for improving the resistance of fluid erosion under extreme conditions.
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Figure 5. (a) Changes of compressive strength of microbial cement stones with curing age; (b) changes of flexural strength
of microbial cement stones with curing age.

3.5. Permeability and Porosity of Microbial Cement Stone

We can see from Figure 6a that the permeability of microbial cement stone mixed with
standard medium, nutrient broth media, and dairy wastewater was reduced by 70%, 25%,
and 90%, respectively, compared with that of the control group after curing for 3 days. The
permeability of all the groups was reduced with curing age. The permeability of microbial
cement stone with dairy wastewater was even reduced by one to three orders of magnitude
after curing for 28 days. It can be seen from Figure 6a that the permeability of microbial
cement stone with various media was reduced to different degrees due to the different
efficiency of precipitations of calcium carbonate induced by bacteria. Additionally, the
porosity of microbial cement stone mixed with standard medium, nutrient broth media, and
dairy wastewater was decreased by 68.33%, 67.33%, and 70.21%, respectively, compared
with that of the control after curing for 3 days, as shown in Figure 6b. It was obvious
that the porosity of three groups of microbial cement stones was reduced beyond 50%
compared to that of the control, and the porosity of cement stone was reduced with time
due to the hydration development and microbially induced calcium precipitation in the
internal micropores of cement stones. Therefore, it can be inferred that the MICP has a
positive effect on the compactness of cement stones.

Figure 6. (a) Changes of permeability of microbial cement stone with curing age; (b) changes of porosity of microbial cement
stone with curing age.
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3.6. Viability of Bacteria in Cement Slurry

Figure 7 displays the number of viable cells decreased with increasing curing age. The
bacteria kept a high survival rate in the first 24 h; however, after curing for 3 days, only
10% of viable microorganisms survived. The number of viable cells in the cement stone
after curing for 135 days was below the MPN detection limit (<(5 × 102)cm3). This was
consistent with the results of Jonker’s experiments [33,34,39,40]. However, the number
of bacteria that survived in this extreme condition was enough to precipitate calcium
carbonate and alter the internal structure of cement stone in the early stage of cementing.
Based on the drilling and completion experiences on site, the cement slurry was required
with high early strength and low permeability to prevent the channeling of fluids in the
formation. As exhibited in Figure 7, the bacteria can maintain high activity under the
extreme environment for 24 h; therefore, they can satisfy the requirement on site. In
addition, there was no obvious difference in the three kinds of media adopted in this paper.
It can be proved that dairy wastewater is not harmful to the survival of bacteria in the
cement slurry like the other two media.

Figure 7. The number of survived bacteria in cement stones at different curing age.

3.7. Pore Distribution of Microbial Cement Stone with Dairy Wastewater

In this paper, we compared the microstructure of microbial cement stone with G-
class oil cement stone without biotreatment. Figure 8a shows that the pore was seriously
developed and was evenly distributed in the cement stone without bacteria treatment
after curing at 50 ◦C, 6.5 MPa for 3 days, which is unfavorable to the development of the
mechanical strength of cement stone. Figure 8b exhibits the three-dimensional rendering
of the micropores and microfractures of cement stone without biotreatment. We can
see that there were numerous pores with good connectivity. Under the erosion of high-
pressure fluid, the pores would be easily expanded into larger cracks and fractures. The
impermeability of cement stone would be reduced, and this would lead to interlayer
channeling accidents or even collapse of the well borehole. In addition, it can be found that
the probability distribution of the pore radius was relatively concentrated, as shown in
Figure 8c, and the pore radius was mainly in the range of 25–30 µm, which indicated that
the average quality of the sample was better. Additionally, the porosity of the specimen
without biotreatment was 12.49%, which is consistent with the results in Figure 6.
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However, we found that the pores in the microbial cement stones with dairy wastewa-
ter were not developed in the same curing conditions, as shown in Figure 8d,e. Compared
to the control group, the porosity of the microbial cement stone with dairy wastewater
was significantly decreased by 70.22%. There were mainly isolated pores, as shown in
Figure 8e. Moreover, the connectivity was not good, which was beneficial for resisting
the erosion of fluid underground. We found that the probability distribution of the pore
radius was not concentrated, as shown in Figure 8f. The pore radius was in a larger range
of 8–24 µm, and average pore radius of microbial cement stone with dairy wastewater was
smaller than that of the control. The pore distribution was much more uniform, and the
unevenness of the specimen was better compared to that of the control. The porosity of
the specimen was 3.72%, which is consistent with results in Figure 6. We believe that the
porosity and permeability of microbial cement stones were decreased mainly due to the
filling of precipitations in the micropores and microfractures. Therefore, the mechanical
strength of microbial cement stones was enhanced compared with that of the control group.

Figure 8. (a) Rendering effect of XY plane slice of cement stone without biotreatment; (b) volume rendering of internal pore
threshold of G-class oil well cement stone with a size 400 × 400 × 400; (c) probability distribution of pore radius of the
control without biotreatment; (d) rendering effect of XY plane slice of cement stone with biotreatment; (e) volume rendering
of internal pore threshold of microbial cement stone with dairy wastewater with a size 400 × 400 × 400; (f) probability
distribution of pore radius of microbial cement stone with dairy wastewater.

3.8. Microstructures of Microbial Cement Stones

It was clear that there was still a large number of micropores in the control speci-
mens without biotreatment observed at 500 times; the dark portion is circled with a red
color in Figure 9a, which was similar to the results of the CT test in Figure 8a. Never-
theless, Figure 9b shows that the internal micropores of the microbial cement stone were
significantly reduced, and there were rough and uneven precipitations distributed in the
microbial cement stone. Additionally, we found that numerous calcium carbonate crystals
circled in red were attached with a large amount of flocculent organic matter, as shown
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in Figure 9c, and these crystals were filled in the microspores and the cement hydration
products of microbial cement slurry with dairy wastewater observed at 5000 times. We
found that the crystals were rhombohedral, and the morphology of the crystal in microbial
cement stone was the same as the morphology of precipitation in a pure environment with
a liquid medium, bacteria, and calcium chloride only. As shown in Figure 9d, the precipita-
tion was mainly calcite, and the composition of calcite was calcium carbonate. Additionally,
Figure 9e shows that there were mainly calcium, carbon, and oxygen elements. Therefore,
it can be inferred that the crystals with rhombohedral morphology in the hydrated calcium
silicate gel were calcium carbonate induced by bacteria, as shown in Figure 9c. As we
can see, calcium carbonate crystals were filled in the cement hydrated calcium silicate
gel and micropores of the cement stone, thus reducing the amount and connectivity of
micropores in microbial cement stone. Moreover, the surrounding calcium silicate gel was
compressed to improve the compactness of cement stone, which functioned as the physical
compaction. Furthermore, the crystals distributed among the cement aggregate particles
strengthened the connection between precipitations and aggregates. The by-products of
microbial metabolism, such as organic matter, acted as a bonding material to glue the
hydration products of cement, and it was accompanied on the surface of biominerals.
The biomineralized crystals showed special morphological characteristics under the joint
modification of microorganisms and by-products. The spatial grid structure of cement
paste was enhanced, thus contributing to the enhancement of the mechanical strength of
cement stone.

Based on the distribution of crystals in cement stone, we analyzed the process of
MICP in the cement slurry. The dairy wastewater, microorganisms, and calcium chloride
microcapsules were added into the cement slurry first. The microcapsules and bacteria
were evenly distributed in the cement slurry, as shown in Figure 10a. Subsequently, with
the hydration of cement slurry, a large number of hydration products were attached to
the surface of cement aggregate particles. When the hydration reached the initial setting
stage, the wall of the microcapsule broke, dissolved, and released calcium chloride, as
exhibited in Figure 10b. Then, the wall of encapsulation was completely dissolved, and
the calcium ions transported into the surrounding cement matrix and combined with the
surrounding carbonate ions due to the migration of free water in cement stone and the
mutual attraction of ions with positive and negative charges, resulting in calcium carbonate
precipitation in cement slurry, as shown in Figure 10c. In addition, with the metabolism of
bacteria in the cement, an increasing number of by-products were produced and attached
to the surface of hydration products and calcium carbonate at the same time. Due to
the random distribution of dairy wastewater and calcium chloride encapsulation, the
by-products and calcium carbonate were evenly distributed in the cement stone. Figure 10c
shows that the calcium carbonate was embedded in cement hydration products, such
as calcium silicate gel. Moreover, calcium carbonate was filled in the micropores of the
cement stone. Meanwhile, by-products produced by bacteria were attached to the surface
of mineralized precipitations and cement hydration products, and this served as a bridge
between cement hydration products and microbial mineralization precipitation; hence, the
internal microstructure was remediated in the end.

3.9. On-Site Application of Microbial Cement Slurry with Dairy Wastewater

To determine the feasibility of microbial cement slurry with dairy wastewater in the
field, we applied it on site in the Chunguang 17-14 oil well. It can be seen from Figure 11
that the production time was cut down from 24 to 12 h, the productivity efficiency of the
field was reduced, and the daily fluid output and water content were increased due to
the problem of channeling oil and water outside the casing pipe on 7 September 2019.
Therefore, the workload and cost for the separation of oil and water on site were increased.
Additionally, the daily oil output was sharply decreased because of the channeling outside
the casing pipe. Moreover, the oil outlet flow temperature was reduced by the water.
This was harmful to the recovery of heavy oil in the Chunguang 17-14 well. However,
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we applied the microbial cement slurry with dairy wastewater in the same section of the
wellbore in the Chunguang 17-14 oil field on 25 November 2019. Then, we found that
the problem of channeling was solved based on the data of the neutron logging test on
site on 15 June 2020, as shown in Figure 12, and there was no channeling outside the
casing pipe in the depth of 960–1004 m in the Chunguang 17-14 well after the microbial
sealing operation. As exhibited in Figure 11 from 15 June 2020, the water content was
cut down to 42–55%, which reduced the workload of the oil–water separation. The daily
fluid output and daily oil output were kept at a stable level after the sealing channeling
operation. Meanwhile, the oil outlet flow temperature was improved due to the reduction
in water output. Moreover, the production time every day was prolonged after the sealing
channeling operation, and the efficiency of production was also improved. We can confirm
that the application of microbial cement slurry with dairy wastewater under this extreme
underground environment was valid.

Figure 9. (a) Microstructure of the cement stone without biotreatment was observed at 500 times; (b) microstructure of the
cement stone with biotreatment was observed at 500 times; (c) morphology of crystals in the cement stones with microbially
induced calcium carbonate precipitation (MICP) treatment was observed at 5000 times; (d) XRD test of the precipitations in
medium; (e) Energy Dispersive Spectrometer (EDS) test of the crystals in cement stones.
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Figure 10. (a) The distribution of matrixes in cement slurry in the initial stage; (b) the microcapsule was broken, and the
calcium chloride was released into the cement slurry; (c) the microbially induced calcium carbonate precipitation in the
cement slurry.

Figure 11. Changes of production parameters of Chunguang 17-14 well after treatment with microbial cement slurry.
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Figure 12. Neutron logging in Chunguang 17-14 well after biosealing.

Additionally, we also compared this technology with the second injection of cement
slurry in the well next to the Chunguang 17-14 well. We found that the method of the
second injection of G class oil cement slurry would cause plugging, resulting in the failure
of cementation according to previous experience. Moreover, the cost of secondary injection
of G class oil cement slurry in the Chunguang 17-10 well next to the Chunguang 17-14 well
was much higher than the microbial cement slurry. We found that the Chunguang 17-14
well was well healed; nevertheless, there was still a channeling problem after injecting
the G class oil cement in the Chunguang 17-10 well again with the same volume of
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microbial cement slurry. Thus, this indicates the higher efficiency of microbial cement
slurry compared to that of conventional technologies. In addition, we tested the elements
of unground water in the same bearing formation in the field. We did not find that there
was anything strange after applying the microbial cement slurry in the well. Therefore,
this indicates that the microbial cement slurry with dairy wastewater would not cause
pollution to the underground water.

4. Conclusions

It can be concluded that dairy wastewater can be used as an alternative medium
to cultivate the mutated bacteria under extreme conditions. Additionally, the microbial
cement slurry mixed with dairy wastewater showed a better rheology performance, higher
mechanical strength, and lower porosity and permeability compared to the G class oil
cement slurry. Moreover, due to the filling of calcium carbonate crystals and the flocculent
by-products produced by microorganisms in the micropores of the cement stone, the
compactness was significantly improved. Moreover, not only the water content was
reduced, but also the production time was prolonged after microbial cement slurry was
applied in the well on site. The channeling problem underground was solved, and the
efficiency of oil production was also improved. The fact that the microbial cement slurry
with dairy wastewater was successfully applied in the Chunguang 17-14 indicates a bright
prospect of bioremediation in extreme underground conditions.
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Abbreviations

MICP Microbially Induced Calcium Carbonate Precipitations.
SM Standard Medium.
NB Nutrient Broth.
DW Dairy Wastewater.
C Control group.
G G class oil well cement slurry.
T Temperature.
P Pressure.
COD Chemical Oxygen Demand.
BOD Biochemical oxygen demand.
OD Optical Density.
Bc Cement thickness unit
t30Bc thickening time at 30Bc.
t100Bc thickening time at 100Bc.
FL Fluid Loss, mL.
SPN Cement Slurry Performance Numeric.
FTIR Fourier Transform Infrared Spectroscopy.
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PVA Polyvinyl Alcohol.
CT Computed Tomography.
XRD X-ray Diffraction.
SEM Scanning Electron Microscope.
EDS Energy Dispersive Spectrometer.
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