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Abstract: The process of reaching carbon neutrality by 2050 and cutting CO2 emissions by 2030
by 55% compared to 1990 as per the EU Green Deal is highly complex. The energy mix must
be changed to ensure long-term environmental sustainability, mainly by closing down coal sites,
while preserving the energy-intensive short-term economic growth, ensuring social equity,
and opening opportunities for regions diminishing in population and potential. Romania is currently
in the position of deciding the optimal way forward in this challenging societal shift while morphing
to evidence-based policy-making and anticipatory governance, mainly in its two coal-mining regions.
This article provides possible future scenarios for tackling this complex issue in Romania through a
three-pronged, staggered, methodology: (1) clustering Romania with other similar countries from the
point of view of the Just Transition efforts (i.e., the energy mix and the socio-economic parameters),
(2) analyzing Romania’s potential evolution of the energy mix from the point of the thermal efficiency
of two major power plants (CEH and CEO) and the systemic energy losses, and (3) providing insights
on the socio-economic context (economic development and labor market transformations, including
the component on the effects on vulnerable consumers) of the central coal regions in Romania.

Keywords: Green Deal; coal phase-out; energy transition; Just Transition; Romania

1. Introduction

Europe is moving decisively forward with energy transition in pursuit of its goal of
carbon neutrality by 2050. However, clean energy has to be backed by an equally important
commitment to ensuring the security of energy supplies and equitable alternatives for the
communities that are economically hit by this transition. The Just Transition Mechanism
represents the EU’s 150-billion-euro effort to ensure that the transition toward a climate-
neutral economy happens “in a fair way, leaving no one behind” [1]. Given the economic
and strategic complexities faced by member states, we argue that such a financing tool
has to be pointed in the right direction, targeting key specific issues at a national and local
level. To do so, this article presents a diagnostic methodology tested on the case study of
Romania. We build on both national and local level data and showcase both specific factors
and broader regional trends related to energy-mix, energy production capacity, energy
efficiency, pollution, and employment.

Cities, regions, and countries have started to track various indicators reflecting the life
of their communities. This process leads to better-informed decisions in the public space.
It also renders governments more accountable to their constituencies for their performance
in office. Such tracking of indicators is furthered by the transition to smart cities as data
becomes more readily available and transparency becomes the norm. This is not always
possible for less developed regions, where both solutions and data are harder to find.
Evidence-based policy-making is further limited by the need to integrate, apart from data,
complex and shifting perspectives of stakeholders.
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As we argue in this article, a necessary step forward in the Just Transition policy-
making process is to involve real-time management of decisions including corrections
and simulations of large-scale collaborative models such as anticipatory governance.
Defined as “a broad-based capacity extended through society that can act on a variety of
inputs to manage emerging knowledge-based technologies while such management is still
possible” [2], anticipatory governance allows for current long-range actions. This stage-
process zooms in and out, from micro-communities to macro-supranational, continent-wide,
as is the case with the European Union and its long-term sustainability planning. The Just
Transition framework prescribes national governance behavior, but the targets are to be
achieved only by looking at the local communities’ specificities.

The complexity of such a process comes from the multitude of actors involved, the possi-
ble evolutions of the environment and the ecosystems (natural, business), and the high rise
in uncertainty. Thus, anticipatory decision-making, understood as a data-driven process,
becomes necessary in order to tackle such a task. Anticipatory studies, particularly in
sustainability governance [3], relate to how various future paths link and shape current
policies. Although our analysis focused on the Just Transition Mechanism in which deci-
sions are made at the supranational or intergovernmental level, anticipatory governance at
the local level is still needed to allow for the optimal implementation of the Just Transition.

Central and Eastern Europe (CEE) is facing the dual challenge of energy transition and
economic catch-up with older member states [4]. The tension between energy transition
and economic development is obviously not specific to CEE, as it can also be found in Latin
America [5] or Asia [6]. Still, in CEE, it informs the implementation of energy transition
instruments such as the Just Transition Mechanism.

In adopting the Green Deal [7–10], developmental divides between older and newer
member states (NMS) are a weakness. Despite the Just Transition Fund, considering their
structural vulnerabilities and economic dependency [11], the green transition’s effect could
have a more significant negative impact on NMS.

Therefore, it is imperative to account for these regional specificities in CEE coun-
tries like Romania. Without pretending to go fully anticipatory, in a classical manner,
our diagnostic analysis represents a first step in the development of an evidence-based
policy-making for the Just Transition of coal regions in Romania.

With a significant increasing contribution of renewables and nuclear energy, Romania
will have to decommission by 2040 all of its currently installed thermal power generating ca-
pacity, which is theoretically possible according to recent simulations [12]. However, there
is still an ongoing discussion about the transition’s socio-economic impact and how the
domestic energy needs will be met. Our data analysis shows both the urgency of the
transition in terms of pollution and the low energy efficiency of the existing coal-based
energy production plants. We nevertheless acknowledge that, given the complexity of the
situation, politics will play a significant role.

Th rest of this article is structured as follows. Section 1 engages with the literature on
energy transition in the EU, and Section 2 presents our methodological steps (including
the aim of the study). Section 3 contains the data analysis, structured on a three-pronged
approach of an extensive comparative clustering analysis of all member states on the
parameters that are relevant to the Just Transition process as well as the two in-depth case
studies on energy production plants and regional transitional challenges in the coal-regions
of Romania. Finally, Section 4 concludes by discussing the relevance of our findings to the
broader evidence-based decision-making process at the national and European level.

1.1. The Complex Issue of Energy Transition—Literature Review

The EU has piloted a series of policy reforms over recent years and is now pursuing a
much more comprehensive program in the form of the Green Deal—essentially defined as
“a new growth strategy”. With the Just Transition Fund, which is a vital instrument for the
delivery of the European Green Deal, and its €40 billion behind it, it aims to mobilize at
least €150 billion investments over 2021–2027 in the most affected regions, divided in three
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pillars [13]. It requires an ambitious approach to reshape the way we live and work within
the EU [9]. This, in turn, requires concrete evidence on the capabilities and vulnerabilities
in both the energy sector and, more broadly, in terms of the socio-economic perspective of
local communities.

The Green Deal builds upon a desiderate for a reformed European society, which
functions resiliently in congruence with nature, fosters innovation and individual free-
doms, and mitigates the risk of various speeds of development. However, this transition
is by far one of the most complex endeavors the Union had to take. The reason for this
complexity is given by the heterogeneity of the actors involved (Member States do not have
similar circumstances concerning sustainability or economic development), the diversity
in approaches to societal shifts, and in the speed to change the current societal configura-
tions. The literature on societal shifts (or socio-technical transitions) relies on two pillars:
(1) the multi-level perspective (MLP), from the seminal works of Rip and Kemp (1998) [14],
followed by the consistent developments by Geels (2002) [15], (2004) [16], (2005) [17] (with
Schot, 2007 [18] and 2008 [19]), (2010) [20], (2011) [21], (2014) [22], (2019) [23], and (2) the
works of Hagel, Seely Brown, and Davison (2009) [14] and Denning, Hagel, Seely Brown
and Davidson (2012) [24] regarding the Shift Index. Both pillars (with their respective
criticisms) provide multi-level approaches with three levels:

• The MLP distinguishes between niches, socio-technical regimes, and a socio-technical land-
scape. It also talks about transition as a regime shift, relying on inter-level interactions [21].

• The Shift Index relates to three composite indices: foundations, flows, and impact. The
indices act as waves for change, as the authors see the interactions in a sinuate evolution,
in which the processes overlap and the momentum is driven by all three forces [25].

As of 2021, the MLP has not been analyzed for Romania and constitutes the next step
in our research, while the Shift Index was evaluated for this country in Voicu-Dorobantu
et al. (2011) [26], Paraschiv et al. (2012) [27], and Voicu-Dorobantu (2015) [28].

Energy policy has to be informed by evidence related to (1) energy supply and security,
(2) environmental impact and pollution, and (3) competitiveness and economic develop-
ment [12]. We used all three dimensions in the clustering and scenario analysis in the
following sections. We briefly illustrate in the following paragraphs how each of these
analytical dimensions was explored in the case of Romania and the CEE region.

1.1.1. East–West Divide in the Energy Transition

CEE has distinctive features that make it more vulnerable to energy transition. It has
an enormous energy intensity and associated greenhouse gas (GHG) emissions [29,30].
As we show in this article, air pollution scored the highest in Europe for countries in this
region. CEE countries rely much more heavily on coal-fired power stations than Western
Europe in terms of energy production. This dual imminence of the transition due to
pollution and poor alternatives for the current quantity of coal-based energy production
constitutes the region’s energy transition conundrum. In comparison, environmental
transition in the region has been more readily accepted [31] given the relatively limited
industrial exploitation of their territories.

Energy dependency is reinforced by relative poverty in the region, as it is only in
the newer member states from CEE that there are regions with lower than half the EU
average GDP level. It is essential to understand that in a context of insufficient institutional
capacity, as many of the CEE countries are facing, the implementation of labor reconversion
programs is rendered more difficult. Their historical economic pathway [32,33] and their
“dependent capitalism(s)” [34–37] add another layer of difficulty to diversifying employ-
ment and developing higher added value jobs. Low regional competitiveness [38] also
means that there are fewer internal migration and labor reconversion perspectives.

Technological solutions and availability of alternative energy production are chal-
lenging in general [39], but for CEE countries, given their low innovation capacity and
R&D spending [40], this becomes an even greater challenge. The incumbent commodity,
the revenues, and the market margin can be substituted by innovations [41]. The energy
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sector uses a blend of many energy service technologies, making socially ideal solutions
possible because it preserves flexibility in energy supply [42]. In this sense, progress in
energy technology is powered by a convergence of individual technologies to provide
a certain energy utility and spillover of information (i.e., the use of tech beyond its first
location) [43]. Regarding the Green Deal’s objectives, local companies have to have the
innovative capacity to adapt to and adopt new non-polluting technologies or processes [44].
This is especially challenging for lagging regions in Romania and other CEE countries,
given the companies’ weak connectivity to knowledge-transfer networks [45] and domestic
eco-innovation capacity [26].

The classical difference between core and peripheral economic growth [46] is also
valid in the case of energy poverty [47], provided that in the countries of southeastern
Europe, the influence of this problem is considerably higher [48]. Ultimately, customers
can bear the burden of electricity supplies in a stable and secure scheme as well as the
transition to a less carbon model. The challenge is how to meet these aims while simulta-
neously maintaining open markets that provide customers with fair pricing and protect
the most vulnerable [49]. The Energy Union builds on previous Commission documents
and seeks to position “citizens at its core” by investing in the transition and reducing
bills using emerging technology, encouraging full market engagement, and protecting
disadvantaged customers [50].

1.1.2. Energy Mix and Coal Phase-Out

Coal is sometimes viewed as the cornerstone of the economies of coal-mining areas.
Looking more carefully, it is clear that coal is not only an enormous burden on the environ-
ment and human health, but that mining and burning coal also raises the cost of public
resources. As a result of industrial expansion, areas with large coal industries have become
associated with air pollution, soil depletion, and socio-economic loss. However, we should
also consider that mining is a traditional activity, and the coal industry has shaped local
history, identity, and jobs, transforming them into assets for various other sectors such as
renewable energy. This shaping allows for relevant opportunities for regional development
and job creation, even as the world gradually moves away from fossil fuels due to their
negative impact on health and the environment.

Although coal remains a key fuel in the European energy mix as it represents a fifth
of the EU electricity generation mix and three-quarters of CO2 emissions from the EU
electricity sector, according to Bruegel [51], the transition to cleaner sources of energy and
advanced technology is imperative to fulfill the EU’s promise to reduce CO2 emissions by
at least 55% by 2030 and to become the world’s first climate-neutral region by 2050.

The European coal industry employs about half a million workers in direct and
indirect operations (185,000 workers in coal mines, 53,000 workers in coal power plants,
and 215,000 jobs in indirect activities related to the coal supply chain) [52]. It is projected
that by 2030, around 160,000 direct jobs will be lost. Based on a carefully orchestrated
restructuring phase in which green energy plays a central role, regional growth would
generate new job opportunities. In order to ensure that no region is left behind in this
process of transition, the Commission has also initiated the “Initiative for Coal Regions
in Transition,” which works as an open forum that has brought together all interested
actors in sharing information and exchanging experiences in a bottom-up approach to
a just transition. Specially designed as a non-legislative feature of the “Clean Energy
for all Europeans” package [53], the forum aims to mitigate the social effects’ of low-
carbon transition. Nevertheless, coal remains a significant political bottleneck in the EU’s
decarbonization process; therefore, this subject is tackled more in the following sections.

Among the EU countries, the largest coal reserves are in Poland, Romania, the Czech
Republic, Spain, and Germany [54]. Western European member states have been facing
the challenges of the energy transition head-on, and as such, they have implemented a
series of measures designed to counter its negative impact and comply with the coal-phase
out process [55,56]. The interconnected essence of coal mining and coal-fired generation is
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consistent with the fact that coal is historically a source of electricity linked to its domestic
output capacity. For example, the figures from 1991 show that whereas Poland had 116%
of self-sufficiency in coal (self-sufficiency being calculated as the percentage of domestic
production in the national coal use [57,58]) and a 78% share of coal in the total primary
energy use, the United Kingdom (87%) and Germany (95%), with a self-sufficiency in coal
of 87%, respectively 95%, had 29%, respectively 33% share of coal in the total primary
energy use [59]. These behaviors were observed across Europe even considering the lack of
rivalry between coal mines since the late 1950s when imported non-domestic coal prices
plummeted sharply [60–62]. In these difficult times, many Western European countries kept
their coal mines open due to their reserves and local historical lifestyles. The Polish coal
mining has recently become globally uncompetitive [63] and Germany is more committed
than ever before to the coal phase-out [55,62]. Now, only newer member states in Europe
rely on coal for 20% to 50% of their total energy needs: Bulgaria, the Czech Republic,
Greece, Poland, Romania, and Slovakia.

Coal-based energy production is not only very polluting, but also highly ineffi-
cient [64]. Many of the coal-production facilities are technologically outdated, having
been built in the communist period. Therefore, the frequency of coal power plants with
the lowest efficiency (around or below 30%) is higher in eastern European countries [54].
However, coal is not an efficient fuel production base, as even the most recent production
facilities in Germany still only have a 39% energy production efficiency [54]. In contrast,
high-power plant efficiencies in coastal sites in northern Europe are also due to the avail-
ability of cold water for power plant cooling [54]. The desertification of coal-regions in
Romania only adds to the low energy efficiency of the two plants we assessed in this article.

The perspective of mass unemployment in the coal-regions is one of the primary rea-
sons behind delays in the transition process [65]. As such, delaying the coal-phase out
process ensures a natural exit of the coal-related employees into retirement. However, Oei
et al. (2020) [56] showed that despite the negative impact on coal-regions in Germany,
in terms of losses in output, income, and population, a more rapid phase-out would also
result in a quicker recovery, based on Germany’s internal migration and demographic changes.

Measures involved both targeted local interventions for communities—in terms of
socio-economic costs [56,66], and national-level policies and strategies—to ensure their
energy supply [59,67,68]. At this intersection between national and local measures lies
the necessity and added-value of the in-depth national diagnostic of the energy systems’
political economy. Michael Metzger et al. [69] recently pointed out that national gov-
ernments need to develop their energy systems with both a higher degree of flexibility
and operations planning. We argue that evidence-based policy-making can best address
emerging vulnerabilities of the energy systems and the energy transition.

1.1.3. A Brief Overview of the Romanian Context

Romanian energy production facilities (including coal-based power units) were mainly
constructed before 1990, starting with the 1970s (similar to many other post-communist
countries, like Poland or Hungary), and the oldest facilities are approaching the end of their
lifetime [70]. The main coal basins are located in the Jiului Valley (Gorj County, southwest
region) and Hunedoara County (west region). However, during the past 30 years, mining
activity has started to decline, especially in Jiului Valley. As Barbu (2020) [70] showed,
during 1997–2017, the number of mining perimeters in operation reduced from 16 mining
perimeters of 163.35 km2 to four mining perimeters of 22.3 km2.

Nowadays, most active coal mines are located in two development regions (namely
the South Vest Oltenia Region and the Vest Region) and concentrated in Hunedoara and
Gorj Counties, which are responsible for 97% of the electricity produced from coal.

Hunedoara County has an industrial tradition since it was part of the Austro-Hungarian
Empire, but the communist period transformed this county into a real center of heavy
industry. The county’s economic model was centered around the extractive and processing
industry mainly due to its rich coal resources and steel production. Jiu Valley, a region
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located in Hunedoara County on the border with Gorj County, famous for its coal pro-
duction, had at the end of the communist period a population of about 140,000 people,
of which about 45,000 were coal workers, across 15 mines. Currently, the Jiu Valley popula-
tion has decreased significantly, as has the number of coal workers, which now numbers
around 11,000. The current situation of the county can be most eloquently explained by
the evolution of Hunedoara, which became the largest mono-industrial city in the country
during the communist period, its population growing from 4800 inhabitants in 1930 to
90,000 inhabitants at the fall of communism, and the steel plant in Hunedoara had at that
time 20,000 employees. ArcelorMittal bought the steel plant, and at the beginning of 2020,
before the outbreak of the pandemic, it registered only 640 employees. The reduction
of the extractive activity and the obsolescence of the economic model around which the
whole county was focused (heavy industry) eventually caused the decline in the county’s
population and the strong emergence of the phenomenon of ”shrinking cities.”

Gorj County had a population, at the last census conducted in 2012, of about 373,000
inhabitants. Of these, a proportion of 52.5% lived in rural areas and 47.5% in urban
areas, and thus it can be concluded that agriculture still plays a somewhat important
role in the county’s economy. Over 50% of the active workforce is engaged in activities
in the agricultural and industrial sectors. Extractive activities and electricity production
dominate the county’s industry. There are significant lignite resources in the Rovinari
and Motru Basins, a region where the lignite mines are located, which supply the Oltenia
Energy Complex with raw materials. Both Hunedoara County and Gorj County suffer
from the depopulation process. The massive migration of the population over the last
20 years to neighboring counties, primarily to regional university centers such as Timis,
County for people from Hunedoara County and Dolj County in the case of Gorj County
has led to changes in the demographic structure of the region. This change is evident
across the entire Jiu Valley, especially from the perspective that young people who chose
to study in university centers in neighboring counties rarely, at the end of their studies,
returned to their native counties. This declining trend in both the number of students and
teachers has had a significant negative impact on the region’s economic development as
the labor market is concentrated around the mining sector and does not offer too many
other sectoral opportunities.

Within Romania’s energy production mix, the coal-based energy production repre-
sented, at the end of 2019, around 23–24% of the total (mainly lignite, more than 90%),
increasing significantly during the winter months. At the end of 2019, the most widely
used primary resource was hydropower (approx. 27% of total), followed by coal and
nuclear energy (19%). Additionally, in 2019, oil and gas produced around 16% of the total,
while renewable resources like wind and photovoltaic generated more than 14% of the
total energy [71].

Regarding the electricity production mix, the following aspects have to be considered:

• During 2017–2019, the installed power decreased from 24,714 MW at the beginning of
2017 to 20,696 MW at the end of 2019; Romania lost more than 4000 MW in this period
primarily due to the reduction of coal (−1453 MW) and oil and gas (−2553 MW) during
the three years, while biomass and photovoltaic slightly increased. Complementarily,
hydropower and wind power decreased.

• In 2019, compared to 2018, the variation of production by types of resources de-
creased in the most primary sources of power, with values between 0.94% for nuclear
production and 13.56% for oil and gas production. At the same time, there were
essential increases in production from renewable sources, respectively wind (+7.14%),
biomass (+27.56), and photovoltaic (+0.34%). Hydropower production decreased
by 10.28% compared to the previous year. According to the Transelectrica annual
report [71], this situation was caused by the decrease in hydraulicity in inland rivers
from 97% in 2018, a normal year, to 85% in the year 2019, a subnormal year. However,
given that the production of renewable sources is very volatile (variations in produc-
tion over 1000 MW between concomitant intervals), the integration in the National
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Electrical System of wind power plants was facilitated, to no small extent, due to
variation of the production in the hydropower plants.

2. Materials and Methods

This article focused on possible scenarios to tackle this complex issue in Romania
through a three-pronged methodology: (1) clustering Romania with other similar coun-
tries from the point of view of the Just Transition efforts (i.e., the energy mix and the
socio-economic parameters), (2) analyzing Romania’s potential evolution of the energy mix
from the point of the thermal efficiency of two major power plants (Complexul Energetic
Hunedoara, CEH and Complexul Energetic Oltenia, CEO) and the systemic energy losses,
and (3) providing insights into the socio-economic context (economic development and
labor market transformations including the component on the effects on vulnerable con-
sumers) of the central coal regions in Romania. To this extent, we have three different
specific methodologies: related to cluster analysis, the evolution of thermal efficiency,
and scenario development, and the methodological framework is presented in the follow-
ing figures with the steps (Figure 1) and logical diagram (Figure 2).

2.1. Cluster Analysis Methodology

The cluster analysis methodology used was the traditional k-means clustering.
Clustering was done in four different levels, as seen in Figure 3, with an added final
clustering aggregating all layers. Similarly, we ran those four clustering levels on three
types of data: Raw data and Standardized data. For the standardization of data, this step
aims to standardize the range of the continuous initial variables so that each one of them
contributes equally to the analysis [72].
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Figure 3. Steps of the cluster analysis.

All countries clustered with Romania in any of the generated results were considered
for a more focused view beyond the data of relevance, best practices, and use cases.

For the most recent year, all data for the EU Member States are published in Eurostat
(2018 in most cases). The following datasets (in brackets the online data code for the dataset
according to Eurostat) were used:

• STAGE 1: clustering based on energy mix: Production of electricity and derived heat
by type of fuel (NRG_BAL_PEH), Energy intensity (NRG_IND_EI), Energy efficiency
(NRG_IND_EFF)

• STAGE 2: clustering based on pollutants: Tons of PM2.5 to 1 Billion. EUR GDP,
Tons of SO2 to 1 Billion EUR GDP, Tons of NOx to 1 Billion EUR GDP ([env_air_emis])

• STAGE 3: clustering based on coal as part of the economy: Share of fossil fuels in
gross available energy (NRG_IND_FFGAE), Number of companies in Mining and
Quarrying in Total number of companies ([sbs_sc_ind_r2]), Population employed in
Mining and Quarrying in Total population employed ([lfsa_egan2])

• STAGE 4: clustering based on relevant socio-economic indicators: GDP per capita
(NAMA_10_PC), Arrears on utility bills—EU-SILC survey [ilc_mdes07], Final con-
sumption expenditure of households by consumption purpose (COICOP 3 digit)
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[nama_10_co3_p3], Population unable to keep home adequately warm by poverty
status (SDG_07_60).

Finally, the overall clustering integrated all variables to provide an EU image that
concerned our researched issue.

For the clustering, we used StatPlus, which allows for k-means clustering. K-means “is
a method that partitions n observations into k clusters in which each observation belongs
to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a
prototype of the cluster. k-means clustering minimizes within-cluster variances (squared
Euclidean distances) but not regular Euclidean distances” [73]. Two levels of aggregations
are necessary—if the number of items in the cluster is larger than 7: with k = 5 and then
k = 3 (alternatively k = 5 and k = 4 were tried for the second level of aggregation, but there
were no significant differences in the clusters resulted in the second aggregation).

2.2. Efficiency Analysis Methodology

To highlight the efficiency of coal-fired power plants in Romania compared to those in
the European Union, we consolidated the findings obtained by Alves-Dias et al. (2018) [54]
that estimated the thermal efficiency of the individual power plants based on the available
information on the installed capacity, the age, and type of power plant. One of the most
important technical factors for assessing a power plant’s performance is its efficiency
since it is linked to competitiveness, as lower efficiency implies higher fuel consumption,
which results in higher production costs and CO2 emissions.

The CO2 emissions of a power plant are proportionally related to the fuel used, the fuel
consumed during the year, and the generated electricity and efficiency. The following
formula was used:

Eff =
generation × 3.6

CO2emissions excl.biomass
Intensityfuel

+ CO2emissions− CO2emissions excl.biomass
Intensitybiomass

(1)

where:
Intensityfuel: The CO2 content per calorific energy in the fuel expressed in tons CO2

per TJ;
generation: Annual net generation of the power plant in MWh; and
CO2emissions: Annual emissions in Kg.
Note that the 3.6 factor was used to convert all variables in the same measure unit—

joule (as 1 MWh = 3.6 Gigajoule).
The dataset used to calculate the coal-fired power plants’ thermal efficiency was

from the JRC Open Power Plants Database (JRC-PPDB-OPEN). To emphasize each energy
source’s contribution to the electricity production mix, we used the data provided by
Transelectrica for 2019.

In order to calculate the energy losses from the process of transforming gross energy into
energy available in the network for consumption, we used the Transelectrica methodology,
which is based on the following formula:

NP = GAP − (PCOS + SCGS + PLTB) (2)

where:
NP (net power) = The power that the generator can deliver to the network for market-

ing purposes;
GAP (gross available power) = Total electricity produced by the generator;
PCOS = Power consumed in own services;
SCGS = The share of consumption of general services; and
PLTB = Power losses in the transformer block.
We assumed generation (from Equation (1)) = NP (from Equation (2)) to correlate

the two analyses. To calculate the pollution impact of the CEO and the CEH, we used
the companies’ 2017 and 2018 environment and annual reports and the data provided in
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them regarding CO2, SO2, NOx, and PM 2.5 emissions. Next, starting with the amount of
greenhouse gas emissions (SO2, NOx, and PM 2.5) at the national level, we analyzed the
impact that the total closure of these two complexes would have on reducing greenhouse
gas pollution. In addition, we investigated if such a scenario is relevant for reaching the
2030 air pollution targets imposed by the EU Green Deal. The impact was calculated at a
national level by subtracting the pollution generated by the two energy complexes from
the current air pollution levels.

2.3. Scenario Methodology

Concerning scenarios, the methodology applied was again the classical version,
according to Figure 4. The scenarios’ primary purpose was to assess the changes that
occurred over a long period, evaluate the effects, and notify the decision-makers by sug-
gesting strategies and policies to adapt to these changes. The scenarios were not intended
to reflect all potential future circumstances; instead, they provide plausible answers to sig-
nificant uncertainties and critical questions about an organization’s future growth or society.

An approach taxonomy to scenario modeling is created by defining a classification
according to the distinction suggested by Rayner and Malone (1988) and Robinson and
Timmerman (1993) (focused on values, meanings, and motivations) [74,75]. This distinc-
tion can be seen along with the exposure-correlation (local or global). Incorporating the
subjective and interpretive viewpoints in a single paradigm is well established in the
studies to date [76,77]. For quantitative evaluations, the recent approach in the field is
to incorporate critical qualitative and narrative scenarios with global modeling [78,79],
a situation in which it is also possible to use multifaceted evaluations on the sub-global
level in multiscale assessments (MAs).

In this literature analysis, three categories of scenarios were identified: external
(in which the determinants are external factors that participants in the affected system
cannot influence), internal (the emphasis is on internal factors that are fully influential),
and systemic (such as the case of the present research, which includes both external
and internal factors). The most popular method of integrating elements is the matrix,
represented in a scenarios-axes technique, as shaped by van’t Klooster and van Asselt
(2006): scenario-axes as the backbone to scenario development as building scaffolding or
as a foundation [80]. The widespread representation issue is that it uses only two of the
most critical driving forces (as axes) with a decisive impact on the system analyzed. This
approach caters to the idea that the primary source of errors in scenario modeling is the
inability to integrate multiscale phenomena such as the regional approach opposed to the
global approach. Models cannot account for evolutionary dependencies between the global
and regional structures/networks such as the advent of irreversible phenomena [81–83].
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3. Results

The results are presented below according to the three methodological steps discussed
below in the Discussion section.

3.1. Cluster Analysis

The first analysis applied to the raw and standardized data was the correlation check.
The following correlations were discovered:

• Stage 1: Energy efficiency—direct correlation of 67% with production of electricity;
• Stage 2: PM 2.5 directly correlated with SO2 (57%), PM 2.5 directly correlated with

NOx (83%), NOx directly correlated with SO2 (80%);
• Stage 3: Number of companies in M&Q directly correlated with population employed

in M&Q (75%), population employed in M&Q directly correlated with % population
(62%); and

• Stage 4: Population unable to keep home adequately warm by poverty status directly
correlated with arrears on utility bills (65%).

In the final integrative stage, the following direct and indirect correlation were noticed:

• Production of electricity directly correlated with no. of companies in M&Q (62%) and
with the population in M&Q (64%);

• Energy intensity directly correlated with pollutants (PM 2.5—65%, SO2—75%, NOx—
74%), with the % of population in M&Q (64%) and indirectly correlated to GDP per
capita (−62%);

• Energy efficiency directly correlated with no. of companies in M&Q (68%);
• PM 2.5 directly correlated with % population in M&Q (60%) and indirectly correlated

to GDP per capita (−65%) + energy intensity;
• SO2 directly correlated with % population in M&Q (82%) + energy intensity;
• NOx directly correlated with % population in M&Q (78%), arrears in utility bills

(67%), population unable to keep home adequately warm (55%) + energy intensity
and indirectly correlated to GDP per capita (−71%); and

• % population in M&Q directly correlated with % expenses per family (56%) + see above.

The correlations are presented in Figure 5. Clustering algorithms were run, and the
following results were obtained, as presented in Appendix A.

Significant differences appeared between the clusters created from raw data and
standardized data, which led to a need to consolidate data to eliminate the erroneous
weight of each correlated variable in the final results. This consolidation took place in the
standardized data table; a treatment acknowledged as reducing biases in the analysis, with
the following consolidation measures taken:

• All pollutants were clustered into one variable (the mean average of the three variables).
• All variables with correlations higher than 75% were eliminated; therefore % popula-

tion in M&Q was eliminated.
• In the second application of the correlation matrix, the only correlations higher than

75% were energy intensity vs. pollutant (78%) and no. of companies M&Q and
population in M&Q (75%), which led to elimination from the analysis of the energy
intensity and population in M&Q.
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After this consolidation, data were considered suitable for an unbiased running of the
clustering algorithm. Due to the consolidation, only integrative clustering was considered,
as, for instance, Stage 2 was obsolete.

The unbiased analysis generated five clusters, as follows (see also Figure 6):

1. Cluster 1: The Czech Republic, Germany, Spain, France, Italy, Hungary, Portugal,
Slovenia, Slovakia, Sweden, and the UK.

2. Cluster 2: Bulgaria, Greece, Cyprus, and Lithuania.
3. Cluster 3: Estonia, Croatia, Latvia, Romania, and Finland.
4. Cluster 4: Belgium, Denmark, Ireland, Luxembourg, Malta, the Netherlands, and

Austria.
5. Cluster 5: Poland.
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3.2. Efficiency in Energy Production Analysis

Table 1 shows the level of pollution produced by the two energy complexes responsible
for 97% of the electricity generated from coal sources, CEH and CEO.

Table 1. Greenhouse gas emissions generated by Complexul Energetic Oltenia (CEO) and Complexul
Energetic Hunedoara (CEH) (2017–2018)—extrapolated data, based on [84,85].

Emissions/Source CEO CEH Total

CO2 5141.304 349.063 5490.37
SO2 11.83 0.867 * 12.63
NOx 14.286 0.970 * 15.26

Particulate matter (PM 2.5) 0.76 0.052 * 0.82
Efficiency ** 33% 29%

Lifespan of powerplants in Romania 39 44
Note: All values are in Gigagrams. * Extrapolation based on electricity produced and similar levels of pollution
with CEO. ** Calculated using Equation (1).

Using Equation (1) from the methodology [54] and the datasets provided in Appendix B,
we presented the average thermal efficiency as well as the emissions estimated for every
coal-based power plant (CO2, SO2, and PM 2.5). Moreover, given the average years of CEH
and CEO, the efficiency is expected to decrease, while without any additional investment
in new technologies, greenhouse gas emissions are expected to increase. Simultaneously,
the lack of investment and low thermal efficiency will be reflected in the level of gas
emissions and the energy losses. The coal sector has one of the most considerable losses
in gross generated power. Figure 7 shows that more considerable losses in the energy
production process are incurred for coal, oil, and gas (approximatively 14% of the gross
energy production for both categories), having an essential share in the energy production
mix (16% for oil and gas, and 24% for coal). The problem caused by these losses is all the
thornier for coal-fired power plants, as they are financially inefficient due to the high costs
of CO2 allowances. A loss of 14% of the gross energy produced by these power plants does
nothing but put additional pressure on the budgets of the two energy complexes.
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3.3. Scenario Development

The usual method for developing scenarios is to plot them on a matrix structure,
as described in the methodology, starting from two critical factors. Based on previous
stages of our research and literature in Romania’s coal mining regions, we considered
the two critical factors to be economic growth and energy efficiency. Thus, the scenarios
presented in Figure 8 are proposed in an exploratory manner. A detailed description of
these scenarios, validated by qualitative data collection that would translate them into
normative scenarios, is the next step in our research.
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The energy efficiency considered here, for scenario development, refers to Romania’s
ability to adhere to the Just Transition in the coal mining regions and to shift its energy mix to
a more sustainable one. The economic growth done in the traditional manner of pushing the
production is energy-intensive; therefore, achieving economic growth while keeping a high
energy efficiency is challenging. The goal of the scenarios is to allow for proposals of specific
policies that might increase the probability of the occurrence of scenario B from Figure 4.

Scenario A assumes that Romania would lose its economic drive due to global crises and
diminishing competitiveness. However, it has managed to go through the Just Transition,
and the energy efficiency of the entire economy is on the rise, with the support of renewables.

Scenario B might be considered as the best-case scenario and assumes a successful
passing through the Just Transition while maintaining economic growth. This scenario
would ask for smart policies that increase the share of services in the economic growth.

Scenario C may be considered as the worst-case of a failure in improving energy
efficiency, which is a failed transition to a greener economy while losing competitiveness
and growth.



Energies 2021, 14, 1509 15 of 22

Scenario D indicates that the current status is continued.

4. Discussion

We focused our article on Romania as a case study, as according to our analysis,
it faces the highest vulnerability with regard to the ongoing energy transition in the
European Union. As such, we accounted for both systemic vulnerabilities and policy
measures. Romania’s situation is thus in contrast to other member states in CEE such as the
Czech Republic, who have put forward mediation measures to counter the coal phase-out’s
negative impacts and take full advantage of the Just Transition Mechanism. Even Poland—
home to the largest coal-burning power station in Europe and still actively pursuing coal
exploitation and energy production—has managed to establish new pathways of transition
and regional transformation [66,86].

Based on our data, Romania is estimated to lose approximately 25% of its current
production facilities given the coal phase-out and up to 40% if hydrocarbons are targeted
under the Green Deal. Most of the energy production capacities to be lost are coal-based.
The majority of those facilities, built during the communist period, have already surpassed
their standard period of life, which, on the one hand, brings this country closer to the target
of carbon neutrality. Nevertheless, on the other hand, this creates significant economic
and social pressures in the affected regions due to narrow specialization and high reliance
on the extraction of coal. In Romania, there are two regions where this problem is most
stringent and where public policy support for the transition has to be specifically focused:
the Vest and Sud-Vest regions. According to Eurostat data, the coal plants’ energy efficiency
in Romania’s two regions of interest is on average 30%, well below the EU average of 35%.
More than 50% of total SO2 and NOx emissions are released from coal mining activities in
these regions in terms of air pollution. As such, innovative solutions are needed to mediate
the transition’s shock and change the local development models.

In the transition to sustainable energy, current Eurostat estimates place cumulative
job losses in the coal sector, by 2030, to be between 3000 and 6000 in the Vest region and
between 6000 and 15,000 jobs in the Sud-Vest region. The part is profoundly affected by
deindustrialization and out-migration, which have led to “shrinking cities” (i.e., urban
areas faced with a rapid and drastic decrease of the population). Romania is facing a
decline in human capital and reduced flexibility to reconversion and transition by a narrow
horizon of regional specialization, an exodus of workers, a lack of allocated resources to
entrepreneurs and start-ups, a deterioration of primary education and VET training, and
an overall precarity of entrepreneurial culture [87–89]. All these effects are leveraged by
the phenomena mentioned earlier. According to the European Commission 2019 Annual
Report on Intra-EU Labor Mobility, 173,000 Romanians were hired in other EU countries in
2018, up by 7 percent than the previous year. Therefore, Romania is the EU Member State
sending the most active movers; their numbers could be much higher in the next few years
if the professional reconversion and reintegration into the workers’ labor market from the
sectors affected by the green transition process are not managed efficiently.

Romania’s energy mix is well balanced compared to other member states from CEE,
and the 2030 climate and energy framework targets have mostly been reached. However,
the energy consumption from coal-fired power plants increases during the winter months
from 24% to 40% of the energy mix, meaning that in the short run, in the case of mining
closure, Romania would need to rely on imports.

Investments in the energy infrastructure are needed primarily because of the low
efficiency and high pollution generated by the current facilities. Second, outside Bulgaria,
in the CEE region, Romania has the worst situation in terms of arrears of utility bills
(14.4% of the country’s population have delays in payment of utilities), and almost 10% of
households fail to keep their homes adequately heated. In the absence of investments in
alternative energy production sources, the closure of coal-based energy production will
worsen these indicators.
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Climate transition will significantly influence public and private spending in the com-
ing years. Impact assessments and knowledge-sharing will be of paramount importance
in ensuring that public authorities, investors, companies, cities, and people across the EU
can develop the proper tools to engage in a just transition for all. Evidence-based policies
and community-tailored solutions can contribute significantly to the successful pursuit of
the Green Deal objectives at the subnational level. Therefore, this article can contribute to
the evidence-based policy-making related to the Just Transition of coal regions in Romania.
Our findings suggest that given the complexity of Romania’s energy transition and its
socio-economic costs, the commitment to the Green Deal’s objectives is fundamentally
linked to the extent of the political will at a national level.

The shift of scenarios from prospective to normative to implementable policies is based
on various data analysis layers. It starts from a status quo assessment, identification of
best practices, forecasting data using usual econometric methods, proposal of prospective
scenarios, and, lastly, definition of policies meant to turn the latter to policies. These policies
are either meant to increase the probability of a particular scenario (such as the best case)
or provide mitigation if another scenario occurs (such as the worst case).

The scenarios proposed for the Romanian coal mining regions rely on the previous
assessments of the regions themselves and the Just Transition requirements and desiderates.
Plagued by the shrinking cities phenomenon and unemployment, these mono-industrial
regions are confronted with the unprecedented need to shut down what is perceived to
be an essential industry. Therefore, tracking best practices from other similar countries is
relevant: apart from the cluster results that place Romania next to Estonia, Croatia, Latvia,
and Finland, the measures used by states such as Germany or Poland (in clusters of their
own) can also be integrated. Romania is clustered with smaller countries, more agile in
terms of deployment of policies, further down the line in an alternative development of
business ecosystems, with different economy make-ups is both interesting and challenging.
It forces policy-makers to look outside the usual cluster partners for Romania of Poland
and Bulgaria. As intended in our analysis, clustering is the first step toward identifying
best practices, the latter being the subject of a different stage in our research project and,
therefore, not covered in this article.

Another element to consider in the transfer to policies is the forecast of energy
efficiency, based on current data. The two power plants are beyond their use period,
and their energy efficiency is decreasing, so the trend is not hard to plot. Further modeling
integrating four different options of business as usual, small alterations meant to keep the
current level of efficiency from decreasing, extensive alterations, and complete shut-down,
must be plotted in a dedicated in-depth analysis of the two power plants. This economet-
ric forecast comports data unavailable at the time of our research and also constitutes a
separate section in our research.

Finally, the proposed prospective scenarios are straightforward and explained.
Nonetheless, the proposal of policies for each of them must integrate the growing com-
plexity of the issue. For instance, in the case of stakeholders involved in the process,
there are at least the following: the European Union, the European Commission,
the national government, the regional (county) administration, the local administration,
the business environment at European, national and regional level (considering the integra-
tion of coal in various supply chains), the employees of the two power plants and their fam-
ilies, the citizens in those regions relying on coal for heating, the unions of the employees,
and green NGOs. This list is by no means exhaustive. However, it shapes a very complex
landscape of stakeholders, at times with opposite needs and wants. The fact that the coal is
mainly located in two Romanian regions means that the multi-level perspective is needed
for a proper, deep-running, transformative regional shift; therefore, the next research lines
should focus on regional holistic models, building on the econometrics of the RHOMOLO
model [90], a spatial computable general equilibrium model, created by the Joint Research
Centre for the European Commission, focusing on EU regions.
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The normative scenarios will have to tackle this complexity, maintaining the idea that,
ultimately, regardless of the data provided and the in-depth analysis, a shut-down is a
political decision. However, anticipatory governance must allow for the data analyses and
the resulting scenarios to be provided so that the political decision to be taken considers
all implications. This article is a first step toward proposing anticipatory governance for
the coal mining regions of Romania. In the second stage of our research, as presented in
Figure 2, the future studies stage, the topics of MLP for Romania (identification of niches
and drivers for a specific regional socio-technical regime), a reshaped Shift Index for the
two coal-mining regions, and the adequation of the scenarios in a public policy setting
(at national and local level) will be proposed in an integrated document. Whether it translates
into real policies in the next period is beyond the article’s scope and its authors’ leverage.
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Appendix A

Table A1. Clusters resulted in the four stage process based on raw data and standardized data.

Clusters resulted from raw data

Stage 1 Stage 2 Stage 3 Stage 4 Integrative

Country Cluster Country Cluster Country Cluster Country Cluster Country Cluster

Austria 1 The Czech
Republic 1 Belgium 1 Belgium 1 Belgium 1

Belgium 1 Cyprus 1 Denmark 1 Germany 1 Denmark 1
Croatia 1 Bulgaria 2 Estonia 1 France 1 Ireland 1

Cyprus 1 Estonia 2 Ireland 1 The
Netherlands 1 France 1

Denmark 1 Poland 2 Croatia 1 Austria 1 The
Netherlands 1

Estonia 1 Greece 3 Cyprus 1 Finland 1 Austria 1
Finland 1 Croatia 3 Latvia 1 Sweden 1 Finland 1

Hungary 1 Latvia 3 Lithuania 1 The UK 1 Sweden 1
Ireland 1 Lithuania 3 Luxembourg 1 Bulgaria 2 Germany 2
Latvia 1 Romania 3 Hungary 1 Greece 2 The UK 2

Lithuania 1 Spain 4 Malta 1 Croatia 2 Bulgaria 3

Luxembourg 1 Hungary 4 Slovenia 1 Latvia 2 The Czech
Republic 3

Malta 1 Portugal 4 Bulgaria 2 Lithuania 2 Estonia 3

Slovakia 1 Slovenia 4 The Czech
Republic 2 Hungary 2 Greece 3

Slovenia 1 Slovakia 4 Spain 2 Poland 2 Spain 3
Sweden 1 Belgium 5 Italy 2 Romania 2 Croatia 3

The Czech
Republic 2 Denmark 5 Romania 2 Slovakia 2 Italy 3

Italy 2 Germany 5 Germany 3 The Czech
Republic 3 Cyprus 3

The
Netherlands 2 Ireland 5 The UK 3 Estonia 3 Latvia 3

Spain 2 France 5 Greece 4 Spain 3 Lithuania 3
Poland 3 Italy 5 France 4 Italy 3 Hungary 3

Bulgaria 4 Luxembourg 5 The
Netherlands 4 Cyprus 3 Malta 3

France 4 Malta 5 Austria 4 Malta 3 Portugal 3

Greece 4 The
Netherlands 5 Portugal 4 Portugal 3 Romania 3

Portugal 4 Austria 5 Slovakia 4 Slovenia 3 Slovenia 3
Romania 4 Finland 5 Finland 4 Luxembourg 4 Slovakia 3
The UK 4 Sweden 5 Sweden 4 Denmark 5 Luxembourg 4

Germany 5 The UK 5 Poland 5 Ireland 5 Poland 5

Clusters resulted from standardized data

Stage 1 Stage 2 Stage 3 Stage 4 Integrative

Country Cluster Country Cluster Country Cluster Country Cluster Country Cluster

Spain 1 Spain 1 Spain 1 Cyprus 1 Cyprus 1
France 1 France 1 France 1 Lithuania 1 Lithuania 1
Italy 1 Italy 1 Italy 1 Portugal 1 Portugal 1

The UK 1 The UK 1 The UK 1 Bulgaria 2 Bulgaria 2
Bulgaria 2 Bulgaria 2 Bulgaria 2 Greece 2 Greece 2

Estonia 2 Estonia 2 Estonia 2 The Czech
Republic 3 The Czech

Republic 3

Malta 2 Malta 2 Malta 2 Croatia 3 Croatia 3
The Czech
Republic 3 The Czech

Republic 3 The Czech
Republic 3 Latvia 3 Latvia 3
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Table A1. Cont.

Clusters resulted from standardized data

Stage 1 Stage 2 Stage 3 Stage 4 Integrative

Country Cluster Country Cluster Country Cluster Country Cluster Country Cluster

Poland 3 Poland 3 Poland 3 Poland 3 Poland 3
Belgium 4 Belgium 4 Belgium 4 Slovenia 3 Slovenia 3
Denmark 4 Denmark 4 Denmark 4 Slovakia 3 Slovakia 3
Ireland 4 Ireland 4 Ireland 4 Luxembourg 4 Luxembourg 4
Greece 4 Greece 4 Greece 4 Belgium 5 Belgium 5
Croatia 4 Croatia 4 Croatia 4 Denmark 5 Denmark 5
Cyprus 4 Cyprus 4 Cyprus 4 Germany 5 Germany 5
Latvia 4 Latvia 4 Latvia 4 Estonia 5 Estonia 5

Lithuania 4 Lithuania 4 Lithuania 4 Ireland 5 Ireland 5
Luxembourg 4 Luxembourg 4 Luxembourg 4 Spain 5 Spain 5

Hungary 4 Hungary 4 Hungary 4 France 5 France 5
The

Netherlands 4 The
Netherlands 4 The

Netherlands 4 Italy 5 Italy 5

Austria 4 Austria 4 Austria 4 Hungary 5 Hungary 5
Portugal 4 Portugal 4 Portugal 4 Malta 5 Malta 5

Romania 4 Romania 4 Romania 4 The
Netherlands 5 The

Netherlands 5

Slovenia 4 Slovenia 4 Slovenia 4 Austria 5 Austria 5
Slovakia 4 Slovakia 4 Slovakia 4 Romania 5 Romania 5
Finland 4 Finland 4 Finland 4 Finland 5 Finland 5
Sweden 4 Sweden 4 Sweden 4 Sweden 5 Sweden 5

Germany 5 Germany 5 Germany 5 The UK 5 The UK 5

Appendix B

Table A2. Data used for calculations of the efficiency in energy production for CEH and CEO [84,85].

Extracted Coal (mil.tons) and Generated Energy (TWh) for CEO and CEH
CEO 2014 2015 2016 2017 2018 2019

Extracted Coal (mil.tons) 21.5 21.028 19.439
Generated energy (TWh) 13.3 14.92 14.14 12.4

CEH 2014 2015 2016 2017 2018 2019

Extracted Coal (mil.tons) 1.122 0.824 0.737 0.574 0.529
Generated Energy (TWh) 2.711 1.842 1.423 1.199 0.960

Generated Energy (in Mwh and Gj) by CEO and CEH
Generated energy (MWh) 2014 2015 2016 2017 2018 2019

CEO 13,300,000 0 0 14,920,000 14,140,000 12,400,000
CEH 2,710,552 1,842,437 1,422,566 1,199,156 960,020 0

Generated Energy (Gj) 2014 2015 2016 2017 2018 2019

CEO 47,880,000 0 0 53,712,000 50,904,000 44,640,000
CEH 9,757,987 6,632,773.2 5,121,238 4,316,962 3,456,072 0
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