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Abstract: Pressure is a physical quantity that is indispensable in the study of transport phenomena.
Previous studies put forward a pressure constitutive law and constructed a partial differential
equation on pressure to study the convection with or without heat and mass transfer. In this paper, a
numerical algorithm was proposed to solve this pressure equation by coupling with the Navier-Stokes
equation. To match the pressure equation, a method of dealing with pressure boundary condition
was presented by combining the tangential and normal direction pressure relations, which should be
updated dynamically in the iteration process. Then, a solution to this pressure equation was obtained
to bridge the gap between the mathematical model and a practical numerical algorithm. Through
numerical verification in a circular tube, it is found that the proposed boundary conditions are
applicable. The results demonstrate that the present pressure equation well describes the transport
characteristics of the fluid.

Keywords: pressure equation; pressure boundary condition; pressure-velocity coupling method;
algorithm; circular tube

1. Introduction

Transport phenomena plays an important role in industrial processes and our daily
life, including absorption, drying, heating, cooling, fluid flow, heat and mass transfer,
etc., [1]. Researchers around the world have investigated a lot for revealing the mechanism
of momentum, heat, and mass transports [2–4]. In practical convective heat and mass
transfer applications, it is an important research project to enhance convective heat and
mass transfer with low power consumption, and pressure transport is of great significance.

As we know that, in convective heat and mass transfer, there exist four physical quan-
tities, i.e., temperature, velocity, concentration and pressure. Although much attention had
been paid to the conservation equations in terms of temperature, velocity and concentra-
tion, to authors’ knowledge, the pressure equation was seldom considered by researchers.
The transport mechanism of pressure in the convection has not been completely unveiled
yet. Although the pressure Poisson equation has been derived from the Navier-Stokes
(N-S) equation [5–9], the physical meaning of this equation is not clear. The mysterious
pressure puzzles scientists and engineers, and even hinders the theory development of
the convection with or without heat and mass transfer. That is to say, it is urgent to elabo-
rate the constitutive relation of pressure and develop a pressure equation with boundary
conditions so as to mature transport law of pressure.

On the other hand, the numerical simulation has become an important method for
scientific research and engineering application. Avila et al. [10] studied the onset of turbu-
lence in the pipe flow with direct numerical simulation. Barkley et al. [11] subsequently
revealed the rise of fully turbulent flow with direct numerical simulation and experiment.
Shishkina et al. [12] reported the Prandtl number dependencies of the laminar convective
heat transport based on direct numerical simulation. Computational fluid dynamics is
also widely applied in convective heat transfer enhancement [13–17]. In the past few
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decades, due to the lack of available pressure partial differential equation, continuity
equation had been introduced to guarantee the coupling of pressure and velocity, in order
to obtain the numerical solution of incompressible fluid flow. Thus, the SIMPLE series
algorithms were proposed and had been widely used in simulating convective heat and
mass transfer [18–21]. For the purpose of improving the robustness and economy of these
algorithms, many researchers made constant efforts to improve the coupling of pressure
and velocity [22–25], and proposed some revised methods [26–28].

However, the inherent difficulty of pressure and velocity coupling still exists and
bothers researchers. In fact, the continuity equation, as a conditional equation, is very
different from the momentum and energy conservation equations, which is a prerequisite
to be satisfied in the fluid flow with or without heat and mass transfer. In form, it only
involves velocity and lacks a diffusion term. In numerical simulation, it cannot be discretely
transformed as a linear algebraic equation. Thus, the governing equations of the convection
are not mathematically closed due to the lack of pressure partial differential equation and
corresponding boundary conditions. Consequently, the coupling of pressure and velocity is
indirect, which may cause the algorithms low convergence rate and deteriorated robustness.
Some researchers had been devoted to the pressure Poisson equation to build numerical
algorithms for incompressible fluid [5–9]. However, due to the complicated expression in
this equation, it is not easy to find a solution. Besides, the velocity divergence may not
always be zero in the numerical calculation. Thus, the solution to the pressure Poisson
equation has not been applicable as a general algorithm yet. This motivates us to develop
a partial differential equation in terms of pressure, and explore a numerical algorithm by
directly coupling pressure and velocity.

In the field of convective heat transfer enhancement, Guo et al. [29,30] proposed
field synergy principle to evaluate heat transfer enhancement by introducing a synergy
angle between velocity vector and temperature gradient. Subsequently, Tao et al. [31–33]
performed many numerical researches on the field synergy principle. Furthermore, to
reduce power consumption of the fluid, Liu et al. [34–37] proposed the multi-field synergy
principle and optimized convective heat transfer with variation method in the tube. In
addition, Chen et al. [38,39] also optimized convective heat transfer with variation method.
Recently, on the basis of previous theoretic works, Liu et al. [40] proposed a pressure equa-
tion that can reflect transport characteristics of the pressure. Thus, the governing equations
involving velocity, pressure, temperature and concentration seems to be completed. In
Ref. [40], however, the pressure boundary was given as constant values obtained from the
SIMPLE algorithm.

The pressure equation proposed in Ref. [40] is meaningful in physics, which has
a potential for developing a useful algorithm. However, there is a gap between the
mathematical equation and an applicable algorithm. In this study, the most important
issue is how to deal with the boundary conditions for the pressure equation. Only if
the pressure boundary conditions are imposed properly, the solution to this equation
could be obtained and a general algorithm could be completed for computational fluid
dynamics. Therefore, the present work is aimed to solve the pressure equation with the
proper boundary conditions that are based on the tangential and normal direction relations
for pressure on the tube wall.

2. Pressure Equations
2.1. Present Pressure Equation

As it is stated by Liu et al. [40], the constitutive law of pressure is defined as

→
ω = −ζ∇p, (1)

where
→
ω represents the magnitude and direction of power flux, reflecting the ability of the

fluid to do work, W/m2. ζ is power factor or power diffusion coefficient of the fluid, m2/s.
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As a physical property parameter of the fluid, it does not vary with the geometry and flow
conditions, but may vary with the temperature of the fluid.

The power flux of the fluid can be also written as

→
ω = −ζ

∂p
∂x

→
i − ζ

∂p
∂y

→
j − ζ

∂p
∂z

→
k . (2)

Due to viscous dissipation and kinetic energy loss in the fluid flow, the ability to do
work changes correspondingly. The variation of power flux can be obtained as

∇ ·→ω =

(
∂

∂x

→
i +

∂

∂y

→
j +

∂

∂z

→
k
)
·
(
−ζ

∂p
∂x

→
i − ζ

∂p
∂y

→
j − ζ

∂p
∂z

→
k
)

= −ζ∇2 p. (3)

On the other hand, the viscous dissipation and kinetic energy variation of the fluid
can be expressed as

U · (−∇p) = U ·
(

ρU · ∇U− µ∇2U
)

, (4)

where U · (−∇p) denotes mechanical energy provided by the pump or fan.
Thus, according to the fact that the supplied mechanical energy is equivalent to

the energy consumed by the fluid, the pressure equation reflecting mechanical energy
conservation is obtained as

U · ∇p = ζ∇2 p, (5)

or
ρU · ∇p = ξ∇2 p, (6)

where ξ is power factor not including fluid density, kg/(m·s).

2.2. Pressure Poisson Equation

As we know, the pressure Poisson equation was derived from the momentum equa-
tion [6,9]. Without external volume force, the steady-state momentum equation can be
written as

ρU · ∇U = −∇p + µ∇2U. (7)

Differentiating the above equation yields

∇ · (ρU · ∇U) = −∇2 p + µ∇2(∇ ·U). (8)

Substituting the continuity equation of incompressible fluid ∇ ·U = 0 into Equation
(8), the pressure Poisson equation can be simplified as

∇2 p = −∇ · (ρU · ∇U). (9)

When comparing Equations (6) and (9), although both of them can indicate the
transport characteristic of pressure, the present pressure equation is different from the
pressure Poisson equation. For example, the physical meaning of Equation (6) is clear,
which describes the mechanical energy conservation of the fluid. In addition, Equation
(6) is relatively easy to be solved to adapt a numerical algorithm than pressure Poisson
equation in which the source term is complicated.

2.3. Meaning of Present Pressure Equation

In the review of previous work, it can be noted that the transport characteristics of
pressure was revealed with the constitutive law of pressure, and the present pressure
equation reflects mechanical energy conservation of the fluid. The governing equations
of the convection are closed and the coupling of pressure and velocity is direct. That is to
say, both the N-S and present pressure equations can be discretized as algebraic equations
in terms of pressure and velocity to find numerical solutions in the flow domain. Thus,
the theory of convection with or without heat and mass transfer was further completed.
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Besides, due to the fact that the present pressure equation is quite similar to the energy and
diffusive mass conservation equations in form, it is much easier to be adapted to numerical
calculation than the pressure Poisson equation. Therefore, the present pressure equation
may play an important role in computational fluid dynamics. Now, the key point is how to
determine the pressure boundary conditions on the tube wall.

3. Pressure Boundary Conditions
3.1. Conventional Boundary Conditions

In order to obtain a solution for a given physical problem, both the differential equation
and the corresponding boundary conditions are necessary. Besides, the initial condition is
also needed for the iterative calculations. The conventional boundary conditions generally
include three categories. The first one is a specified boundary value called Dirichlet bound-
ary condition. The second one is a specified boundary flux called Neumann boundary
condition. The third one is a weighted combination of the first and second types, which
specifies a linear combination of boundary function value and its derivative value.

As a matter of fact, pressure field is dependent on velocity field, which also affects
velocity field in return. Obviously, the pressure value on the wall is strongly associated
with the pressure and velocity of nearby fluid. When velocity and pressure are changed,
the boundary pressure will be updated dynamically. Pressure will decrease as the power is
consumed, which implies that the pressure value on the wall is also related to the specified
pressure at the inlet or outlet of tube. Besides, the pressure distribution in a specific
direction may be linear or nonlinear. These characteristics result in difficulty in imposing
appropriate pressure boundary conditions on the tube wall. As the conventional boundary
conditions are not suitable for the pressure equation, so that a special boundary treatment
should be introduced in this work, which is a tangential and normal direction combined
method to reflect both dynamic and nonlinear boundary characteristics of pressure on the
tube wall.

3.2. Present Boundary Conditions

The present boundary condition is a combination of tangential and normal pressure
relations. For arbitrarily given boundary and domain in Figure 1, pressure relations at the
boundary can be depicted in the tangential direction

→
n and normal direction

→
τ .
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Figure 1. Schematic diagram of fluid domain and boundary.

For the convenience of elaboration in the following text, the wall boundary is taken
as an example. The x-coordinate is selected to represent the tangential direction, and the
y-coordinate to represent the normal direction. The normal direction extrapolation relation
is similar to Neumann boundary treatment. The pressure value on the wall boundary is
extrapolated from the fluid pressure near the wall. The momentum equation in the normal
direction can be written as

(ρU · ∇U) ·→n =
(
−∇p + µ∇2U

)
·→n . (10)

This equation can be simplified in the y-coordinate as

ρU · ∇v = −∂p
∂y

+ µ∇2v, (11)
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and further written as

∂p
∂y

= µ
∂2v
∂x2 − ρu

∂v
∂x

+ µ
∂2v
∂y2 − ρv

∂v
∂y

. (12)

Integrating Equation (12) along the normal direction yields

y+∆y∫
y

∂p
∂y

dy =

y+∆y∫
y

[
µ

∂2v
∂x2 − ρu

∂v
∂x

+ µ
∂2v
∂y2 − ρv

∂v
∂y

]
dy. (13)

When integrating along the normal direction, the tangential velocity u and the tangen-
tial gradient of normal velocity ∂v/∂x can be considered as constants. Thus, Equation (13)
can be expressed as

py+∆y − py =

y+∆y∫
y

µ
∂2v
∂y2 dy −

y+∆y∫
y

ρv
∂v
∂y

dy +

(
µ

∂2v
∂x2 − ρu

∂v
∂x

)
· ∆y. (14)

With applying integration by parts to the second term on the right-hand side of
Equation (14), it can be written as

y+∆y∫
y

ρv
∂v
∂y

dy = ρv v|y+∆y
y −

y+∆y∫
y

ρv
∂v
∂y

dy, (15)

or
y+∆y∫

y

ρv
∂v
∂y

dy =
1
2

ρ v2
∣∣∣y+∆y

y
. (16)

Substituting Equation (16) into Equation (14), the extrapolation relation of pressure in
the normal direction is obtained as

py+∆y − py = µ
∂v
∂y

∣∣∣∣y+∆y

y
− 1

2
ρ v2

∣∣∣y+∆y

y
+

(
µ

∂2v
∂x2 − ρu

∂v
∂x

)
· ∆y. (17)

As expressed in Equation (17), thus, the boundary pressure on the wall can be extrap-
olated by the fluid pressure near the wall. The fluid pressure near the wall can be obtained
from the tangential pressure recurrence in the following.

The recurrence relation of tangential direction pressure is different from the Dirichlet
boundary treatment. The pressure along the tangential direction is fluid pressure near
the tube wall rather than boundary pressure, which reflects power consumption of the
fluid. Similar to the derivation in the normal direction, the recurrence relation of pressure
is obtained along the tangential direction as

px+∆x − px = µ
∂u
∂x

∣∣∣∣x+∆x

x
− 1

2
ρ u2

∣∣∣x+∆x

x
+

(
µ

∂2u
∂y2 − ρv

∂u
∂y

)
· ∆x. (18)

Referring Patankar’s handling for the N-S equation [18], Equations (17) and (18) can
be discretized in the normal direction(

py+∆y − py
)

Ay = ∑ anb,nvnb − an,nv, (19)

and in the tangential direction

(px+∆x − px)Ax = ∑ anb,τunb − an,τu. (20)
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In above equations, an,τ = ∑ anb,τ and an,n = ∑ anb,n. Ax and Ay represent the area
of finite control volume in the x and y directions. n represents the present node, and nb
is the serial number of neighboring nodes. Coefficient a is dependent on discretization
scheme of diffusion-convection term. Thus, pressure relations in the normal and tangential
directions are both obtained in the control volume. Besides, it is worth noting that the
continuity equation should be satisfied in the solution of pressure and velocity.

3.3. Pressure Boundary Treatment

The pressure boundary condition should be considered both in the tangential and
normal directions. The tangential recurrence is used to transfer pressure values from the
inlet into the interior domain, and the normal extrapolation is used to obtain wall boundary
pressure values from neighboring fluid. More specifically, if a constant reference pressure
value is given in the domain, the pressure distribution near the solid wall can be evaluated
by the tangential recurrence method. Then, the boundary pressure values can be obtained
by the normal direction extrapolation method based on the obtained pressure distribution
near the solid wall. Thus, the boundary pressure values can be taken as the boundary
condition in solving the pressure equation. Because the pressure boundary condition was
updated dynamically in the iteration process, this can be regarded as a dynamic boundary
problem. When the calculation is converged, the values of pressure and velocity will satisfy
the continuity, momentum, and present pressure equations both in the domain and at
the boundaries. Therefore, this combined method of treating the tangential and normal
direction pressure relations along the boundary is rational and reliable.

4. Solutions to Pressure and Velocity Equations
4.1. Discretization Equations

The momentum and present pressure equations can be written in a form of general
differential equation [18,41]

∂(ρΦ)

∂t
+

∂(ρuΦ)

∂x
+

∂(ρvΦ)

∂y
=

∂

∂x

(
ΓΦ

∂Φ
∂x

)
+

∂

∂y

(
ΓΦ

∂Φ
∂y

)
+ SΦ, (21)

where variable Φ could be pressure or velocity.
By applying the finite volume method to discretize the above equation, referring to

Ref. [41], the algebraic approximation can be expressed as

aPΦP = aEΦE + aWΦW + aNΦN + aSΦS + b, (22)

where aP, aE, aW , aN , and aS are dependent on the discretization scheme, b is up to the
source term and unsteady term [41].

By solving these algebraic equations with proper boundary conditions, the numerical
solution of pressure and velocity can be obtained.

4.2. Pressure-Velocity Coupling Method

The algorithm involving both the N-S and present pressure equations is named as the
pressure-velocity coupling method (PVCM for short). In this algorithm, the momentum and
pressure equations are solved sequentially, in which continuity equation should be satisfied
till the convergence is achieved. The detail procedure is given as shown in Figure 2.

Firstly, the initial pressure and velocity fields are estimated for the need of iteration.
Secondly, the velocity and pressure are updated after the following steps: Step 1, the
boundary conditions of combining the tangential and normal pressure relations are up-
dated dynamically based on the previous pressure and velocity; Step 2, the velocity field is
found by solving the N-S equation with velocity boundary conditions; Step 3, the pressure
correction equation is solved to correct the velocity through guarantying the mass conser-
vation; Step 4, the pressure field is found by solving the present pressure equation with the
updated pressure boundary conditions. Then, if the calculation is converged, the present
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pressure and velocity fields are the final solution. Otherwise, the next iteration should
start with the updated pressure and velocity till the calculation is converged. Compared to
the solution of the pressure Poisson equation, obviously, the procedure mentioned above
is relatively easy, which may show an application potential of the PVCM algorithm in
computational fluid dynamics.
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5. Results and Discussions

In order to verify the present pressure equation and pressure boundary treatment, a
circular tube was selected as the physical model in the computation, and the comparison
was carried out between the present PVCM and SIMPLE algorithms. As shown in Figure 3,
the tube length is 1000 mm and the diameter is 20 mm. A two-dimensional computational
domain is applied in the axisymmetric circular tube. The inlet velocity is uniform and
the Reynolds number is 500. Thus, the velocity profile at the outlet of tube will be fully
developed. The no slip velocity boundary condition is applied on the wall, and the normal
velocity gradient is zero along the axis. As for the treatment of pressure boundary, it is
illustrated in Figure 4 in detail. The reference pressure is zero and uniformly imposed
on the outlet boundary. Firstly, the fluid pressure near the tube wall is updated with the
tangential recurrence method along the tangential direction from the outlet to the inlet,
and the fluid pressure near the inlet is updated from the tube wall to the axis. Then, the
boundary pressure on the tube wall is updated with the normal extrapolation method.
Finally, the inlet pressure is updated with linear extrapolation. By doing so, the pressure
boundaries can be updated dynamically. The computational codes for pressure boundary
treatment are listed in Appendix A.

Energies 2021, 14, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 3. Schematic diagram of physical model for a tube flow. 

 
Figure 4. Schematic diagram of pressure boundary treatment in circular tube. 

The calculation program used in this work is based on the FORTRAN language. A 
grid system of 50 × 1000 is chosen after checking the grid independence. The grids near 
the tube wall are much denser than that in the core region of tube flow. The working fluid 
is selected as water, and the power factor ζ  is 0.15 m2/s that is obtained in Ref. [40]. In 
addition, the power law scheme is selected to handle the diffusion-convection problem, 
and the discretized linear algebraic equations are solved by the alternating direction im-
plicit method with block correction technique [41]. When relative residuals are less than 
10−4, or relative residual variations are less than 1% after 1000 iterations, the numerical 
computation is converged. The results predicted by the SIMPLE algorithm are checked by 
the ANSYS FLUENT (Version 16.0, PA, USA), which also verifies the codes of present 
PVCM algorithm. 

The velocity distributions depicted in Figure 5a are located along the central line of 
circular tube in the x direction. Two curves calculated by the SIMPLE and present PVCM 
algorithms are identical. The fluid velocity along the central line is equal to the given mean 
velocity 0.025 m/s at the inlet and gradually increases to 0.05 m/s when the flow is devel-
oped from the uniform velocity to the fully developed flow. The calculation results show 
that the fully developed velocity is two times of the inlet mean velocity, which is con-
sistent with the theoretical predicted value, and thereby validating the present theoretical 
model. As for the boundary pressure on the tube wall shown in Figure 5b, it can be seen 
that it decreases quickly in the entrance region, which implies that the power is rapidly 
consumed by the fluid in this region. In the whole domain, the calculation results pre-
dicted by the present pressure equation are quite coincident with that predicted by the 
SIMPLE algorithm, which shows that the present pressure equation is applicable in de-
scribing the fluid flow with power consumption in the tube. 

The velocity and pressure profiles in the cross section of tube perpendicular to the 
central axis are illustrated in Figures 6 and 7. The digital numbers in the legend are dis-
tances from the inlet to those cross sections. 

In the entrance region, the velocity and pressure vary greatly due to the interaction 
between uniform inlet velocity and no slip boundary velocity on the tube wall. In Figure 
6, the comparisons of velocity and pressure are made, which locates at several columns of 
grids in the entrance region of the tube. For the velocity and pressure profiles in Figure 6, 
the results of the PVCM algorithm match well with that of the SIMPLE algorithm. As es-
pecially shown in Figure 6b, although the pressure profiles in the cross section of entrance 
region are nonlinear, the pressure distributions calculated by the present pressure equa-
tion are still in good agreement with the SIMPLE algorithm. 

Figure 3. Schematic diagram of physical model for a tube flow.



Energies 2021, 14, 1507 8 of 15

Energies 2021, 14, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 3. Schematic diagram of physical model for a tube flow. 

 
Figure 4. Schematic diagram of pressure boundary treatment in circular tube. 

The calculation program used in this work is based on the FORTRAN language. A 
grid system of 50 × 1000 is chosen after checking the grid independence. The grids near 
the tube wall are much denser than that in the core region of tube flow. The working fluid 
is selected as water, and the power factor ζ  is 0.15 m2/s that is obtained in Ref. [40]. In 
addition, the power law scheme is selected to handle the diffusion-convection problem, 
and the discretized linear algebraic equations are solved by the alternating direction im-
plicit method with block correction technique [41]. When relative residuals are less than 
10−4, or relative residual variations are less than 1% after 1000 iterations, the numerical 
computation is converged. The results predicted by the SIMPLE algorithm are checked by 
the ANSYS FLUENT (Version 16.0, PA, USA), which also verifies the codes of present 
PVCM algorithm. 

The velocity distributions depicted in Figure 5a are located along the central line of 
circular tube in the x direction. Two curves calculated by the SIMPLE and present PVCM 
algorithms are identical. The fluid velocity along the central line is equal to the given mean 
velocity 0.025 m/s at the inlet and gradually increases to 0.05 m/s when the flow is devel-
oped from the uniform velocity to the fully developed flow. The calculation results show 
that the fully developed velocity is two times of the inlet mean velocity, which is con-
sistent with the theoretical predicted value, and thereby validating the present theoretical 
model. As for the boundary pressure on the tube wall shown in Figure 5b, it can be seen 
that it decreases quickly in the entrance region, which implies that the power is rapidly 
consumed by the fluid in this region. In the whole domain, the calculation results pre-
dicted by the present pressure equation are quite coincident with that predicted by the 
SIMPLE algorithm, which shows that the present pressure equation is applicable in de-
scribing the fluid flow with power consumption in the tube. 

The velocity and pressure profiles in the cross section of tube perpendicular to the 
central axis are illustrated in Figures 6 and 7. The digital numbers in the legend are dis-
tances from the inlet to those cross sections. 

In the entrance region, the velocity and pressure vary greatly due to the interaction 
between uniform inlet velocity and no slip boundary velocity on the tube wall. In Figure 
6, the comparisons of velocity and pressure are made, which locates at several columns of 
grids in the entrance region of the tube. For the velocity and pressure profiles in Figure 6, 
the results of the PVCM algorithm match well with that of the SIMPLE algorithm. As es-
pecially shown in Figure 6b, although the pressure profiles in the cross section of entrance 
region are nonlinear, the pressure distributions calculated by the present pressure equa-
tion are still in good agreement with the SIMPLE algorithm. 
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The calculation program used in this work is based on the FORTRAN language. A
grid system of 50 × 1000 is chosen after checking the grid independence. The grids near
the tube wall are much denser than that in the core region of tube flow. The working fluid
is selected as water, and the power factor ζ is 0.15 m2/s that is obtained in Ref. [40]. In
addition, the power law scheme is selected to handle the diffusion-convection problem, and
the discretized linear algebraic equations are solved by the alternating direction implicit
method with block correction technique [41]. When relative residuals are less than 10−4, or
relative residual variations are less than 1% after 1000 iterations, the numerical computation
is converged. The results predicted by the SIMPLE algorithm are checked by the ANSYS
FLUENT (Version 16.0, PA, USA), which also verifies the codes of present PVCM algorithm.

The velocity distributions depicted in Figure 5a are located along the central line
of circular tube in the x direction. Two curves calculated by the SIMPLE and present
PVCM algorithms are identical. The fluid velocity along the central line is equal to the
given mean velocity 0.025 m/s at the inlet and gradually increases to 0.05 m/s when the
flow is developed from the uniform velocity to the fully developed flow. The calculation
results show that the fully developed velocity is two times of the inlet mean velocity,
which is consistent with the theoretical predicted value, and thereby validating the present
theoretical model. As for the boundary pressure on the tube wall shown in Figure 5b, it
can be seen that it decreases quickly in the entrance region, which implies that the power is
rapidly consumed by the fluid in this region. In the whole domain, the calculation results
predicted by the present pressure equation are quite coincident with that predicted by
the SIMPLE algorithm, which shows that the present pressure equation is applicable in
describing the fluid flow with power consumption in the tube.

The velocity and pressure profiles in the cross section of tube perpendicular to the
central axis are illustrated in Figures 6 and 7. The digital numbers in the legend are
distances from the inlet to those cross sections.

In the entrance region, the velocity and pressure vary greatly due to the interaction
between uniform inlet velocity and no slip boundary velocity on the tube wall. In Figure 6,
the comparisons of velocity and pressure are made, which locates at several columns of
grids in the entrance region of the tube. For the velocity and pressure profiles in Figure 6,
the results of the PVCM algorithm match well with that of the SIMPLE algorithm. As
especially shown in Figure 6b, although the pressure profiles in the cross section of entrance
region are nonlinear, the pressure distributions calculated by the present pressure equation
are still in good agreement with the SIMPLE algorithm.

Figure 7 shows the velocity and pressure profiles at several cross section of tube. It
indicates parabolic velocity distributions in the fully developed region. The results from
the PVCM algorithm agree well with that of the SIMPLE algorithm both in the intermediate
and fully developed regions. It verifies that the physical mechanism described by the
present pressure equation is reasonable, so that this equation can be applied to solve
pressure field in computational fluid dynamics.
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The comparison of velocity magnitude contours in the tube-axis plane, calculated by
above two algorithms, is made in Figure 8. The velocity magnitude is defined as

V = |U| =
√

u2 + v2. (23)

Energies 2021, 14, x FOR PEER REVIEW 11 of 15 
 

 

The comparison of velocity magnitude contours in the tube-axis plane, calculated by 
above two algorithms, is made in Figure 8. The velocity magnitude is defined as 

2 2V u v= = +U . (23)

In Figure 8, the black dash lines represent results from the SIMPLE algorithm, and 
the red solid lines represent that from the PVCM algorithm. The coordinate x represents 
the distance in the axis direction, and the coordinate y represents the distance in the radial 
direction. From this figure it can be seen that the dash and solid lines entirely overlap, 
which indicates that the velocity field predicted by the PVCM algorithm is the same as 
that by the SIMPLE algorithm. 

 
Figure 8. The comparison of velocity magnitude contours in the tube-axis plane, m/s. 

From the above analysis, it is noticed that the results calculated by the present algo-
rithm are reliable. Therefore, the present pressure equation and its boundary conditions 
can be used to simulate the convection in the tube flow. In addition, the present algorithm 
provides a possible way of coupling the N-S equation and pressure equation, which 
bridges the gap between the mathematical model and a practical algorithm by solving N-
S equation and pressure equation. However, the processing time of the SIMPLE algorithm 
is less, because the pressure equation under combined boundary conditions should be 
solved in the present algorithm. As for the convergence, both the SIMPLE algorithm and 
present algorithm are converged after 3000 iterations. 

6. Conclusions 
In summary, the following conclusions are made for the present study. 

(1) The transport mechanism of pressure is revealed by introducing the constitutive law 
and conservation equation for pressure, which have significant meaning in describ-
ing the convection of the fluid. A pressure-velocity coupling method (PVCM for 
short) is then proposed to solve pressure and velocity fields in the tube flow by di-
rectly coupling the present pressure equation with the N-S equation. As the conven-
tional boundary conditions are not suitable for the pressure equation, a method of 
boundary treatment, which is combined by the tangential and normal direction pres-
sure relations, was developed to deal with this problem. 

(2) In order to validate the present pressure equation with its dynamic boundary condi-
tions investigated in this work, the numerical comparison was made between the 
PVCM and SIMPLE algorithms. The computational results show that the pressure 

Figure 8. The comparison of velocity magnitude contours in the tube-axis plane, m/s.

In Figure 8, the black dash lines represent results from the SIMPLE algorithm, and
the red solid lines represent that from the PVCM algorithm. The coordinate x represents
the distance in the axis direction, and the coordinate y represents the distance in the radial
direction. From this figure it can be seen that the dash and solid lines entirely overlap,
which indicates that the velocity field predicted by the PVCM algorithm is the same as that
by the SIMPLE algorithm.

From the above analysis, it is noticed that the results calculated by the present algo-
rithm are reliable. Therefore, the present pressure equation and its boundary conditions
can be used to simulate the convection in the tube flow. In addition, the present algorithm
provides a possible way of coupling the N-S equation and pressure equation, which bridges
the gap between the mathematical model and a practical algorithm by solving N-S equation
and pressure equation. However, the processing time of the SIMPLE algorithm is less,
because the pressure equation under combined boundary conditions should be solved in
the present algorithm. As for the convergence, both the SIMPLE algorithm and present
algorithm are converged after 3000 iterations.

6. Conclusions

In summary, the following conclusions are made for the present study.

(1) The transport mechanism of pressure is revealed by introducing the constitutive
law and conservation equation for pressure, which have significant meaning in
describing the convection of the fluid. A pressure-velocity coupling method (PVCM
for short) is then proposed to solve pressure and velocity fields in the tube flow
by directly coupling the present pressure equation with the N-S equation. As the
conventional boundary conditions are not suitable for the pressure equation, a method
of boundary treatment, which is combined by the tangential and normal direction
pressure relations, was developed to deal with this problem.

(2) In order to validate the present pressure equation with its dynamic boundary con-
ditions investigated in this work, the numerical comparison was made between the
PVCM and SIMPLE algorithms. The computational results show that the pressure
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and velocity solved by the two algorithms are closely consistent with each other along
the central line of the circular tube, on the cross section in the entrance and fully
developed regions, as well as at the tube-axis plane. The excellent agreement between
them verifies that the constitutive law and conservation equation on pressure can be
applied to solve pressure and velocity in the fluid flow.
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Appendix A. Computational Codes for Pressure Boundary Treatment

Part 1
DO I = 1,L1
DO J = 1,M1
P(I,J) = F(I,J,9)
END DO

Part 2
/*Grid near the outlet boundary*/

DO J = 2,M2
I = L2
DU(I,J) = DU(I,J)*AP(I,J)
CON(I,J) = CON(I,J) − DU(I,J)*(P(I − 1,J) − P(I,J))
DU(I,J) = DU(I,J)*XDIF(I)/XCVS(I)
CON(I,J) = CON(I,J) + DU(I,J)*(P(I − 1,J) − P(L1,J))
DU(I,J) = DU(I,J)/AP(I,J)
END DO

/* Update the pressure along the tangential direction from (L1,M3) to (2,M3)*/
I = L2
J = M3
DU(I,J) = DU(I,J)*AP(I,J)
CON(I,J) = CON(I,J) − DU(I,J)*(P(I − 1,J) − P(L1,J))
F(I − 1,J,9) = F(L1,J,9) + (AP(I,J)*U(I,J) − AIM(I,J)*U(I − 1,J) − AIP(I,J)*U(I + 1,J) −

AJM(I,J)* U(I,J − 1) − AJP(I,J)*U(I,J + 1) − CON(I,J))/DU(I,J)
CON(I,J) = CON(I,J) + DU(I,J)*(P(I − 1,J) − P(L1,J))
DU(I,J) = DU(I,J)/AP(I,J)
DO II = 4,L2
I = L1 − II + 2
J = M3
DU(I,J) = DU(I,J)*AP(I,J)
CON(I,J) = CON(I,J) − DU(I,J)*(P(I − 1,J) − P(I,J))
F(I − 1,J,9) = F(I,J,9) + (AP(I,J)*U(I,J) − AIM(I,J)*U(I − 1,J) − AIP(I,J)*U(I + 1,J) −

AJM(I,J)*U(I,J − 1) − AJP(I,J)*U(I,J + 1) − CON(I,J))/DU(I,J)
CON(I,J) = CON(I,J) + DU(I,J)*(P(I − 1,J) − P(I,J))
DU(I,J) = DU(I,J)/AP(I,J)
END DO
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Part 3
/* Update the pressure along the tangential direction from (3,M3) to (3,2)*/

DO JJ = 4,M2
J = M1 − JJ + 2
DO I = 2,3
DV(I,J) = DV(I,J)*AP(I,J)
CON(I,J) = CON(I,J) − DV(I,J)*(P(I,J − 1) − P(I,J))
F(I,J − 1,9) = F(I,J,9) + (AP(I,J)*V(I,J) − AIM(I,J)*V(I − 1,J) − AIP(I,J)*V(I + 1,J) −

AJM(I,J)*V(I,J − 1) − AJP(I,J)*V(I,J + 1) − CON(I,J))/DV(I,J)
CON(I,J) = CON(I,J) + DV(I,J)*(P(I,J − 1) − P(I,J))
DV(I,J) = DV(I,J)/AP(I,J)
END DO
END DO
F(L2,3,9) = (F(L1,3,9)*XDIF(L2) + F(L3,3,9)*XDIF(L1))/XCVS(L2)
F(L2,M3,9) = (F(L1,M3,9)*XDIF(L2) + F(L3,M3,9)*XDIF(L1))/XCVS(L2)

/*Update the pressure for the wall and the central line */
DO I = 2,L2
J = 2
F(I,1,9) = F(I,J,9)
J = M2
DV(I,J) = DV(I,J)*AP(I,J)
CON(I,J) = CON(I,J) − DV(I,J)*(P(I,J − 1) − P(I,J))
DV(I,J) = DV(I,J)*YDIF(J)/YCVRS(J)
F(I,M1,9) = F(I,J − 1,9) − (AP(I,J)*V(I,J) − AIM(I,J)*V(I − 1,J) − AIP(I,J)*V(I + 1,J) −

AJM(I,J)*V(I,J − 1) − AJP(I,J)*V(I,J + 1) − CON(I,J))/DV(I,J)
CON(I,J) = CON(I,J) + DV(I,J)*(F(I,J − 1,9) − F(I,M1,9))
DV(I,J) = DV(I,J)/AP(I,J)
END DO
F(3,M2,9) = (F(3,M3,9)*YDIF(M1) + F(3,M1,9)*YDIF(M2))/YCVS(M2)
F(2,M2,9) = (F(2,M3,9)*YDIF(M1) + F(2,M1,9)*YDIF(M2))/YCVS(M2)

/*Update the inlet pressure with linear extrapolation*/
DO J = 1,M1
F(1,J,9) = (F(2,J,9)*XCVS(3) − F(3,J,9)*XDIF(2))/XDIF(3)
END DO
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