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Abstract: Modern wide-bandgap (WBG) devices, such as silicon carbide (SiC) or gallium nitride
(GaN) based devices, have emerged and been increasingly used in power electronics (PE) applica-
tions due to their superior switching feature. The power losses of these devices become the key of
system efficiency improvement, especially for high-frequency applications. In this paper, a gener-
alized behavioral model of a switch-diode cell (SDC) is proposed for power loss estimation in the
electromagnetic transient simulation. The proposed model is developed based on the circuit level
switching process analysis, which considers the effects of parasitics, the operating temperature, and
the interaction of diode and switch. In addition, the transient waveforms of the SDC are simulated by
the proposed model using dependent voltage and current sources with passive components. Besides,
the approaches of obtaining model parameters from the datasheets are given and the modelling
method is applicable to various semiconductors such Si insulated-gate bipolar transistor (IGBT),
Si/SiC metal–oxide–semiconductor field-effect transistor (MOSFET), and GaN devices. Further, a
multi-dimensional power loss table in a wide range of operating conditions can be obtained with
fast speed and reasonable accuracy. The proposed approach is implemented in PSCAD/ Electromag-
netic Transients including DC, EMTDC, (v4.6, Winnipeg, MB, Canada) and further verified by the
hardware setups including different daughter boards for different devices.

Keywords: semiconductor; model; power loss

1. Introduction

A power electronics (PE) system plays a key role in the process of efficient energy
control, conversion, and management. Power semiconductor devices are the core compo-
nents in a PE system and have a significant impact on system efficiency, reliability, and
cost [1]. For decades, silicon-based devices, such as insulated-gate bipolar transistors
(IGBTs) [2], metal-oxide-semiconductor field-effect transistors (MOSFETs) [3], are mainly
and widely used in various modern PE applications (e.g., Photovoltaics (PV) [4], Power
Factor Correction (PFC) [5], power supply [6], and other power converters [7,8]). However,
the PE system performance and efficiency are hindered by Si-based devices due to the
fundamental material limits. Recently, wide-bandgap (WBG) devices [9–11], such as silicon
carbide (SiC) MOSFETs [12], enhancement-mode gallium nitride (eGaN) high-electron-
mobility transistors (HEMTs) [13,14], have emerged and gained great popularity due to the
superior features of fast switching speed and low switching loss. Thereby, the switching
frequency can be further increased bringing the merits of size reduction for magnetic com-
ponents, high power density, and high efficiency. Whereas the increased power losses of
semiconductors are typically the main contributor to total loss especially for high-frequency
(HF) applications, and the generated heat energy during switching transition may lead to
fatigue failure and affect the reliability [15]. Hence, an accurate power loss model, which
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is applicable for different semiconductors and provides a deep insight into the switching
process, is highly desirable for device selection and PE system optimization.

Currently, the ideal switch or two-state resistances model is typically adopted in
most electromagnetic transient (EMT) simulators such as PSCAD/EMTDC and MAT-
LAB/Simulink [16]. This simple model is mainly used to evaluate the overall system
response and control strategy, and only the conduction loss is roughly considered. The
conduction loss can be directly determined by the output curves in the datasheet, while the
switching loss is more complicated and can be measured in the double-pulse test (DPT) [17].
Although DPT is widely used and can achieve high accuracy, it typically involves expensive
probes and much peripheral bulky equipment such as a high voltage power supply. Design-
ing a testing board with low parasitics is challenging and also significant for WBG devices
due to the fast switching. Recently, several physic-based semiconductor models [18–21],
such as simulation program with integrated circuit emphasis (SPICE) models [22,23], have
been proposed to accurately describe the transient behaviors of the devices. However, the
geometrical parameters for the model are often not available in the datasheet and thus the
applicability of the model is limited. Another type of model (i.e., behavioral model [24,25])
has been developed, which focuses more on the external behaviors of the devices instead of
the internal physics. As a result, the complexity is reduced and fast simulation speed can be
achieved. It is adequate and widely used for system-level study, but more detailed transient
concerns are needed to accurately evaluate the switching performance and estimate the
power losses.

To have a better description of the switching transients, a lot of analytical loss models
have been proposed [26,27]. Piecewise linearizing the switching process of the device is a
commonly used method which enables simple and rapid loss estimation [28]. Whereas,
the accuracy is still limited due to the ignorance of the parasitics. To improve it, more
comprehensive loss models are developed considering various factors, such as temperature-
dependent parameters [29,30], interactions between diode and switch [31], cross-talk
issue [32], displacement current [33,34], and non-flat miller plateau [35]. Thereby, the
switching loss can be obtained by solving the equivalent circuit for each switching sub-
stage. Further, the entire switching process of eGaN HEMT in synchronous buck converter
application is presented in [36,37] considering the third quadrant operation with the help of
the 2-dimensional electron gas (2DEG). However, these methods are complicated involving
huge computational burdens, not to mention the convergence issue. The measurement
techniques and loss distribution including the capacitive losses for eGaN HEMT are
illustrated in [38,39] and the scalable loss estimation method is further proposed based on
the measurements. However, the measured data in the datasheet is typically under specific
conditions, which limits the applicability and accuracy.

In a PE system, a power switch is typically paired with a diode as a switch-diode
cell (SDC) to provide current commutation [40]. This basic commutation cell as shown
in Figure 1a is widely used in PE applications and it consists of the active power switch
(S), diode (D), equivalent circuit voltage (Vdd) and load current (IL) [41]. Note that, four
configurations of S, namely Si/SiC MOSFET, Si IGBT and eGaN HEMT, are taken into
account in this paper and D can be a single positive-intrinsic-negative (PIN) diode, a
Schottky barrier diode (SBD), the body diode of MOSFET or the equivalent diode of eGaN
HEMT. During switching transition, power loss is resulted mainly from the switching and
conduction losses of S as well as the conduction loss and reverse recovery loss of D. In
order to estimate these power losses in a PE system, a generalized behavioral modelling
method of switch-diode cell in electromagnetic transient simulation (EMT) is proposed
and it is an extension of previous work [42–45]. There are three technical contributions in
this paper comparing with the conventional methods.
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Figure 1. Schematic diagrams of (a) switch-diode cell circuit; (b) DPT circuit; (c) Proposed switch and diode models. 
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Figure 1. Schematic diagrams of (a) switch-diode cell circuit; (b) DPT circuit; (c) Proposed switch and diode models.

• A generalized behavioral model of SDC is proposed which is realized by depen-
dent sources with passive components considering the impacts of parasitics, the
temperature-dependent parameters, and the reverse recovery behavior of D. This
model is not limited to a specific device and it is applicable to various devices in-
cluding Si/SiC MOSFET, Si IGBT, and eGaN HEMT. In addition, most of the model
parameters can be obtained from the device datasheets by the curve fitting method
and no additional measurement is involved. Based on the specific requirement, the
model can be modified and integrated into different simulators accordingly.

• The switching process of the switch-diode cell in a clamped inductive switching
circuit is studied analytically based on the equivalent circuits for each switching
sub-stage. Accordingly, the semiconductor model is developed and implemented
in PSCAD/EMTDC. The switching analysis in this paper is more comprehensive
considering the respective features of different devices such as the tail current of IGBT
and the third quadrant operation of eGaN HEMT.

• A DPT setup was designed for experimental verification. To meets the different
requirements of different semiconductors, three daughter boards were specifically
designed incorporating with the main control board to characterize various devices
and measure the corresponding power losses in a wide range of operating conditions.
The simulated results are compared with the experimental results and show good
agreements within 10% average error range.

2. Model Description

The simulation procedure of the proposed model is demonstrated in Figure 2. Initially,
the device requirements for the desired PE application (e.g., voltage, current, temperature,
and frequency) are determined. Based on those requirements, a specific semiconductor
device is preliminarily selected for modelling and characterization. According to the
device’s datasheet, the key model parameters can be extracted by the curve fitting method.
Afterwards, the model parameters together with the operating conditions are input to
the proposed device model, and a DPT simulation using the proposed model is further
carried out. Subsequently, the transient voltage and current waveforms can be obtained,
and simultaneously the power loss of the device can be computed. If the simulated results,
in terms of switching transient behaviors and power loss, meet the requirements within
the acceptable range, then the semiconductor is eventually selected for this application.
Otherwise, it is necessary to reselect another device and evaluate the performance until the
design is optimized.
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Figure 2. Flow chart of the proposed modelling procedure.

In order to understand the switching behaviors of the SDC, a diode-clamped inductive
load circuit (i.e., DPT circuit) is taken as an example which is widely used for device
characterization. As shown in Figure 1b, the basic commutation unit consists of two
complementary switches, one operates as a freewheeling diode D and the other is an active
switch S controlled by the gate drive voltage (vG) through the external gate resistance
Rgext. In a typical hard-switching PE system, S is identified by a positive drain current
id (collector current ic for IGBT) direction matching with the direction of IL. Since the
commutation time is sufficiently short, IL and Vdd are hardly changing during switching
transition and thus they are treated as constant current and voltage sources, respectively.

Note that, the crucial circuit parasitic elements are also included as shown in Figure 1b.
All the stray inductances in the power loop including the printed circuit board (PCB) trace
and device package inductance are lumped and represented by Ls, while the common
source inductance (Lcs) of S is considered separately. In addition, the parasitic capacitances
of S include gate-drain capacitance (Cgd), gate-source capacitance (Cgs) and drain-source
capacitance (Cds). Besides, the equivalent capacitance of D (CF) denotes for junction
capacitance of diode. It should be mentioned that when D is configured as the body diode
of a switch rather than a single diode, CF will be the corresponding parasitic capacitance
of the switch. During a switching transition, IL commutates between S and D. When a
positive vG is given, the gate-source voltage (vgs) will increase to turn on S. Subsequently,
id including the channel current (ich), the gate-drain current (igd) and the drain-source
current (ids) starts rising, meanwhile the diode forward current (iF) declines gradually.
When S is fully turn on, the drain-source voltage (vds) decreases to the on-state voltage and
the diode forward voltage (vF) rises to Vdd. The behavioral models of a SDC as illustrated
in Figure 1c are proposed to reproduce the switching behaviors of S and D, respectively.
The details of the model descriptions including the active switch and diode model are
presented as follows.

2.1. Active Switch Model

As shown in Figure 1c, the proposed active switch model consists of two parts, the
gate loop and the power loop. It is noted that Lcs is shared by both loops and thus each
loop includes one Lcs in order to decoupling both loops. Additionally, a dependent voltage
source (vLcs) is added in the gate loop to reflect the interactive impact of the current source
(iS) on Lcs as expressed by,

vLcs = Lcs·diS/dt (1)

• Gate Loop Part

The external vG is typically flipped between Vgon (20 or 15 V) and Vgoff (−5 or 0 V) based
on the specific gate drive requirement of the switch. The device internal gate resistance
(Rgint) is merged into Rgext as the total gate resistance (RG). Furthermore, the gate related
junction capacitances (i.e., Cgd and Cgs) are represented by the input capacitance (Ciss) and
an additional dependent voltage source (vmil). This equivalent vmil becomes valid only
when the miller plateau occurs on vgs during switching transition and its value can be
computed by

vmil = vth + ich/gfs (2)

where vth and gfs stand for threshold voltage and transconductance of a switch, respectively.
Additionally, ich during miller plateau period typically equals to IL which will be discussed
in Section 2.3.
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It is noted that the gate inductance is neglected here for simplicity although it can
introduce a slight delay on vgs. In fact, this delay is mainly resulted from Lcs and vLcs
due to the fast change of id. Besides, the gate drive circuit is normally placed close to S in
order to minimize the potential oscillation introduced by the gate inductance and thus this
inductance is negligible.

• Power Loop Part

In this model, id is represented by iS which is the sum of ich, igd and ids. Note that,
most of the time, iS is the same as ich except for the voltage transition period when a
displacement current is introduced due to the process of charging and discharging of the
parasitic capacitance. In order to reflect the voltage change during switching transition
as well as the on-state voltage (von) of S, an equivalent dependent voltage source (vS) is
adopted here. The value of von can be determined by Rds(on) with IL in (3) or the saturation
voltage (vcesat) for the case of IGBT.

von = Rds(on)·IL. (3)

Besides, Lcs is also included in the power loop part which is associated with Ls to
influence the transient waveforms. Thereby, the gate loop and power loop parts are
decoupled and their interaction is represented by the equivalent dependent sources instead
of nonlinear junction capacitances resulting in a reduction of model complexity.

2.2. Diode Model

The static model of a diode typically can be represented by an ideal diode (DF), a
forward resistance (RF) and a voltage source (vF0) based on the forward characteristics in
the device datasheet. Typically, vF of the diode can be computed by,

vF = RF·iF + vF0. (4)

It should be mentioned that, for the case of eGaN HEMT as D, the diode behavior
is realized by 2DEG and thus the calculation of vF is based on the reverse conduction
characteristic of the GaN device [44] which is highly affected by the gate drive voltage
(vGF) of GaN device as shown in (5),

vF(GaN) = RFr·iF + vthF − vGF (5)

where RFr and vthF are on-resistance in the third quadrant and threshold voltage of a GaN
device, respectively. Since negative vGF is typically provided to avoid the cross-talk issue,
higher vF is thus resulted which will increase the conduction loss of D. Notice that, if a
positive vGF is provided enabling the channel fully on, the on-state resistance will be the
same value in the first quadrant.

Moreover, the dynamic characteristic of D is described by CF in parallel with an
equivalent dependent current source (ire) for the reverse recovery behavior of D. When
D switches from forwarding conduction to off-state, iF cannot be eliminated immediately
and it takes a while to extinguish the excess carriers, this time is called reverse recovery
time (trr). The reverse recovery process occurs as soon as iF becomes negative, ire can be
expressed by [45],

ire =

{
diF/dt·t, t < trm
Irm· exp((t − trm)/τre), t ≥ trm

, (6)

where τre denotes decay time constant and ire reaches the peak current (Irm) at time trm. In
addition, the slew rate of diode current (diF/dt) typically keeps the same as the turn-off
slew rate of S. It needs to notice that, this reverse recovery behavior commonly exists in
PIN diode and body diode of S, while the reverse recovery loss is eliminated for the case
of SBD or eGaN HEMT and thus ire can be neglected for simplicity. In fact, in these cases,
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the effect of CF is the main concern which can introduce displacement current resulting in
capacitive loss during switching transition.

2.3. Switching Transient Modelling

The switching process of the SDC in the DPT circuit is thoroughly analyzed based on
the switching waveforms and the equivalent circuits as follows.

• Turn-on transition (t0 − t3)

The typical turn-on waveforms along with power loss information are illustrated in
Figure 3 considering the case of PIN or body diode as well as the case of SBD or eGaN
HEMT. The equivalent circuits during this period are also provided in Figure 4.
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Initially, S is in the off-state, and all the IL flows through D. The corresponding vF can
be estimated by (5). At t0, the gate charging period begins with a positive Vgon applying to
vG and Ciss is charged up through RG. Subsequently, vgs will increase accordingly with the
time constant (τiss = RG·Ciss). Note that Lcs in the gate loop will prolong the turn-on time
causing more power losses.

The current rising period begins when vgs goes beyond vth. During this interval,
the conductive channel of S is forming and iS starts rising from zero to IL which can be
expressed by

iS = gfs·
(
vgs − vth

)
. (7)

The fast change of iS on one hand, will introduce a negative feedback vLcs from power
loop to gate loop due to Lcs to further delay the turn-on process. On the other hand, it will
result in a total voltage drop (vL) on Ls and Lcs. Simultaneously, vds decreased by vL as
shown in Figure 3.

As IL commutates from D to S, iS reaches IL at t2 and vgs will be clamped at vmil. At
the same time, iF decreases to zero and D enters into the reverse recovery as shown in
Figure 3a. This additional ire will add to iS (= IL + ire) resulting a current spike and thus
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a bump in vgs according to (2). When ire reaches Irm, it starts declining and the voltage
falling period begins. Subsequently, vds starts decreasing which is controlled by vS and the
corresponding slew rate can be determined by,

dvds/dt = dvS/dt = −
(
Vgon − vmil − vLcs

)
/
(

Cgd·RG

)
. (8)

As vds keeps decreasing and vF increases simultaneously, the output capacitance (Coss)
of S and CF of D is discharged and charged, respectively. Since the voltage of Coss and CF
are clamped to Vdd, they share the same absolute value of voltage change. The resultant
capacitive displacement current for Coss (ioss) can be expressed by (9). Additionally, this
ioss along with the counterpart for CF (iCF = −CF·dvds/dt) will affect id as can be seen
in Figure 3. By applying Kirchhoff’s law, id can be determined by (10) and iS is modified
accordingly to consider these displacement currents.

ioss = igd + ids = Coss·dvds/dt (9)

id = iS = IL + ire − CF·dvds/dt (10)

Based on Figure 1b along with the above equations, ich can be further obtained,

ich = id − ioss = IL + ire − (Coss + CF)·dvds/dt (11)

Consequently, during this period, id includes IL, ire and iCF, while the additional ioss
is further added to ich as shown in Figure 3. As a result, vmil will also change according
to (2). This period ends when vds drop to von at t3. Thereafter, vgs will continue climbing
until reaches Vgon.

Furthermore, the turn-on waveforms for the case of SBD or eGaN HEMT are presented
in Figure 3b. Since the reverse recovery behavior is neglected for these cases as mentioned
previously, ire keeps zero and the voltage falling period starts right after iS reaches IL.
Apart from that, the turn-on modelling and analysis are the same as the case of the PIN
diode.

• Turn-off transition (t4 − t7)

The turn-off process can be considered as the opposite of turn-on transition and
the typical transient waveforms are illustrated in Figure 5. In order to turn off S, Vgon
is replaced by a negative gate drive signal Vgoff and thus Ciss is discharged through RG
resulting the reduction of vgs. As vgs drops to vmil, Cgd absorbs nearly all the ig and thus
vds begins to rise which again causes a current decline of id. When vds reaches Vdd, the
miller plateau disappears and id begins decreasing with vgs which results an additional vL
on vds as shown in Figure 5a.
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As vgs drops below vth, id becomes zero and S turns off completely. However, for the
case of Si IGBT, the tail current (itail) is considered due to the recombination of the excess
carriers. This itail will prolong the turn off time and can be modelled by the exponential
function [42],

itail = Itail0· exp(−(t − ttail0)/τtail) (12)

where τtail stands for carrier transit time and the tailing period starts at ttail0 with the initial
value of Itail0. These parameters can be estimated from the turn-off current waveform.

As can be seen from Figure 5b, a notable difference for the case of eGaN HEMT is vgs
does not typically plateau due to the much smaller capacitance and it keeps decreasing
until reaches Vgoff. As a result, ich quickly declines synchronized with vgs based on (7),
meanwhile vds rises slightly and the slew rate is limited by the relatively high Coss at low
vds. In fact, the channel turns off completely before vds is significantly rising. However, id
does not follow the fast decreasing ich since its changing rate is limited by the inductances
in the power loop. Additionally, Coss is charged by the current difference between id and
ich resulting a slight increase of vds which can be expressed as

dvds/dt = dvS/dt = (id − ich)/Coss (13)

Meanwhile, CF is discharged resulting in a reduction of vF. Additionally, id thus can
be obtained by

id = iS = IL − CF·dvF/dt (14)

Once vgs drops below vth, namely ich becomes zero, the channel shuts down and IL is
shared by Coss and CF. During this period, vds keeps rising according to (14). When vds
rises to Vdd, IL starts commuting to D and the S turn-off transition finishes. Note that if
very high RG is used for eGaN HEMT, the turn-off analysis will be the same as the case of
MOSFET as shown in Figure 5a.

Based on the above analysis vS can be considered as an open circuit except for voltage
rising/falling periods and S on-state. During the voltage transition period, vs is modelled
as a dependent voltage source with a voltage slew rate as mentioned previously. In addition,
the key expressions of iS for different conditions can be summarized in Table 1. It is noted
that when vgs is less than vth, the conduction channel is not established and theoretically, no
current is flowing through the device. As a result, iS is modelled with zero ampere under
this condition in PSCAD/EMTDC which can be considered as open circuit. In this paper,
all analytical equations for vs and is are implemented and programmed with conditions in
the custom programming modules in PSCAD. In this way, it is feasible and convenient to
make any modifications as necessary.

Table 1. Key expressions for iS in the proposed model.

iS
Condition vgs<vth id<IL id>IL Tail Period for IGBT Turn-off for eGaN HEMT

Expression 0 (7) (10) (12) (14)

3. Power Loss Analysis and Parameter Extraction

In general, the power losses of SDC mainly include conduction loss and switching
loss. Typically the conduction losses of S and D can be calculated directly as the product of
operating current (i.e., IL) and the on-state voltage drop based on (3–5). In addition, the
reverse recovery loss of D can be estimated based on the reverse recovery charge (Qrr) and
vF from the device datasheet and the switching loss of S is analyzed as follows.

3.1. Turn on Loss(Eon)

The instantaneous power of S (pS) along with Eon are presented in Figure 3. Basically,
Eon consists of the turn-on V-I overlap loss (Evion), the reverse recovery related loss (Err)
and the capacitive losses (Eoss and EF) for Coss and CF, respectively. Evion graphically can
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be divided into two parts, the id rising period and vds decreasing period. Hence, Evion can
be expressed as

Evion =
∫ t2

t1

vds·iddt + IL·
∫ t3

t2

vdsd (15)

Since reverse recovery behavior of D and the displacement current of Coss already
have been considered in the modelling of iS, therefore the sum of Evion, Err and Eoss, which
is actually the measured turn-on loss (Eonm), can be directly obtained by integrating id and
vds. This significantly reduces the complexity comparing with the analytical loss model
by computing the switching time for each sub-stages. Moreover, according to (11), both
the discharging current of Coss and charging current of CF are flowing through the channel
of S and thus these capacitive energy losses (i.e., Eoss, EF) are dissipated into the channel.
Based on the capacitance curves, Eoss can be expressed as

Eoss =
∫ Vdd

0
vds·Cossdvds (16)

Since the charging current of CF is provided by Vdd and part of the energy is stored
in CF, thus the energy loss dissipated in the channel (i.e., EF) can be derived based on the
charge of CF (QF),

EF = Vdd·QF −
∫ Vdd

0
vF·CFdvF =

∫ Vdd

0
(Vdd − vF)·CFdvF (17)

Consequently, EF theoretically should also be included in Eon which can be expressed
as,

Eon = Eonm + EF =
∫ t3

t1

id·vdsdt + EF (18)

3.2. Turn off Loss(Eo f f )

Generally, the power loss during turn-off transition occurs from t5 to t7 which includes
the turn-off V-I overlap loss (Evioff), Eoss and the tailing loss for the case of IGBT (Etail). The
analysis of Evioff is significantly different for the slow-switching scenario in Figure 5a and
the typical fast-switching for eGaN HEMT in Figure 5b. As for the former case, vgs is fixed
at vmil and thus id is relatively constant throughout the voltage rising period. Thereafter, id
decreases significantly meanwhile vds keeps relatively constant. Hence, Evioff for this case
can be graphically calculated as

Evioff =
∫ t6

t5

vds·iddt +
∫ t7

t6

(Vdd + vL)·idd (19)

Similarly, the sum of Evioff and Etail, namely the measured turn-off loss (Eoffm), is
typically an integral of id and vds. It is noticed that, CF is discharged and the energy is
transferred to the inductive load during the voltage rising period resulting in a reduction
of id, while Coss is charged and the corresponding energy (i.e., Eoss) is stored which will be
dissipated in the next turn-on transition. Therefore, Eoss should be theoretically excluded
from Eoff which can be expressed as

Eoff = Eoffm − Eoss =
∫ t7

t5

vds·iddt − Eoss (20)

As for the typical eGaN HEMT scenario, vgs skips the plateau and the channel turns
off quickly before vds rises significantly as discussed previously. Afterwards, the energy
is commutating between the inductive load and the two capacitances (i.e., CF and Coss)
which is almost lossless. Since the resistive overlap loss only occurs as long as the channel
is on, it is significantly reduced for this case due to the relatively low vds during this time.
Nevertheless, Eoff still can be calculated by (20).
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3.3. Parameter Extraction

The key model parameters can be directly extracted from the corresponding curves pro-
vided in the device datasheet by the curve fitting method [46–48], to avoid the supplementary
experiments which are usually not practical. This method is adopted in this paper since it
is applicable to different semiconductor devices and provides a relatively balanced tradeoff
between accuracy and practicability. As an example, different types of semiconductors
from different manufacturers as listed in Table 2 are selected for modelling and validation
of the proposed method. The extracting sequence is discussed in detail as follows.

Table 2. Semiconductor devices selected for modelling and validation.

Device Type Si IGBT SiC MOSFET Si MOSFET eGaN HEMT SiC SBD

Part Number IKW40T120 SCT2080KE NVHL072N65S3 GS66506T SCS220KG
Manufacturer Infineon Rohm On Semiconductor GaN System ROHM

• Static characteristic

In order to reproduce the switching behavior of S, two key parameters (i.e., vth and gfs)
are considered first. Since vth typically is a temperature-dependent parameter rather than a
constant value, it can be fitted by the 2nd order polynomial of junction temperature (Tj)
from the corresponding curve in the datasheet. Likewise, the transfer characteristic of S can
be fitted by the quadratic function of vgs and subsequently gfs can be further determined
based on vth and (7) as

gfs = is·
√

kga/
(

is − kgb

)
·kgTa·

(
Tj/Ta

)kgTb (21)

where kga, kgb, kgTa, and kgTb are fitting constants. Ta is room temperature which is
considered as 25 ◦C here. In this way, gfs under the given Tj in datasheet can be obtained.
The fitted results of transfer characteristics are compared and shown in good agreement
with the datasheet in Figure 6. It is also found that there is a positive correlation between
Tj and gfs for Si IGBT and Si/SiC MOSFET while it shows a negative correlation for the
case of eGaN HEMT.
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Furthermore, in order to represent the on-state characteristic of S as expressed in (3),
the parameter vcesat for IGBT or Rds(on) for other cases is needed to be extracted. Typically,
both of vcesat and Rds(on) are affected by Tj and iS according to the curves in the datasheet.
Therefore, vcesat can be obtained by the following Equation (22).

vcesat = (kcea + rcea·iS) + (kceb + rceb·iS)·
(
Tj − Ta

)
(22)

where kcea, rcea, kceb and rceb are fitting coefficients. Note that the gate voltage is assumed
as constant in the parameter extraction for simplicity.

Likewise, Rds(on) for the cases of MOSFET and eGaN HEMT can be extracted by

Rds(on) = (kona + rona·iS) + (konb + ronb·iS)·
(
Tj − Ta

)
(23)

where kona, rona, konb and ronb are fitting coefficients. Based on the above equations, the
key parameters for different semiconductors in this paper can be extracted and illustrated
in Table 3.

Table 3. Key fitting coefficients parameters of different semiconductors.

Parameter kga kgb kgTa kgTb kcea,kona rcea,rona kceb,konb rceb,ronb

Si IGBT 2.05 −6.96 14.2 −0.012 −0.001 1·10−4 0.972 0.0215
SiC MOSFET 0.42 −0.35 2.96 −0.086 4.1·10−4 1.12·10−6 0.073 5.1·10−4

Si MOSFET 3.72 −19.2 13 −0.57 0.048 2.87·10−3 0.034 0.0012
eGaN HEMT 0.23 −776.9 0.51 −0.31 0.067 7.2·10−5 8.4·10−4 4·10−6

• Parasitic capacitance and inductance

It is a fact that nonlinear capacitances are the key to the dynamic characteristic of
the device. Typically, the capacitance curves provided in the datasheet is in the form of
Ciss, Coss and reverse capacitance (Crss) which can be mathematically converted to junction
capacitances. Generally, these capacitances are voltage-dependent and can be extracted by
fitting the curves as

C(v) = f (v), (24)

where f is a general fitting function for extraction of capacitance. In this paper, various f
are used for different devices to fit the corresponding curves as shown in Figure 7. Notice
that the nonlinear capacitance curves vary from different devices and thus it is reasonable
to change f accordingly.
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Figure 7. Parasitic capacitance extraction with the methods of (a) 5th order Gauss function;
(b) Analytical equation [49]; (c) Interpolating look-up table (LUT); (d) 3rd order exponential function.

As for the parasitic inductance, only the internal inductance of the device is normally
provided in the datasheet, while the stray parasitic inductance is highly related to the
specific device package and PCB design. There are two widely used methods for inductance
extraction, namely calculation method and experimental method. Based on the PCB
and device package specification, the corresponding inductance can be computationally
obtained with the help of calculation tools such as the Ansys Q3D Extractor software (v1.0,
Canonsburg, PA, USA). According to (1), it also can be extracted from the slew rate of
current along with vL during S turn on transition or from the resonant frequency of the
power loop in the experimental results. In this paper, the parasitic inductances are initially
estimated based on the PCB trace length of the power loop and the gate loop [50] as well as
the device package (e.g., 2–5 nH for TO-247 [51]) and further calibrated from the switching
waveforms.

• Diode parameters

According to (4), RF and vF0 are the key static parameters for D which can be extracted
directly from the diode I-V curve in the datasheet and the corresponding values for various
temperatures can be estimated by linear interpolation. Furthermore, the third quadrant
operation of eGaN HEMT as D is of special concern. Since the corresponding voltage drop
is dependent on the gate drive voltage of D, thus it should be fitted by (5) based on the
output curves in the third quadrant from the datasheet. The diode I-V curve fitted results
for different devices are compared with the datasheet and illustrated in Figure 8. Notice
that the conduction performance of the body diode in SiC MOSFET is generally worse than
the anti-parallel diode of IGBT and SiC SBD. As for the eGaN HEMT, the reverse voltage
drop is highly dependent on the gate drive voltage and the typical value for turn off (i.e.,
−3 V) will result in considerable conduction loss.
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Figure 8. Diode static parameter extraction of (a) Si IGBT; (b) SiC MOSFET; (c) Si MOSFET; (d) eGaN
HEMT.

In addition, CF can be obtained using the same method as mentioned above for S
from the capacitance curve in the datasheet. According to the previous switching transition
analysis, it can be found that the reverse recovery behavior of diode plays a considerable
role and the main parameters Irm and Qrr can be extracted from the diode curves as a
function of Tj and diF/dt [42],

Irm = krm0 + trm0·diF/dt + (krm1 + trm1·diF/dt)·
(
Tj − Ta

)
(25)

Qrr = krr0 + trr0·diF/dt + (krr1 + trr1·diF/dt)·
(
Tj − Ta

)
(26)

where krm0, trm0, krm1, trm1, krr0, trr0, krr1 and trr1 are all fitting coefficients. Besides, the
reverse recovery time (trr) and τre can be further determined by

trr = 2
√

Qrr/(diF/dt) (27)

τre = 1/ ln 10·(trr − Irm/(diF/dt)) (28)

4. Experimental Verification

The objective of the proposed method is to reproduce the switching performance of
the SDC and generate the corresponding power loss look-up table (LUT) with reasonable
accuracy and fast simulation speed. The models are implemented in PSCAD/EMTDC and
validated by comparing with the experimental waveforms and power loss results in the
DPT bench for different semiconductor combinations.

4.1. Setup Description

An automatic DPT bench was designed and built for device characterization and loss
validation [17]. Since the gate-drive requirements and device package are different for
all the devices, three daughter boards were designed accordingly with a power supply
(up to 1 kV) and the inductive load (5 mH) as shown in Figure 9. Tektronix High voltage
differential probe THDP0200 and current probe TCP0030A were used for Si IGBT/MOSFET
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voltage and current measurements, respectively, while passive voltage probe (TTP800) and
0.1 Ω current shunt resistor (SDN-414-01) were adopted for SiC MOSFET and eGaN HEMT
measurements. The temperature was controlled by a heating block and monitored by a
thermal imager (Fluke, TiS40). In the DPT, the desired test conditions (voltage, current, and
temperature) were initially set in the personal computer (PC) and all the control signals
were given by the microcontroller Arduino on the board. Afterwards, the DC capacitor
bank was charged to the desired voltage by the power supply unit, and the device was
heated to the desired temperature. When voltage and temperature conditions were ready,
two gate pulses were given in sequence to turn on and turn off the device under test (DUT).
The switching waveforms and data were obtained by oscilloscope and processed in the PC
for transient information and power loss analysis. In order to mitigate the measurement
error of power loss due to the asynchrony of voltage and current, it is necessary to calibrate
the probes before conducting the DPTs. To further guarantee the accuracy, additional delay
time adjustments for the transient waveforms are also needed for the turn-on and turn-off
processes. Taking the current as the reference, the calibration time of probe and waveform
are provided in Table 4. The calibrating fixture (067-1686-02) from Tektronix was used for
calibration of the current and voltage probes. A 10 MHz sinusoidal signal was applied to
both probes and the deskew time for voltage probe was adjusted until both measurements
were synchronizing. Note that, these calibration times can be different for various probes
and DUTs.
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Table 4. Calibration time of probes and waveforms.

DUT Case Si IGBT SiC MOSFET Si MOSFET eGaN HEMT

Probes calibration (ns) 48 26 45 23
Turn-on calibration (ns) 35 13 26 14
Turn-off calibration (ns) 31 18 25 12

4.2. Switching Transient Verification

• Si IGBT

The daughterboard in Figure 9a was used for Si IGBT and MOSFET tests, and vG was
flipped between 15 V and 0 V to control the DUT’s on and off, respectively. The simulated
results of switching current and voltage waveforms for IKW40T120 are compared with the
DPT measurements in Figure 10. The simulated results demonstrate good agreement with
measurements for current and voltage switching waveforms under 25 ◦C and 150 ◦C. The
switching details such as the tail current and the current spike resulting from the reverse
recovery of D can be clearly observed. In addition, vce slightly drops to 500 V as current
rising and reaches a peak of 700 V during turn-off transition due to parasitic inductance.
Besides, as Tj increases from 25 ◦C to 150 ◦C, the reverse recovery behavior of D becomes
more obvious resulting higher current peak (up to 60 A) and the rise of vce as well as the
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decline of ic during turn off transition slows down which will increase the switching power
loss.
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Figure 10. Switching waveforms of Si IGBTs (a) turn-on; (b) turn-off; @RG = 15 Ω.

• SiC MOSFET

A more compact daughterboard as shown in Figure 9b was designed for testing SiC
MOSFET. Additionally, the gate drive integrated circuit (IXDN609SI) was adopted as the
gate driver onboard to provide 20 V/−5 V drive voltage for SiC MOSFET. Figure 11 shows
the simulated switching waveforms of SiC MOSFET under the condition of 600 V and 20 A
which match well with measured results. It can be observed that there is only a slight
impact of Tj on the switching transients in terms of turn-on and turn-off time. Nevertheless,
the current still can reach almost 40 A during the turn-on transition due to the reverse
recovery behavior of the diode. Besides, it is found that a current ringing occurs during
both turn-on and turn-off transitions because of the parasitic resonance. This ringing
energy is generally consumed by the HF damping resistance in the circuit. Since either the
voltage or current has typically dropped to a low level during the ringing period, thus this
ringing loss is neglected in the model for simplicity.
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Figure 11. Switching waveforms of SiC MOSFETs (a) turn-on; (b) turn-off; @RG = 5 Ω.

• Si MOSFET with SiC diode

The DPT results for Si MOSFET with SiC diode using the same daughterboard as for
testing Si IGBT are shown in Figure 12. In general, the simulated results match well with
the measured results for different RG conditions. As RG increases from 10 Ω to 33 Ω, a
half less voltage drop of vds can be observed during turn-on transition due to the slower
current rising speed. Likewise, only a slight increase of vds can be seen after vds climbs to
Vdd. Moreover, it is noted that the current spike is significantly limited comparing with the
previous testing using PIN diode due to the merit of zero reverse recovery for SiC SBD.
Whereas, there is still a slight current bump causing by the resonance of parasitics as well
as the capacitive displacement current as discussed previously.
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Figure 12. Switching waveforms of Si MOSFET with SiC SBD (a) turn-on; (b) turn-off; @400 V, 20 A, 25 ◦C.

• eGaN HEMT

In order to test the eGaN HEMT which is a surface-mount device (SMD), a specific
DPT daughterboard was used as shown in Figure 9c. The gate driver provided 6 V/0 V as
gate drive voltage to control the lower side GaN switch S, while the upper side SiC SBD
served as a freewheeling diode when S turned off. The simulated switching results are
compared with the measurements for the two operating conditions as shown in Figure 13.
It can be seen that the simulation results are consistent with the experimental results. In the
turn-on waveforms, the current rising time is only tens of nanoseconds. After id reaches IL,
it behaves in the similar manner as previous test using Si MOSFET with SiC SBD. However,
during the turn-off period, it can be clearly observed that, id declines significantly and
drops to zero almost the same time as vds reaches steady state while for the other cases
of devices, the fast decrease of current typically occurs after vds climbs to vdd. This is
mainly because the channel of eGaN shuts down very fast before vds increase significantly
as discussed in Section 2.3. Hence, when the channel turns off completely, the apparent id
is dominated by the capacitive displacement current which is highly related to the change
of vds.

Energies 2021, 14, 1500 16 of 22 
 

 

  
(a) (b) 

Figure 12. Switching waveforms of Si MOSFET with SiC SBD (a) turn-on; (b) turn-off; @400 V, 20 A, 25 ℃. 

• eGaN HEMT 

In order to test the eGaN HEMT which is a surface-mount device (SMD), a specific 

DPT daughterboard was used as shown in Figure 9c. The gate driver provided 6 V/0 V as 

gate drive voltage to control the lower side GaN switch 𝑆, while the upper side SiC SBD 

served as a freewheeling diode when 𝑆 turned off. The simulated switching results are 

compared with the measurements for the two operating conditions as shown in Figure 13. 

It can be seen that the simulation results are consistent with the experimental results. In 

the turn-on waveforms, the current rising time is only tens of nanoseconds. After 𝑖d 

reaches 𝐼L, it behaves in the similar manner as previous test using Si MOSFET with SiC 

SBD. However, during the turn-off period, it can be clearly observed that, 𝑖d declines 

significantly and drops to zero almost the same time as 𝑣ds reaches steady state while for 

the other cases of devices, the fast decrease of current typically occurs after 𝑣ds climbs to 

𝑣dd. This is mainly because the channel of eGaN shuts down very fast before 𝑣ds increase 

significantly as discussed in Section 2.3. Hence, when the channel turns off completely, 

the apparent 𝑖d  is dominated by the capacitive displacement current which is highly 

related to the change of 𝑣ds. 

  
(a) (b) 

Figure 13. Switching waveforms of eGaN HEMT with SiC SBD (a) turn-on; (b) turn-off; @25 ℃, 𝑅G = 5 Ω. 

4.3. Power Loss Verification 

With the aim of power loss verification for various devices, the switching losses were 

measured in the DPT and compared with the simulated results. During the switching 

transients, 𝑝S, which is the product of voltage and current, can be obtained using the math 

function in oscilloscope and similarly the 𝐸onm  and 𝐸offm  can also be obtained by 

integrating 𝑝S. As mentioned previously, the current and voltage probes are calibrated 

for each test and additional delay time is also added to the waveforms results to keep 

transient voltage and current synchronous. The captured waveforms and simulated 

waveforms under the same test conditions are demonstrated in Figure 14 taking Si IGBT 

as an example. By comparing the measured results with the simulated results, a good 

agreement can be clearly seen in terms of not only transient voltage and current 

50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Time, t (ns)

Measured

Simulated

C
u
rren

t, id  (A
)

id @ RG = 10   

id @ RG = 33   

vds @ RG = 10   

vds @ RG = 33   

Turn on

0

0

100

200

300

400

500

600

700

V
o
lt

a
g
e ,

 v
ds

 (
V

)

50 100 150 200 250 300 350 400
0

5

10

15

20

25

30
Measured

Simulated

C
urren

t, id  (A
)

Turn off

id @ RG = 33   

id @ RG = 10   
vds @ RG = 33   

vds @ RG = 10   

Time, t (ns)
0

0

100

200

300

400

500

600

700

V
ol

ta
ge

, 
v d

s 
(V

)

50 100 150 200 250 300 3500
Time, t (ns)

id @ 300 V Measured

Simulated

id @ 150 V 

vds @ 10 A 

vds @ 5 A 

Turn on

400

0

5

10

15

20

C
urren

t, id  (A
)

0

50

100

150

200

250

300

350

400

V
o
lt

ag
e,

 v
ds

 (
V

)

50 100 150 200 250 300 350 400

Measured

Simulated

id @ 300 V

id @ 150 V 

vds @ 10 A 
vds @ 5 A 

Time, t (ns)

Turn off

0

5

10

15

C
u
rren

t, id  (A
)

0

0

50

100

150

200

250

300

350

400

V
o
lt

ag
e,

 v
ds

 (
V

)

Figure 13. Switching waveforms of eGaN HEMT with SiC SBD (a) turn-on; (b) turn-off; @25 ◦C, RG = 5 Ω.

4.3. Power Loss Verification

With the aim of power loss verification for various devices, the switching losses were
measured in the DPT and compared with the simulated results. During the switching
transients, pS, which is the product of voltage and current, can be obtained using the
math function in oscilloscope and similarly the Eonm and Eoffm can also be obtained by
integrating pS. As mentioned previously, the current and voltage probes are calibrated for
each test and additional delay time is also added to the waveforms results to keep transient
voltage and current synchronous. The captured waveforms and simulated waveforms
under the same test conditions are demonstrated in Figure 14 taking Si IGBT as an example.
By comparing the measured results with the simulated results, a good agreement can
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be clearly seen in terms of not only transient voltage and current waveforms but also
computed pS, Eonm and Eoffm. Furthermore, the measured power loss results are compared
with the simulated loss results for different devices under various operating conditions to
validate the proposed method. The average error (ē) is calculated by averaging the absolute
value of the error in each case.
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Figure 14. Si IGBT turn on waveforms (a) measured; (b) simulated; and turn off waveforms (c) measured; (d) simulated
@600 V, 20 A, 25 ◦C, RG15 Ω.

Figure 15 shows the power loss results of Si IGBT under different conditions of current,
voltage, and temperature. Generally, the total power loss (Ets) increases as the operating
voltage and current increase, and Eoff is less than Eon except for the high temperature
condition. It can be seen that, the average errors of Ets are within 7%, namely 5.1%, 5.5%,
and 6.3% for different operating conditions of current, voltage, temperature, respectively.
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Figure 15. Si IGBT loss results under different values of (a) current; (b) voltage; (c) Temperature.

Likewise, the power loss comparison results for SiC MOSFET are illustrated in Figure
16. Note that the Ets for SiC MOSFET is typically less than 1 mJ which is much less than the
counterpart of Si IGBT for similar conditions. It also can be found in Figure 16c that, there
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is a negative correlation between Eon and Tj. Since Eon is the dominated loss, as Tj rises, Ets
reduces accordingly though Eoff increases slightly. It is also noted that ē of Eoff for various
conditions are more than 7% while ē for Eon and Ets are still within acceptable range. The
reasons for the loss deviation can be the underestimation of parasitics and ringing loss as
well as measurement error. Besides, a relatively small amount of loss deviation can still
result in a high error percentage when the overall loss is relatively low.
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Figure 17 shows Ets results for the combination of Si MOSFET and SiC SBD as the
SDC. It can be observed that Ets increases as the operating voltage and current increase.
In addition, a slight increase of Ets can be found as the operating temperature rise from
25 ◦C to 150 ◦C, while Ets increases significantly when 33 Ω RG is used. Moreover, the
power loss results for the case of eGaN HEMT with SiC SBD are illustrated in Figure 18.
It should be mentioned that, in order to capture the switching waveforms and the power
loss with reasonable accuracy, a 220 Ω gate resistance is used to relatively sacrifice the
switching speed and avoid shoot through issue due to the very low vth of GaN. Comparing
with the simulated and measured results, a good agreement is achieved at various testing
conditions and the error is within an acceptable range, although the ē of Eoff is slightly
higher.
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Figure 17. Power losses of Si MOSFET under various values of (a) voltage and current, (b) temperature.
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Figure 18. Power loss results of eGaN HEMT with SiC SBD (a) turn on, (b) turn off.

4.4. Discussion

• Accuracy

Comparing with the original two-state resistance switch model in PSCAD/EMTDC,
the proposed model is capable to reproduce the switching transient waveforms considering
various impacts of parasitics and interactive behavior of diode. In addition, the thermal ef-
fect is also considered to provide reasonably accurate results comparing with the measured
results where the temperature is monitored by a thermal imager as shown in Figure 19a.
Apart from the switching waveforms, multi-dimensional (i.e., voltage, current, tempera-
ture) power loss LUT as shown in Figure 19b also can be obtained simultaneously. The
average error is within 10% comparing with measured results for various devices under
various conditions. Comparing to the traditional physical model or analytical loss model,
no significant advantage is found in the modelling accuracy using the proposed model
due to the ignorance of parasitic resonance and some linear assumptions. Nevertheless,
the complexity of the proposed model is reduced with no state equations and numerical
calculations, and all the model parameters can be extracted from the datasheet.
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• Efficiency

The proposed model uses equivalent dependent voltage and current sources to rep-
resent the dynamic characteristics of devices based on the analytical equations for each
sub-stage of the switching process. In addition, the gate loop and power loop are decoupled
and the complicated numerical calculation as well as solving physical equations are not
necessary which can boost the simulation efficiency and avoid convergence issue. In order
to obtain an accurate power loss LUT with a wide range of operating conditions, there are
numerous permutations to be taken into account and thousands of simulation runs are
required instead of repetitive DPTs. For example, it requires around 5400 simulation runs
to cover the operating range, namely voltage from 20 V to 600 V with 20 V step, current
from 2 A to 60 A with a 2 A step, and temperature from 25 ◦C to 150 ◦C with a 25 ◦C
step. Figure 19c demonstrates the time cost of using the SPICE model provided by the
manufacturer and using the proposed model in PSCAD. In order to achieve reasonable
accuracy, the simulation time step is typically one nanosecond or less. Notice that, it takes
thousands of seconds to barely finish around 200 runs in SPICE, while more than 10 times
less running time is needed to finish the same number of runs by the proposed model with
even less time-step (i.e., 0.1 ns). Furthermore, to finish the whole 5400 simulation runs
using the proposed model at 1 ns time-step, it takes less than 300 s which shows the merit
of time-saving in generating the power loss LUT.

• Applicability

The proposed approach can be used to reproduce the switching waveforms and
obtain the power loss LUT of SDC configured by various devices such as Si IGBT, Si/SiC
MOSFET, eGaN HEMT, and SiC SBD. When it comes to other devices with a new structure
such as Cascade GaN, the proposed model cannot be used directly and modifications are
needed though the basic modelling method is still applicable. In addition, for each specific
device, the curve fitting functions and algorithms for parameter extraction are needed to
be adjusted for good fitting results. Apart from PSCAD/EMTDC, the proposed approach
can also be applied to other simulators such as MATLAB/Simulink, PLECS, and Saber
with respective modifications. Besides, the proposed model provides an insight into the
device behavior and most of the elements have clear descriptions. As a result, it is more
easily apprehensible than mathematical equations. Conversely, analytical loss models are
normally limited to the specific device type or combination and it is difficult to extend
the models to various PE applications for loss estimation. Besides, loss measurements
are time-consuming, costly, and challenging especially for WBG devices due to the fast
switching speed.

5. Conclusions

In this paper, a generalized behavioral modelling approach of the switch-diode cell
for power loss prediction is proposed, implemented in PSCAD/EMTDC, and validated by
experimental results in double-pulse tests. This proposed model consists of an active switch
model and diode model and it can be used for different modern power semiconductors.
The modelling approach along with power loss analysis is derived based on the compre-
hensive switching process analysis in a clamped inductive switching circuit. The static and
dynamic characteristics of the switch-diode cell are modelled by dependent voltage and
current sources with passive components. In addition, the proposed model is improved
by considering the impacts of parasitic elements, interactive behavior of diode, and the
temperature-dependent parameters. Besides, the extraction of the model parameters is
introduced by curve fitting from the device datasheet. Moreover, the switching transient
verification along with power verification is conducted for different devices under a wide
range of operating conditions. A good agreement between the simulated results using the
proposed model and experimental results can be achieved with less than 10% average error.
Consequently, the proposed model provides a good balance in terms of accuracy, efficiency,
and applicability.
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