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Abstract: This paper deals with the problem of the optimal rating of mineral-oil-immersed trans-
formers in large wind farms. The optimal rating is derived based on the probabilistic analyses of
wind power generation through the Ornstein–Uhlenbeck stochastic process and on thermal model of
the transformer through the integration of stochastic differential equations. These analyses allow the
stochastic characterization of lifetime reduction of the transformer and then its optimal rating through
a simple closed form. The numerical application highlights the effectiveness and easy applicability of
the proposed methodology. The proposed methodology allows deriving the rating of transformers
which better fits the specific peculiarities of wind power generation. Compared to the conventional
approaches, the proposed method can better adapt the transformer size to the intermittence and
variability of the power generated by wind farms, thus overcoming the often-recognized reduced
lifetime.

Keywords: transformer aging; transformer design; Ornstein–Uhlenbeck process; Wiener process;
wind power generation

1. Introduction

Due to the large use of transformers, their accurate rating is crucial to avoid faults
and guarantee secure and reliable operation of power systems. The task of transformer
rating is typically performed through the estimation of the lifetime duration under a
predicted loading condition. Lifetime duration strictly depends on the degradation of
solid insulation, which is the primary reason why a transformer reaches the end of its
life. Continuous degradation mainly occurs because of thermal stresses which affect
transformers as a consequence of the heat generated during operation [1]. Thermal models
are available in the literature and are used in consolidated international standards, such as
the IEC Std 60076 [2]. Based on the loading current, they provide accurate estimations of
the temperatures affecting the heat-sensitive parts of the transformers which are used in
lifetime calculation.

Methods for transformer rating consist of choosing the size of the transformer which
better fit the expected current flowing in the transformer with the desired lifetime duration,
thereby avoiding accelerated degradation. The key aspect to optimize the determination
of the transformer size relies in the determination of loading condition, which is a very
complex task in modern power systems being subject to large uncertainties and random
time disturbances, which affect all aspects of the operation of the system. Fluctuation in the
power demand and intermittent nature of renewable generation are the most significant
examples. It is also well known how challenging is to plan both the electric grid and
the various components due to continuous power variations. In the case of transformers,
aspects of uncertainties need to be carefully considered in order to accurately determine
loading conditions [3].
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This paper focuses on an accurate method for the optimal rating of oil-immersed
power transformers connected to wind farms. The effect of fast variations of wind velocity
implies that the transformer can be repeatedly overloaded without impacting on the loading
current mean value but causing overheating, thus implying an erroneous sizing of the
transformer. With conventional approaches, transformers connected to power plants are
sized by assuming that all of the generators output their rated power without considering
fluctuations which inherently characterize renewable power generation. It is then required
to include this effect to have a more accurate sizing [4].

In the technical literature, rating of power transformers that connect wind power
plants to the grid is investigated in [5], where a dynamic approach for exploiting the
variability of power production is proposed. In [6] a cost optimization methodology is
proposed which uses statistical scenarios based on distribution functions and Markov
Chain models and accounts for maintenance and design requirements for transformer
contingency in off-shore wind farms. The calculation of transformer limits according to the
shape of the loading profile in presence of renewable generation is analyzed in [7], where
an energy-limit concept for oil-immersed technology is proposed. Based on the loading
factor, in [8] a method to size the power transformer using the thermal limit is proposed.
The potential of dynamic rating in the planning stage of transformers for renewable sources
is analyzed in [9] to utilize equipment more efficiently. In [10] a stochastic method is
used to characterize daily loading profiles in the presence of fluctuations to evaluate their
impact on the transformer lifetime. In [11] a rating method is proposed based on measured
and estimated daily loading profiles. In [12] a data driven approach based on a Gaussian
mixture mode is used to estimate the loading shape profile for the transformer rating at
the purpose of long-term planning. Randomness of loading profiles in the presence of
fluctuations are addressed in [13] through a Lognormal characterization of transformer
lifetime for its power rating. The maximum utilization transformers through dynamic
thermal rating is studied in [14] with reference to loading with random variations.

The analysis of the literature survey provides evidence of some critical issues that need
to be addressed in the transformers’ rating, such as: (i) analysis of the loading conditions,
(ii) thermal behavior of the transformer under specified loading conditions, (iii) estimation
of the expected lifetime duration under specified loading conditions, and (iv) evaluation of
the transformer size that better matches the desired lifetime and expected loading duration.

The analysis of the loading condition is clearly the main input of the design stage,
where randomness, such as that regarding the fluctuation typical of wind farm applica-
tions, is faced with stochastic approaches, such as Markov Chain models [6], the Gaussian
mixture [12], or the Wiener process [13]. In this regard, the proposed approach suggests
and validates a novel rating method based on the statistical characterization of the load-
ing condition through the Ornstein-Uhlenbeck process. This stochastic process appears
particularly suitable for the description of the phenomenon under investigation for its
ability in capturing the so-called ‘mean reversion’ of time series [15]. Based on the Ornstein-
Uhlenbeck characterization of the loading current, the thermal description of the trans-
former is stochastically characterized as well. The solution of the thermal model, which
is given by means of the Euler-Maruyama model, allows estimating lifetime reduction
according to a Lognormal distribution. This is useful to derive an analytical method for the
transformer sizing. Acceleration of lifetime reduction is avoided by selecting a transformer
size larger than that obtained through the classical approaches based on average values of
the loading current.

The paper is structured as follows: Section 2 describes the process used to stochasti-
cally characterize the wind power generation. Section 3 gives the details of the thermal
model used for estimating the lifetime of a mineral-oil-immersed transformer and lifetime
characterization in terms of stochastic processes. In Section 4 the analytical formulation of
the transformer rating is calculated and the whole procedure is summarized. In Section 5
the results of the proposed rating method applied to the data of a wind farm are reported.
Conclusions are drawn in Section 6.
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2. Stochastic Characterization of the Wind Power

Many studies are available in the literature to properly characterize wind power
randomness [16,17]. Among them, two approaches are typically used: static [18,19] and
dynamic approaches [20,21]. The dynamic approach based on the stochastic process
theory is the most suitable in order to achieve a more accurate characterization of the
wind power behavior. As proposed in [20], the Ornstein-Uhlenbeck stochastic process
appears particularly adequate to describe the random variations of this non-controllable
energy source.

Indeed, the Ornstein-Uhlenbeck stochastic process is largely employed as a diffusion
process to model several phenomena, as in the processing of financial high-frequency data.
With respect to the power system, it is considered particularly suitable to describe the
electrical load [22]. The rationale behind this choice relies in capturing the so-called ‘mean
reversion’ of certain time series, which tend towards their mean values over the time. The
Ornstein-Uhlenbeck process Pt, t ≥ 0, is wholly described by the following stochastic
differential equation:

dPt = τ(µ− Pt)dt + σdWt (1)

where µ is the long-term mean, τ is related to reversion speed, σ is linked to the instanta-
neous volatility, and Wt is the Wiener process characterized by the well-known property
that Wt has independent increments with Wt −Ws ≈ N(0, t− s) (for 0 ≤ t < s), with
N(0, t− s) as the normal distribution with expected value 0 and variance t − s.

It is important to note that, if 0 ≤ s1 < t1 ≤ s2 < t2, then Wt1 −Ws1 and Wt2 −Ws2 are
independent random variables. Also, the following probabilistic properties can be derived:

- the unconditional probability density function at a fixed time t is Gaussian:

fWt(x) =
1√
2πt

e
−x2

2t (2)

- the expectation is zero:

E[Wt] = 0 (3)

- the variance at time t is:

Var(Wt) = E
[
W2

t

]
− E2[Wt] = E

[
W2

t

]
= t (4)

- the covariance at time t is:

cov(Ws, Wt) = min(s, t). (5)

The solution of the stochastic differential equation is given by:

Pt = P0e−τt + µ
(
1− e−τt)+ σ

∫ t

0
e−τ(t−s)dWt. (6)

The Ornstein-Uhlenbeck process Pt is stationary when P0 ∼ N
(

µ, σ2

2τ

)
and P0⊥Wt, t ≥ 0

are assumed and has normally distributed increments and unconditional moments:

E[Pt] = µ, var[Pt] =
σ2

2τ
, and cov[Pt, Ps] =

σ2

2τ
e−τ|t−s|. (7)

Non stationarity of the problem was attained for a given initial value p0 with normally
distributed increments and conditional moments:
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E[PtbP0 = p0 ] = p0e−τt + µ
(
1− e−τt),

var[PtbP0 = p0 ] =
σ2

2τ

(
1− e−2τt),

cov[PtbP0 = p0 ] = e−τ|t−s| − e−τ|t+s|, t 6= s.
(8)

In order to investigate the problem of the process parameter estimation, the discrete
version of the process is referred to here where, for the sake of simplicity, the time interval
T is assumed to be equal to 1. The process has n observations Pti at time instants 0 = t0 <
t1 < . . . tn = T = 1, where ti − ti−1 = 1

n .
By referring to the discretized version of the process, the method of moments was

applied for its simplicity. It is not difficult to demonstrate that the following relationships
maintain as far as the estimate is concerned for the parameters µ, τ and σ2 [22]:

µ̂ =
1

n + 1

n

∑
i=0

Pti (9)

τ = n log
1
n ∑n

i=0

(
Pti −

(
1

n+1 ∑n
i=0 Pti

))2

1
n−1 ∑n

i=1

(
Pti −

(
1

n+1 ∑n
i=0 Pti

))(
Pti−1 −

(
1

n+1 ∑n
i=0 Pti

)) (10)

σ2 = 2n log
1
n

n

∑
i=0

(
Pti −

(
1

n + 1

n

∑
i=0

Pti

))2

log
1
n ∑n

i=0

(
Pti −

(
1

n+1 ∑n
i=0 Pti

))2

1
n−1 ∑n

i=1

(
Pti −

(
1

n+1 ∑n
i=0 Pti

))(
Pti−1 −

(
1

n+1 ∑n
i=0 Pti

)) . (11)

In practice, the actual observed process could be corrupted by a noise Ei; as a conse-
quence of that, the following process should be examined:

Zti = Pti + Ei. (12)

Under the assumption E~N(0, ν2), we could obtain:

E[Zt] = µ, var[Zt] =
σ2

2τ
+ ν2 and cov

[
Pi, Pj

]
=

σ2

2τ
e−τ|ti−ti−1| i 6= j. (13)

In this case, the estimates for µ, τ, σ2 and ν2 can be given by the following relationships:

µ̂ =
1

n + 1

n

∑
i=0

Zti (14)

τ̂ = n log
1

n−1 ∑n
i=1

(
Zti −

(
1

n+1 ∑n
i=0 Zti

))(
Zti−1 −

(
1

n+1 ∑n
i=0 Zti

))
1

n−2 ∑n
i=2

(
Zti −

(
1

n+1 ∑n
i=0 Zti

))(
Zti−1 −

(
1

n+1 ∑n
i=0 Zti

)) (15)

σ̂2 = 2n

(
1

n−1 ∑n
i=1(Zti−(

1
n+1 ∑n

i=0 Zti ))
(

Zti−1−(
1

n+1 ∑n
i=0 Zti )

))2

1
n−2 ∑n

i=2(Zti−(
1

n+1 ∑n
i=0 Zti ))

(
Zti−1−(

1
n+1 ∑n

i=0 Zti )
) log

1
n−1 ∑n

i=1(Zti−(
1

n+1 ∑n
i=0 Zti ))

(
Zti−1−(

1
n+1 ∑n

i=0 Zti )
)

1
n−2 ∑n

i=2(Zti−(
1

n+1 ∑n
i=0 Zti ))

(
Zti−1−(

1
n+1 ∑n

i=0 Zti )
) (16)

ν̂2=
1
n

n

∑
i=0

(
Zti −

(
1

n + 1

n

∑
i=0

Zti

))2

−

(
1

n−1 ∑n
i=1

(
Zti −

(
1

n+1 ∑n
i=0 Zti

))(
Zti−1 −

(
1

n+1 ∑n
i=0 Zti

)))2

1
n−2 ∑n

i=2

(
Zti −

(
1

n+1 ∑n
i=0 Zti

))(
Zti−1 −

(
1

n+1 ∑n
i=0 Zti

)) . (17)

3. Stochastic Thermal Model of a Mineral-Oil-Immersed Transformer

With lifetime evaluation being the core of the transformer’s design, the dynamic aspect
of the thermal phenomena and their stochasticity due to the loading needed to be properly
taken into account.
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The thermal processes of mineral-oil-immersed transformers were modeled based on
the top-oil and hot-spot temperatures. Top-oil temperature refers to the oil temperature
at the top of the tank; hot-spot temperature refers to the temperature of the hottest point
of the winding insulation. The measure of the top-oil temperature is simple and thus is
suitable for on-line monitoring and control of the transformer. Hot-spot temperature is
related to the loading capacity of the transformers and their lifetime degradation [23,24].

Regarding the top-oil temperature, the values it assumes depend on the heat generated
by the Joule losses in the windings (i.e., load losses) and no-load losses, the ambient
temperature, and the thermal characteristics of the oil. Regarding the hot-spot temperature,
the values it assumes depends on the heat generated by the load losses, the temperature
of the oil, and the thermal characteristics of both winding and oil [25–29]. In the case of
a significant presence of non-linear loads or converter-based generators, the loads due to
non-sinusoidal voltages can have a role in the thermal behavior of the transformer and
consequently on its lifetime [30–32].

Estimation of both top-oil and hot-spot temperatures is typically made by thermal
models which exploit the thermal-electrical analogy and heat transfer theory [1]. The
thermal-electrical analogy theory is based on the use of simple circuits which allow analyz-
ing the thermal behavior of the transformers through the similarity between thermal and
electrical processes. Based on this approach, top-oil (ϑoil) and hot-spot (ϑhs) temperatures
vary according to differential equations of resistive-capacitive lumped circuits forced by
ideal sources related to heat generated in the transformer [1,33,34]. In Figure 1, the cir-
cuits related to the top-oil temperature (Figure 1a) and hot-spot temperature (Figure 1b)
are reported.
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In Figure 1a the total heat generated in the transformer (qtot) refers to the heat gen-
erated by no-load losses (q f e) and by the load losses (ql), Cth−oil is the equivalent thermal
capacitance of the transformer oil, Rth−oil−air is a nonlinear oil to air thermal resistance,
and ϑamb is the known ambient temperature. In Figure 1b qwdg is the heat generated by
winding losses, Cth−wdg is the thermal capacitance of the winding, and Rth−hs−oil is the non-
linear winding to oil thermal resistance. Non-linear thermal resistances in the circuits are
considered to include the effect of the temperature on both oil thermal characteristics and
Joule losses [24,33,34]. The non-linear thermal resistances allow obtaining more accurate
temperature estimation due to the deep dependency of the oil characteristics—particularly
the viscosity—on the temperature.

The differential equations governing the thermal circuits of Figure 1 are:

1 + RK2

1 + R
µν

pu∆ϑoil,rtd = µν
puτoil, rtd

dϑoil
dt

+
(ϑoil − ϑamb)

ν+1

∆ϑν
oil,rtd

(18)
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K2Pcu,pu(ϑhs)µ
ν
pu∆ϑhs,rtd = µν

puτwdg, rtd
dϑhs
dt

+
(ϑhs − ϑoil)

ν′+1

∆ϑν′
hs,rtd

(19)

with (18) being related to the top-oil model and (19) to the hot-spot model which depends
on the top-oil temperature, with the following symbols meaning:

- R is the ratio of load losses at the rated current and no-load losses;
- K is the ratio of load current and the rated current, i.e., the load factor;
- µpu is the oil viscosity in per unit value;
- ϑamb is the ambient temperature;
- ϑhs is the hot-spot temperature;
- ϑoil is the top-oil temperature;
- ∆ϑoil,rtd is the rated top-oil temperature rise over the ambient temperature;
- ∆ϑhs,rtd is the rated hot-spot temperature rise over the top-oil temperature;
- τoil, rtd is the rated top-oil time constant;
- τwdg, rtd is the rated winding time constant;
- Pcu,pu is the value of the load losses, in per unit, and Pcu,pu(ϑhs) represents the depen-

dence of these losses from the hot-spot temperature;
- ν and ν′ are constant and depend on the type of transformer and the cooling modes;

the exponentials of ν and ν′ determine the non-linearity of the model.

The solution of (18) and (19) can be evaluated through classical numerical methods,
such as the Runge Kutta method, if a deterministic framework is considered. As will
explained in the next section, the time variations of the top-oil and hot-spot temperatures
have to be derived by properly treating the stochastic variations of the known load. For
this purpose, the Euler-Maruyama method was employed.

The hot-spot temperature is the main factor responsible for accelerating the trans-
former aging, thus its estimation is used to evaluate the lifetime reduction of the winding
insulation. Ambient temperature and moisture also have influence, the latter having a
significant effect since the water generated by the process of cellulose decomposition
significantly accelerates its aging rate [35–37].

The insulation deterioration in the time period T can be evaluated on the basis of
experimental evidence according to [38]:

ηM =
1
T

T∫
0

FAAdt (20)

with ηM being the loss of life of the transformer over the considered time period T and
FAA being the aging acceleration factor. Regarding the duration of the time period to be
considered for designing purposes, it can be assumed that T = 24 h, since the working
cycle is typically repeated according to daily working cycles [39]. Regarding the aging
acceleration factor FAA, it is governed by the well-known Arrhenius reaction rate theory,
which is given by:

FAA = e
15,000

110+273 −
15,000

ϑhs+273 (21)

where the hot-spot temperature ϑhs is assumed time-varying and 110 ◦C is assumed as the
reference temperature, i.e., the acceleration factor of degradation is evaluated based on the
deviation of ϑhs from 110 ◦C. In this way, the lifetime decrease ηM was estimated through
(20) in per unit measurements.

3.1. Integration of the Stochastic Differential Model

By neglecting the voltage drop across the leakage reactance, the load factor K in
(18) and (19) can be considered equal to

(
Pt
Sn

)
, with Sn being the base power. Due to its

dependence on the process Pt, K is properly described as random process Kt, as well as the
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ratio of load losses R, which is also described as random process Rt. For characterizing the
stochasticity of the variables ϑoil and ϑhs, the following model had to be integrated:

dPt = τ(µ− Pt)dt + σdWt (22)

dϑoilt =

(
ϑoilt − ϑamb

)ν+1

µν
puτoil, rtd∆ϑν

oil,rtd
dt− 1 + RtK2

t
τoil, rtd(1 + Rt)

∆ϑoil,rtddt (23)

dϑhst =

(
ϑhst − ϑoilt

)ν′+1

∆ϑ
ν′
hs,rtdµν

puτwdg, rtd
−

K2
t Pcu,put

∆ϑhs,rtddt
µν

puτwdg, rtd
. (24)

The integration of this model was numerically performed by using the Euler-Maruyama
method, which is opportune to briefly recall [40]. Let us consider a scalar, autonomous
stochastic differential equation written in the standard form:

dX(t) = g(X(t))dt + h(X(t))dWt X(0) = X0 0 ≤ t ≤ T. (25)

The discretized version of (25) is

Xi = Xi−1 + g(Xi−1)∆t + h(Xi−1)(Wti −Wti−1)i = 1, . . . . . . ., n (26)

where ∆t = T
n .

In (26) the only complication lies in the generation of the increments (Wti −Wti−1).
By keeping in mind the properties of the standard Wiener process, also named standard
Brownian motion, it is intuitive to assume (Wti −Wti−1) is an independent random variable
distributed according to the law

√
∆tN(0, 1). The Euler-Maruyama method is substantially

summarized by Formula (26), where only the additional burden to generate random vector
from the N(0, 1) distribution is required.

It is good to make some considerations regarding convergence of this method, that is,
to ascertain whether the solution tends more and more to true when ∆t tends to zero. By
denoting with X∗i the true solution at the ith-step, which is a random variable as Xi, the
concept of strong convergence has to be introduced. A method exhibits strong order of
convergence equal to α if a constant λ exists such that:

E[|Xi − X∗i |] ≤ λ∆tα i = 1, . . . . . . ., n . (27)

It can be demonstrated that if the functions g and h satisfy some conditions, the
Euler-Maruyama method has strong order of convergence α = 1/2. The concept of strong
convergence is stated in terms of expected value, but useful inequality can also be derived
to characterize the error for individual simulations by exploiting the Markov inequality.
As is well known, this cornerstone inequality in the theory of probability states that if a
random variable X has finite expected value, ∀a > 0:

P(|X| > a) ≤ E|X|
a

, i = 1, . . . . . . ., n. (28)

By applying this inequality to (27), and choosing a = ∆tδ, with δ < α, since for
Euler-Maruyam method α = 1/2, it can be written as:

P
(
|Xi − X∗i | > ∆tδ

)
≤

E
[∣∣Xi − X∗i

∣∣]
∆tδ

≤ λ∆t(
1
2−δ). i = 1, . . . . . . ., n (29)

It can be more useful to write the relationship as:

P
(
|Xi − X∗i | < ∆tδ

)
≥ 1− λ∆t(

1
2−δ) i = 1, . . . . . . ., n (30)
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which ensures that for any point over the interval [0, T], the error will be small with the
probability tending to 1.

3.2. Lifetime Characterization

The oil transformer temperature as well as the hot-spot temperature have the character
of stationary random variables. As will be numerically demonstrated in the numerical
application, the mean value and the standard deviations can be considered as constant
over the whole interval T. More specifically the hot spot temperature can be optimally
approximated by a stationary Gaussian process.

The integrand factor in Equation (20) can be rewritten as:

FAA(t) = e
15,000

110+273 −
15,000

ϑhs(t)+273 = ek′∆ϑ′(t) (31)

with
k′ =

15, 000

(110 + 273)2 (32)

∆ϑ′(t) = ϑhs(t)− 110. (33)

FAA is a Lognormal process and its parameters can be expressed explicitly as a function
of the moments of the stochastic process, ∆ϑ′. The Lognormal statistical feature of FAA
and its stationarity were verified in the numerical application reported in Section 5 by
examining the behavior of both the mean value and the standard deviation over the time.

From the earlier definition of the reduction of the transformer’s lifetime, the following
relationship can be stated:

ηM =
1
T

∫ T

0
FAAdt =

1
T

∫ T

0
ek′∆ϑ′dt. (34)

As a consequence of the stationarity of the FAA process, the reduction in the trans-
former’s lifetime ηM can be optimally approximated by a Lognormal random variable
whose mean value is equal to

E[ηM] = ek′µ∆ϑ′+
k′2σ2

∆ϑ′
2 . (35)

When E[ηM] = 1 (that is k′µ∆ϑ′ +
k′2σ2

∆ϑ′
2 = 0) there is no ageing acceleration with

respect to that arising with the rated values of current, Irtd. The fluctuation of the loading
current around its mean value E[Il ] (that is the value typically used to size transformers
Irtd = E[Il ]), however, implies an ageing acceleration (i.e., lifetime reduction) higher than

that occurring for Irtd and whose value is related to k′µ∆ϑ′ +
k′2σ2

∆ϑ′
2 6= 0 corresponding to

the variation of temperature due to the current’s fluctuation.

4. The Proposed Transformers Rating Procedure

The value of Irtd (i.e., of transformer’s size) can be identified by assuming that E[Il ]

produces a constant temperature equal to ∆ϑhs,rtd− µ∆ϑ′ −
k′σ2

∆ϑ′
2 and the fluctuating current

the contribution µ∆ϑ′ +
k′σ2

∆ϑ′
2 . By keeping this in mind, the transformer rated current can

be estimated as follows:
Irtd = E[Il ]γ (36)

with

γ =

√√√√ ∆ϑhs,rtd

∆ϑhs,rtd − µ∆ϑ’ −
k′σ2

∆ϑ′
2

. (37)



Energies 2021, 14, 1498 9 of 16

From (37), it is possible to straightforwardly obtain the rated value of the current Irtd.
Indeed, the design procedure has to start by initially choosing a transformer whose rated
power is as near as possible to the mean value of the loading power. By making reference
to its characteristic parameters, one can perform an a priori estimation of the temperature
distribution. This allows directly determining that the oversizing factor γ for ensuring the
mean value of lifetime is equal to that expected.

The procedure for choosing the rated power of the transformer can be eventually
summarized by the flow chart reported in Figure 2.
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Figure 2. Flowchart of the proposed procedure.

The proposed procedure—shown in Figure 2—can be summarized as follows:

1. the actual power profile of the wind farm is recorded based on data available
from measurements;

2. the actual power profile is statistically analysed as an Ornstein-Uhlenbeck process
and a number of synthetic profiles are generated;

3. based on the loading current corresponding to the synthetic power profiles, the
thermal model of the transformer is applied and solved in statistical terms through
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the Euler-Maruyama method, thus obtaining the statistical characterization of the
hot-spot temperature;

4. on the basis of the distribution of the hot-spot temperature, the statistical characteri-
zation of the transformer’s lifetime is derived;

5. the rating of the transformer able to guarantee the desired lifetime is calculated
through Equation (37).

5. Numerical Application

In this section, the results of the application of the proposed rating method to the
data of a 600 MW wind farm are reported [41]. Based on the measured data (step 1 of the
flow chart in Figure 2), the actual power produced by the wind farm is plotted in Figure 3
(blue thicker line). This dataset refers to the time horizon of one day which is divided into
96 time-intervals, each 15 min long.
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Figure 3. Daily profile of the aggregated power generated by the wind farm.

This daily profile is characterized as an Ornstein-Uhlenbeck process (step 2 of the
of the flow chart in Figure 2), whose parameters, estimated by the method of moments,
are τ = 25.56, µ = 506.40, and σ = 530. Some realizations of the process (i.e., synthetic
profiles), by employing these parameters, are also reported in Figure 3 (gray lines).

The rating of the transformer connecting the wind farm to the network was performed
according to the method proposed in this paper. The parameters used in the thermal model
were derived from a typical 605 MVA OFAF transformer [33] and are reported in Table 1.
The ambient temperature was assumed to be constant (30 ◦C), since the assumption was
made that a confined ambient environment equipped with a cooling system would almost
guarantee a constant temperature. Regarding the oil thermal conductivity, its variation
with the temperature was negligible compared to the variations of the oil viscosity [32].
Thus, the approximation of constant thermal conductivity corresponding to 65 ◦C was
assumed. Both C and ν are empirical constants whose values correspond to the case of
laminar oil circulation [32].

In order to perform the proposed method for the choice of the transformer rating,
10,000 daily profiles of wind power were obtained through the statistical characterization
of the Ornstein-Uhlenbeck approach. These profiles were used to derive the distribution of
hot-spot temperature at each time interval of the day. With reference to the rated currents
corresponding to the mean values of this data set, in Figures 4 and 5 the mean value and
standard deviation of this temperature at each interval are reported. The mean values
reported in Figure 4 reveal that they vary within a narrow interval around the rated hot-
spot temperature, i.e., 110 ◦C, which corresponds to a standard lifetime duration assumed
for the transformer. The profile of the standard deviation at each interval reported in
Figure 5 clearly converges to a specific value, thus showing that the considered process can
be assumed to be stationary.



Energies 2021, 14, 1498 11 of 16

Table 1. Parameters for the thermal model of the transformer.

Parameter System Value

Rated heat generated by load losses qcu 930 kW
Rated heat generated by no-load losses q f e 285 kW

DC loss per unit value Pcu,pu 0.9
Eddy losses per unit value Pcu,eddy,pu 1.1

Ambient temperature ϑamb 30 ◦C
Rated top-oil temperature rise over ambient temperature ∆ϑoil,rtd 35 ◦C
Rated hot-spot temperature rise over top-oil temperature ∆ϑhs,rtd 45 ◦C

Heat exchange area A 2580 m2

Empirical value constants C 0.59
ν 0.25

Characteristic dimension L 10 m
Oil thermal conductivity k 0.128 W/mK

Oil mass moil 79,746 kg
Winding time constant τwdg 12 min
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Regarding the hot-spot temperature, it can be stated that its distribution at each
interval is Gaussian. This is verified by the results obtained by the adoption of the thermal
model of Section 3 (step 3 of the of the flow chart in Figure 2). Particularly in Figure 6,
the histogram of the hot-spot temperature corresponding to a generic interval of the day
(the interval corresponding to the 12th hour) is reported together with its fitting Gaussian
probability density function (pdf) which shows a good approximation with the simulated
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data. Mean value and standard deviation of this distribution are µϑhs = 110.92 ◦C and
σϑhs = 5.91 ◦C.
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The accurate Gaussian approximation shown in Figure 6 is coherent with the assump-
tion of the Ornstein-Uhlenbeck model. The analysis of the other intervals of the day, not
reported here for the sake of brevity, shows that this Gaussian approximation is also valid.

The distribution of the aging acceleration factor at the same interval of Figure 6 is
reported in Figure 7.
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As expected, this distribution is well fitted by a Lognormal distribution, whose pdf is
also reported in the figure. The analysis of the other intervals of the day, here not reported
for the sake of conciseness, shows that this Lognormal approximation is also valid. This
approximation is coherent with (31) and with the Gaussian approximation of the hot-spot
temperature at each interval of the day (Figure 6).

As is well known, the Lognormal distribution can be represented in its general form as:

f (x) =
e
−(ln x−µ)2

2σ2

x
√

2πσ
(38)

where µ and σ are the mean and standard deviation of the associated Gaussian distribution
(µ = 0.10 and σ = 0.65 in our case).

Based on the Lognormal process of the aging acceleration factor, the distribution of
lifetime reduction in per unit values was derived and is shown in Figure 8 (step 4 of the of
the flow chart in Figure 2).
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Coherently with the theoretical hypothesis made in Section 3, it was found that the
distribution of the lifetime reduction values is well approximated by a Lognormal pdf,
as clearly appears in Figure 8. This can be explained by considering that the lifetime is
evaluated by means of (34) and the aging acceleration factor (31) is well approximated
by a Lognormal distribution at each interval (Figure 7). In this case, even if the sum of
Lognormal distributions is not generally lognormally distributed, the stationary property
of the process implies that the Lognormal distribution can still be used to represent the
integral in (34). It is worth noting that this result has general validity, since it derives from
the statistical characterization of the wind power according to the Ornstein-Uhlenbeck
stochastic process and a consolidated thermal model of transformers. In order to apply the
proposed procedure at the design stage of the transformer with the purpose of choosing
the rating of the transformer, the proposed approach was repeatedly applied by increasing
values of the rated transformer current, as recalled in the flow chart of Figure 2 (step 5 of
the flow chart in Figure 2). Figure 9 shows the lifetime reduction corresponding to the ratio(

Irtd
E[Il ]

)
of the rated and mean values of the loading current.
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Figure 9 clearly shows that the reduction of lifetime—compared to the duration
corresponding to the standard hot-spot temperature (110 ◦C) decreases when the rated
current increases. Particularly, with reference to the proposed case study, the lifetime
reduction is equal to one when the rated current is 1.032 times greater than the mean value
of the loading current. For lower values of the rating current the reduction of lifetime is
greater than one, reaching a value higher than 1.25 in case of rated current equal to the mean
value of the loading current. This means that by applying conventional rating methods,
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i.e., by neglecting the effect of fluctuations of the generated power, the expected lifetime of
transformer would be reduced by 25%. Alternatively, to avoid this reduction, a de-rating
of the transformer would be needed. Figure 9 also shows that in the case of higher values
of rated current (i.e., abscissa greater than 1.032) a slow reduction of lifetime appears (i.e.,
its values are lower than one), reaching the value of 0.6 when the rated/loading current
ratio is 1.1.

In order to analytically derive the increased rated current identified in Figure 9,
Equation (36) was also applied with µ∆ϑ′ = 0.93 ◦C and σ∆ϑ′ = 5.91 ◦C. Coherently with
the result of Figure 9, the rated current corresponding to the rated hot-spot temperature
was equal to 1.032. This result once again shows the validity of the hypothesis that lifetime
reduction is lognormally distributed, as derived in Figure 8.

6. Conclusions

In this paper, the optimal rating of transformers connecting wind power plants has
been dealt with by taking into account the probabilistic analysis of lifetime degradation.
The Ornstein–Uhlenbeck stochastic approach was used to generate synthetic wind turbines
power profiles, as well as synthetic thermal transformer profiles which allowed formu-
lating the aging of transformers. In the numerical application, the lifetime reduction was
demonstrated to be distributed as a Lognormal process allowing to easily derive the rated
current corresponding to an aging acceleration factor equal to that obtained in correspon-
dence of the rated hot-spot temperature, i.e., the standard lifetime duration assumed for
the transformer. The results of the simulation showed that the proposed method is able
to determine the increment of rated current required to get a standard lifetime duration
without incurring a higher aging acceleration. This is particularly useful in the case of
wind farm applications whose high wind power fluctuations do not modify the mean
power value which leads to incorrect transformer sizing. The use of Ornstein–Uhlenbeck
stochastic approach is able to capture the effect of these fluctuations in terms of lifetime
reduction. Future application will be devoted to the combination of the proposed method
with other sizing issues, which typically affect the aging of transformers of wind farms,
including through the harmonic content, due to the use of wind power converters.
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