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Abstract: Biochemical methane potential (BMP) of anaerobic co-digestion (co-AD) feedstocks is an
essential basis for optimizing ratios of materials. Given the time-consuming shortage of conventional
BMP tests, a rapid estimated method was proposed for BMP of co-AD—with straw and feces as
feedstocks—based on near infrared spectroscopy (NIRS) combined with chemometrics. Partial least
squares with several variable selection algorithms were used for establishing calibration models.
Variable selection methods were constructed by the genetic simulated annealing algorithm (GSA)
combined with interval partial least squares (iPLS), synergy iPLS, backward iPLS, and competitive
adaptive reweighted sampling (CARS), respectively. By comparing the modeling performances of
characteristic wavelengths selected by different algorithms, it was found that the model constructed
using 57 characteristic wavelengths selected by CARS-GSA had the best prediction accuracy. For the
validation set, the determination coefficient, root mean square error and relative root mean square
error of the CARS-GSA model were 0.984, 6.293 and 2.600, respectively. The result shows that the
NIRS regression model—constructed with characteristic wavelengths, selected by CARS-GSA—can
meet actual detection requirements. Based on a large number of samples collected, the method
proposed in this study can realize the rapid and accurate determination of the BMP for co-AD raw
materials in biogas engineering.

Keywords: anaerobic co-digestion; biochemical methane potential; near infrared spectroscopy;
characteristic wavelengths; partial least squares

1. Introduction

With the continuous improvement of energy demand and the excessive utilization of
fossil fuels, people are paying more and more attention to the development of renewable
energy in the world [1,2]. As a big agricultural country, China produces a great amount
of organic waste, such as crop straw and livestock manure (LM), resulting in increasingly
prominent environmental pollution problems [3,4]. Biogas production by anaerobic diges-
tion (AD), as a renewable energy technology [5,6], is an essential way and development
direction for achieving resource utilization of organic waste, enhancement of the environ-
ment and solutions to energy shortages [7,8]. The biochemical methane potential (BMP)
represents the maximum methane yield of AD feedstocks, which is an important index to
evaluate the suitability of feedstocks for producing biogas [9,10]. The BMP determination
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of AD feedstocks is an essential basis for guiding biogas engineering feed, optimizing the
equipment of AD, monitoring the status of AD, and evaluating the economic feasibility of
biogas production [11,12].

Anaerobic co-digestion (co-AD) is an effective way to solve the low efficiency and
conversion rate of methane production, due to property constraints of the substrate, when
producing biogas from a single feedstock during anaerobic mono-digestion (mono-AD) [13].
The carbon–nitrogen ratio (C/N) is an important determinant of the methane yield of AD.
During the mono-AD process, when crop straw with a high C/N is taken as the substrate
to produce biogas, methanogens consume N rapidly, resulting in lower methane yields. For
LM, low C/N increases the pH of the fermentation system due to ammonia accumulation,
restraining the growth of methanogenic bacteria. When using crop straw as the major
substrate to produce biogas, the C/N is improved by mixing with LM for co-AD, to raise
the efficiency and potential of biogas production [14]. To determine optimal proportioning
of feedstocks and optimum conditions for methane production, it is necessary to perform
the rapid BMP evaluation of co-AD raw materials [15]. However, conventional BMP tests
take at least 20 days [16], and cannot satisfy the demand of rapid BMP evaluation for co-AD
raw material. Therefore, it is necessary to develop a fast and reliable analytical method
to realize the rapid detection of BMP. To this end, some rapid BMP evaluation methods
were proposed to resolve deficiencies of conventional BMP tests [9,17,18]. Among them,
the Buswell theoretical model—based on elemental analysis—had larger BMP prediction
errors due to its lack of ability to distinguish between degradable and non-degradable
components [19]. BMP prediction methods based on substrate properties have good BMP
evaluated accuracies, because they associate with organic biodegradable components [14].
However, it is still necessary to determine the composition of feedstocks, such as lipids,
carbohydrates and proteins, which is expensive and time-consuming.

Near infrared spectroscopy (NIRS) has the advantages of being simple, fast, non-
destructive, low in cost and can achieve multicomponent synchronous detection [20,21]. It
can realize qualitative analysis and quantitative detection of material composition based
on the information of hydric groups such as -CH, -NH and -OH [22,23]. For organic waste
resources, NRS can realize rapid analysis of physicochemical indexes, including protein, fat,
cellulose, hemicellulose, lignin, total sugar and C/N [24,25]. The above physicochemical
indexes of the organic matter directly relate to the biogas production capacity of AD [9,16].
Therefore, rapid evaluation methods based on NIRS were presented for directly estimat-
ing BMP of AD feedstocks, such as municipal organic solid waste [26], plant biomass
materials [27], animal breeding waste [28], aquatic plants and energy algae [29], which
solves the time-consuming shortage of conventional BMP tests and physicochemical index
analysis [30].

With the improvements in the acquisition precision of NIRS instruments, the collected
NIRS data contain abundant background noise, and irrelevant and collinear wavelength
variables [31]. These redundant wavelengths not only increase the complexity of the model
but also seriously affect its prediction accuracy [23]. By characteristic wavelength (CW)
selection, the influence of irrelevant and collinearity wavelengths on model precision can
be effectively eliminated [32]. The genetic algorithm (GA) has been widely used in NIRS
CW selection because of its strong robustness and global search capability [33]. GA can
effectively dispose of collinearity phenomena among spectral wavelengths based on its
feature of random search, and can fuse other wavelength selection algorithms to select
CW [34]. However, GA has the problem of premature convergence, and its search efficiency
of late evolutionary needs to be further improved.

The genetic simulated annealing algorithm (GSA) is an improvement of GA, which
combines the temperature parameter of the simulated annealing algorithm (SA) to design
the fitness function and introduces the Metropolis selection replication strategy [25]. GSA
solves the two shortcomings of GA, while effectively utilizing GA’s powerful search
capability, and achieves a better application effect in NIRS CWs selection [24]. Therefore,
this paper proposed that the GSA algorithm was, respectively, combined with the interval
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partial least squares (iPLS), the synergy iPLS (SiPLS), the backward iPLS (BiPLS) and
the competitive adaptive reweighted sampling (CARS) to construct four CWs selection
algorithms, namely as double GSA—partial least squares (DGSA-PLS), SiPLS-GSA, BiPLS-
GSA and CARS-GSA, respectively, which was used to select CWs of BMP. The main
objective of this study is to obtain effective modeling wavelengths with a high correlation
to BMP, and realize the rapid detection of BMP of co-AD feedstocks based on NIRS.

2. Materials and Methods
2.1. Sample Preparation of Anaerobic Co-Digestion

Corn stover (CS) was collected from an experimental farm at the Northeast Agricul-
tural University. After being collected, CS was naturally air-dried and then pulverized
using 9FQ-36B hammer crusher with a 5 mm screen (Sida, Luoyang, China). Dairy manure
(DM) was taken from the Yufeng Dairy Farmers’ Professional Cooperative of Harbin. Goat
manure (GM) was sampled from the Acheng experimental and practical base of the North-
east Agricultural University. Swine manure (SM) was collected from the Sanyuan Livestock
Industry Company of Harbin. The impurities in DM, GM and SM were picked out before
being used. Before being used, CS fragments, DM, GM and SM were oven-dried at 60 ◦C
up to a constant weight [35], and then produced into a powder (40 mesh) using FZ-102
Cyclone crusher (Taisite, Tianjin, China). After that, 27 samples of straw and manure
mixtures were prepared in a fixed proportion. For each manure, 9 samples were prepared
by mixing with CS, according to the total solid (TS) ratio with 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7,
2:8 and 1:9. In addition, 9 samples of mixtures were prepared in a random proportion,
including three mixtures of CS and DM, three for CS and GM, and CS and SM. Finally, a
total of 40 samples of co-AD feedstocks were prepared for this study, including CS, DM,
GM, SM and 36 mixtures. They were stored at room temperature in airtight bags, and
protected from light in a dark box.

2.2. Measurement and Preprocessing of Spectral Data

The reflectance spectral data of samples were collected using a Fourier transform
spectrometer (Bruker TANGO, Ettlingen, Germany). Each spectrum was scanned with a
resolution of 8.0 cm−1 over 11,542–3946 cm−1 (866–2534 nm), with an average of 32 scans.
The powder samples were loaded into 50 mm diameter quartz sampling tube filled up
height of 10 mm and placed in a rotating sampler. Each sample was measured three times
and reloaded for each replicate to maintain sample homogeneity. The average of triplicate
scans was taken as the raw spectrum to establish the calibration model. Each spectrum had
1845 wavenumber variables with an interval of 3.86 cm−1. Various spectral preprocessing
methods, including Savitzky–Golay (SG) smooth, multivariate scattering correction (MSC),
standard normal variate, first derivative and their combination, were applied to correct
the baseline offsets and spectral scattering of the raw spectra. By comparing the root mean
square error (RMSE) of cross validation (RMSECV) of partial least squares (PLS) regression
model constructed by different methods, the combination of MSC and SG smooth was
selected as the optimal preprocessing method to obtain preprocessed spectra for NIRS
quantitative analysis.

2.3. Determination of Biochemical Methane Potential

Traditional batch incubation tests were carried out for determining the BMP of co-
AD feedstock materials. The assay was performed in triplicate with 0.5 L conical bottles
(working volume of 0.35 L) as the batch reactor, in medium temperature conditions (37 ◦C),
for a period of 30 d. The biogas slurry was taken from a 500 L mesophilic AD reactor
with CS and DM as substrates, digested for 30 d in our laboratory, which was used as
the inoculum and was filtered through 18 mesh sieve to maintain homogeneity. For each
batch reactor, 220 g of inoculum, 10 g of substrate (dry base), 4 mL of nutrient solution
and 120 mL distilled water were added for digestion [16]. Three batch reactors, without
addition of substrate were taken as the blank control group to correct the biogas of co-AD
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feedstocks. Methane production of blanks was subtracted from that of the substrates,
ensuring that the net methane yield of substrates was obtained. The net methane yield was
divided by the content of volatile solid (VS) of substrate to obtain the BMP for each co-AD
feedstocks. The reactors were flushed with nitrogen gas for 5 min, and sealed with a rubber
stopper and then AD in a water bath (37 ± 1 ◦C) was performed with a circulating pump.
During the experiment, the reactors were manually agitated for 15 s twice a day at a fixed
time, and gas volume and the components were measured once per day at the fixed time.
Biogas produced by AD was collected using gas sampling bags to analyze the methane
concentration and biogas yield. The methane concentration was analyzed by GC-6890N
gas chromatography (Agilent, Santa Clara, USA). The volume of biogas was determine
by the acidified water displacement method, and converted to standard temperature and
pressure state (273 K, 760 mmHg) volume uniformly [36]. The conversion equation is as
follows:

VSTP =
VT × 273 × (760 − pw)

(273 + T)× 760
, (1)

where VSTP is the gas volume at standard temperature and pressure state (273 K, 760 mmHg),
VT is the gas volume measured at the temperature of T ◦C, Pw and T are the actual gas
volume and ambient temperature in laboratory.

2.4. Selection Algorithms of Characteristic Wavelengths
2.4.1. GSA Algorithm

To solve the shortage of traditional GA, GSA was constructed by combining GA
with SA. GSA consisted of three parts, including algorithm initialization, design of fitness
function and operation of genetic evolution. In addition to the basic parameter setting,
the determination of initial temperature was most important in algorithm initialization.
The initial temperature was defined using the equation t0 = K( f max

t_0 − f min
t_0 ), where f max

t_0
and f min

t_0 were the maximum and minimum of the target function in the initialization
population, respectively, K was the initial temperature coefficient (a positive integer). The
equation tn+1 = αtn was taken as the annealing function, where α was cooling coefficient
(0 < α < 1). The parameters K and α were used to adjust the initial temperature and
the annealing speed. When GSA was used to select the CWs, the RMSECV of the PLS
regression model was adopted as the target function, and the fitness function was defined
by combining with the temperature parameter as follows:

f (x) =
1

exp
(

ft(x)− f min
t

t

) , (2)

where f (x) and ft(x) are the values of fitness function and target function, respectively;
f min
t is the minimum of the target function in current population, t is the current tem-

perature. By improving the design of the fitness function, the difference of the fitness
function values among different chromosomes was small at high temperatures, thereby
avoiding convergence to the local optimal selection. At low temperatures, larger values of
fitness function were calculated for the chromosomes with lower RMSECV values, thereby
accelerating the convergence speed of the algorithm.

Aiming at effective selection of the CWs, the evolutionary process of GSA was im-
proved and designed as four parts, including selection, crossover, mutation, and Metropolis
selection replication. Gambling wheel selection with the optimum maintaining strategy
was adopted as the selection operation. A discrete recombination operation was selected
to complete the crossover process. A discrete multi-bit variation strategy was used to per-
form the mutation operation. Metropolis selection replication consisted of neighborhood
solution construction based on multi-bit mutation strategy and state acceptance function
based on Metropolis discriminant criteria.
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2.4.2. SiPLS-GSA and BiPLS-GSA

SiPLS and BiPLS are two characteristic spectral intervals (CSI) selection algorithms
developed based on iPLS [23]. After SiPLS divides the entire spectral region into multiple
equal-width intervals, the RMSECV values corresponding to all possible 2–4 interval
combinations are calculated, and the interval combination with the minimum RMSECV
is selected as the CSI of SiPLS [37]. After BiPLS divides the entire spectral region into
multiple equal-width intervals, the intervals with the maximum RMSECV values are
removed successively, the PLS regression model is established using the remaining multiple
intervals, and the corresponding RMSECV is calculated. The combination of multiple
intervals corresponding to the lowest RMSECV values is selected as the CSI of BiPLS [38].

SiPLS-GSA and BiPLS-GSA first used SiPLS and BiPLS to select the CSI, respectively,
for preliminary positioning of CWs. After that, GSA was used to select CWs from the above
CSIs, and the redundant wavelengths existing in the spectral intervals were eliminated.
SiPLS-GSA and BiPLS-GSA took the number of CWs in the selected CSI as the code length
(CL) for binary gene coding and chromosomes population initialization. The values “1” and
“0” indicated whether the data related to the wavelength gene were selected to participate
in the calculation (“1” meant “selected” and “0” meant “unselected”). According to the
result of population initialization, the RMSECV of each chromosome was calculated as
the target function value to determine the initial temperature and annealing operation,
and calculate the value of fitness function of each chromosome [25]. After that, multiple
rounds of roulette wheel selection with optimal reservation strategy, discrete recombination
crossover, discrete mutation, and Metropolis perturbation evolution were executed to select
CWs [23]. SiPLS-GSA and BiPLS-GSA performed GSA multiple times, and took the
repeatedly selected wavelengths as CWs, according to the number of repeated selection
with the lowest RMSECV, which effectively solved the randomness of the GSA optimized
results.

2.4.3. DGSA-PLS

DGSA-PLS consisted of GSA-iPLS CSI selection and GSA CWs optimization. GSA-
iPLS was used to select the CSI with high correlations, and GSA was used to further
eliminate the irrelevant and collinear redundant wavelengths in CSI.

GSA-iPLS combined the idea of iPLS with the powerful random search capability of
GSA [37]. GSA-iPLS divided NIRS data into N equal-width intervals, and then, GSA was
used to select the effective CSI for modeling to improve the model accuracy. GSA-iPLS used
binary gene coding, taking the number of intervals as the CL, to execute the population
initialization of GSA. Values of “1” and “0” indicated whether the data corresponding to
all wavelengths contained in the interval gene were selected to participate in the operation.
After multiple rounds of population evolution, the CSI was selected after reaching the algo-
rithm termination condition. According to the above method, the CSI selection algorithm
was executed multiple times, the multiple alternative characteristic interval combinations
corresponding to the different number of intervals were calculated. In addition, the optimal
number of interval division and optimal CSI were determined by selecting the combination
of alternative characteristic intervals with the lowest RMSECV. After that, the number of
CWs contained in CSI selected by GSA-iPLS was taken as the CL of DGSA-PLS for the
further selection of CWs. Other selection procedures of DGSA-PLS were consistent with
SiPLS-GSA and BiPLS-GSA.

2.4.4. CARS-GSA

CARS is a classical selection method of CWs, based on the principle of “survival of the
fittest” [39]. CARS first constructs multiple subsets of wavelengths based on Monte Carlo
sampling (MCS). Through exponentially decreasing processing and adaptive reweighted
sampling (ARS), the optimal subset with the lowest RMSECV is taken as the CWs. However,
there is weak consistency among multiple selection results due to introduction of two
random factors (MCS and ARS) in the iterative search process of CARS.
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To solve the inconsistency of CWs selected by CARS, a multiple CARS (MCARS)
method was proposed to select CWs with higher correlations to the target attribute by
performing the CARS multiple times [40]. Repeatedly selected wavelengths represented the
key wavelengths with high pertinence, and the greater the number of selections, the higher
the correlation. Taking these repeatedly selected wavelengths as CWs can significantly
improve the modeling performance. After determining the optimal number of repeated
selection, according to the lowest RMSECV, the wavelengths with the number of selections
greater than optimal number were taken as the CWs selected by MCARS. CARS-GSA took
the number of CWs selected by MCARS as the CL to perform the GSA selection. Other
selection procedures of CARS-GSA were consistent with SiPLS-GSA and BiPLS-GSA.

2.5. Evaluation Indexes of Calibration Models

A total of 31 co-AD feedstocks were taken as the calibration set to construct calibration
models, including 27 mixtures prepared in the fixed proportion and four pure samples
of CS, DM, GM and SM. Nine mixtures mixed in a random proportion were selected
as the validation set to evaluate the performance of predicted models. To evaluate the
modeling performance of different CW selection algorithms, the corresponding PLS cal-
ibration models were established using CWs selected by each algorithm. Coefficient of
determination (R2), RMSE and relative RMSE (rRMSE) ware taken as performance indi-
cators to systematically analyze the validity of the predicted models. For high-accuracy
predicted model, R2 should be higher, and RMSE and rRMSE should be lower [24]. The
R2 included R2

c and R2
p, which represented R2 for the calibration set and validation set,

respectively. The RMSE included RMSEC and RMSEP for the calibration set and validation
set, respectively. The rRMSE included rRMSEC and rRMSEP for the calibration set and
validation set, respectively. R2, RMSE and rRMSE were defined as follows:

R2 = 1 −
n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − y)2, (3)

RMSE =

√
n

∑
i=1

(yi − ŷi)
2/n, (4)

rRMSE =

√
n

∑
i=1

(yi − ŷi)
2/ny, (5)

where, yi represented the actual values, ŷi represented the predicted values, y represented
the average of actual values, n was the total of samples, i was the ith samples.

Analysis of experimental data, preprocessing of spectral data, selection of CWs, con-
struction of calibration model and analysis of the predicted performance were conducted
by Matlab software version R2016b (Mathworks, Natick, MA, USA).

3. Results and Discussion
3.1. Analysis of Collected Data

Table 1 shows the physicochemical indexes of AD raw materials, such as CS, DM, GM,
SM and inoculum, which were measured by the methods in the literature [40]. Compared
with CS, three animal feces samples contained less lignocellulose and more crude protein,
and their carbon–nitrogen ratios were lower. The lignocellulosic content of DM and GM
is higher than that of SM, because the crude fiber content in the feed of the cattle and
goat is higher, while the crude protein and fat components in SM are higher. The BMP
values indicate that SM has a higher methanogenic capacity than CS, DM and GM during
mono-AD.
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Table 1. Physicochemical indexes of anaerobic digestion feedstocks.

Parameter Corn Stover Dairy Manure Goat Manure Swine Manure Inoculum

Total Solid (%) a 86.02 ± 0.91 26.62 ± 0.86 79.86 ± 1.78 31.22 ± 3.97 4.76 ± 0.21
Volatile Solid (%) a 80.89 ± 0.67 19.37 ± 0.43 66.72 ± 1.45 23.27 ± 2.61 3.47 ± 0.21
Crude Protein (%) b 1.99 ± 0.01 11.65 ± 0.01 15.27 ± 0.03 22.49 ± 0.01 –

Crude Fat (%) b 8.83 ± 0.40 3.30 ± 0.58 6.68 ± 0.37 7.95 ± 0.75 –
Cellulose (%) b 32.41 ± 2.30 21.25 ± 0.32 22.63 ± 0.18 9.26 ± 0.22 –

Hemicellulose (%) b 28.40 ± 2.24 26.57 ± 0.85 28.15 ± 0.57 23.16 ± 0.56 –
Lignin (%) b 3.08 ± 0.08 6.88 ± 0.07 8.38 ± 0.45 2.56 ± 0.51 –

Total Sugar (%) b 51.03 ± 1.98 46.68 ± 1.48 59.96 ± 2.11 49.56 ± 1.89 –
Total Carbon (%) b 42.94 ± 0.29 38.26 ± 0.25 43.47 ± 0.72 37.66 ± 0.89 36.36 ± 0.19

Total Nitrogen (%) b 0.49 ± 0.01 2.15 ± 0.06 2.41 ± 0.22 3.46 ± 0.14 3.23 ± 0.05
Carbon–nitrogen Ratio 88.35 17.83 18.02 10.89 11.26 ± 0.15

BMP (mL/g VS) 219 ± 19 176 ± 9 205 ± 14 332 ± 10 18 ± 0.35
a as total weight of sample; b as total solid of sample; BMP: biochemical methane potential, VS: volatile solid.

Figure 1a shows that the daily methane yields of co-AD feedstocks in the start-up
stage were higher than those of the mono-AD raw materials. The main reason for this is
that the nutrients of the co-AD feedstocks are more balanced [41], and the C/N is more
suitable for methanogens growth [14], thereby reducing the lag phase time and increasing
the methane yield in the start-up stage [42]. Figure 1b shows that the BMP of co-AD with
CS and SM as feedstocks was higher than the mixed materials of CS with DM or GM.
The main reason for this is that SM has higher contents of crude protein and fat than CS,
DM and GM. Crude protein and fat have higher degradable and methanogenic capacity
compared with the lignocellulose with high content in CS, DM and GM [40]. After testing,
it was found that the BMP data showed a normal distribution (Figure 1c). The boxplot and
histogram display broad distributions of BMP data, which provides a basis for establishing
a high-performance regression model [43].
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Figure 1. BMP statistics of the anaerobic co-digestion feedstocks. (a) cumulative methane production of partial samples;
(b) BMP boxplot of different sample categories; (c) BMP histogram of all samples. CD1:1, CG1:1 and CS1:1 represent the
1:1 mixtures of corn stover with dairy manure, goat manure and swine manure, respectively. CSDM, CSGM and CSSM
represent the mixtures of corn stover with dairy manure, goat manure and swine manure, respectively.

BMP statistical data of co-AD feedstocks are shown in Table 2. The coefficient of
variation is equal to the ratio of standard deviation to mean value, which can effectively
eliminate the negative influence of differences of units or average values on the modeling
performance [40]. As shown in Table 2, the coefficient of variation was 16.83% for the
calibration set and 17.26% for the validation set, correspondingly, which showed that the
large amount of variation among the BMP data was beneficial for constructing a robust
model [24]. The result of the sample set partitioning ensured that the BMP data in the
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calibration set were consistent with those of the validation set and covered the validation
set, which was suitable for development of the calibration model [44].

Table 2. Biochemical methane potential statistical data of anaerobic co-digestion feedstocks.

Samples Mean
(mL/g VS)

Maximum
(mL/g VS)

Minimum
(mL/g VS)

Standard Deviation
(mL/g VS)

Coefficient of Variation
(%)

Calibration set 243.02 331.90 175.69 40.21 16.83
Validation set 242.02 313.80 185.83 39.38 17.26

VS: volatile solid.

Figure 2a shows that there are strong baseline offsets in the raw spectra. Figure 2b
shows that the interference of baseline offsets and background noise in the spectral data is
eliminated by preprocessing of MSC combined with SG smooth, thereby enhancing the
resolution of spectral data, and raising the signal–noise ratio [45]. MSC can correct baseline
offsets and spectral scattering, and SG smooth can effectively eliminate the influence of
random noise on the modeling. For pretreated spectra, the low wavenumber region of
9000–4000 cm−1 has a stronger absorption peak, sharper waveform, better resolution and
higher signal–noise ratio [46]. However, there are still plenty of redundant wavelengths
in pretreated spectra, resulting in adverse influences on the accuracy and stability of the
models. Therefore, it is necessary to perform CW selection to obtain key wavelengths for
modeling [25].
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3.2. Selection of Characteristic Wavelengths
3.2.1. Characteristic Wavelengths Selected by SiPLS-GSA

When using SiPLS-GSA to select the CWs of the BMP, SiPLS was used to select the
CSI first. To analyze the influence of the number of spectral interval divisions on the CWs
selection and the modeling performance, whole spectra were partitioned into 15, 18, 23,
31, 37, 46 and 61 intervals, respectively, according to about 120, 100, 80, 60, 50, 40 and 30
wavelength variables contained in one interval. The RMSECV value corresponding to the
combination of two to four intervals was calculated for each number of segmentation. By
comparing RMSECV values of different interval combinations, the intervals (9 11 13 21)
were taken as the CSI of BMP with 320 wavelength variables when spectra were divided
into 23 intervals (gray shaded area in Figure 3).
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GSA (SiPLS-GSA). The gray bars are the characteristic spectra intervals selected by SiPLS, the blue
histograms are the characteristic wavelengths selected by SiPLS-GSA, and the red line is the mean of
the pretreated spectra.

When using GSA to further select CWs, the parameters of the algorithm were set as
follows: CL of 320, population size of 110, initial temperature coefficient of 200, cooling coef-
ficient of 0.95, evolutional algebra of 200, crossover probability of 0.7, mutation probability
of 0.01, and disturbance bits of neighborhood solutions of 16. To resolve the uncertainty
of the results selected by GSA, the procedure was executed 50 times to select wavelength
variables in the CSIs of BMP. Then the corresponding RMSECV was calculated along with
increasing the number of repeated selections. Wavelength variables corresponded to the
number of repeated selections with the lowest RMSECV values being taken as the selected
CWs of SiPLS-GSA. SiPLS-GSA was performed to obtain 285 wavelength variables as CWs
with four repeated selections (blue histogram in Figure 3). Among the CWs selected by
SiPLS-GSA, there was a higher frequency of selection corresponding to the second overtone
region of carbon-containing groups such as C-H. The wavelengths in the second overtone
and combination regions of N-H and C=O groups were selected more frequently. These
C-H, N-H and C=O groups correspond to the carbohydrate, protein and lipid in organic
matter [29,47]. This indicates that these three chemical components played a major role in
the methane yield potential of co-AD [48].

3.2.2. Characteristic Wavelengths Selected by BiPLS-GSA

When BiPLS-GSA was used to select CWs of BMP, the same interval division scheme
as SiPLS-GSA was adopted. BiPLS was used to select the combination of intervals for each
number of segmentations first, and intervals (2 3 26 27 28 38 46 55 59) corresponding to the
minimum RMSECV were taken as the CSI of BMP, with a total of 272 wavelength variables
when spectra were divided into 61 intervals (gray shaded area in Figure 4).
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Figure 4. Characteristic wavelengths of biochemical methane potential optimized by backward
iPLS—GSA (BiPLS-GSA). The gray bars are the characteristic spectra intervals selected by BiPLS, the
blue histograms are the characteristic wavelengths selected by BiPLS-GSA, and the red line is the
mean of the pretreated spectra.

The number of wavelength variables (272) in CSI selected by BiPLS was taken as the
CL, and 90 chromosomes were randomly generated to construct the initial population
to execute the GSA for the further selection of CWs. The number of disturbance bits
of neighborhood solutions was set to 14, and other parameters were consistent with
SiPLS-GSA. After performing GSA 50 times, 260 wavelength variables with the number of
repeated selections of four were selected as CWs of BiPLS-GSA (blue histogram in Figure 4).
In the wavenumber of 11,100–11,400 cm−1 and 8000–8400 cm−1, there were wavelength
variables with the higher frequency of selection corresponding to C-H group in CWs.
While in other ranges, the wavelength variables corresponding to C=O, C-H and N-H
groups were selected more frequently. These wavelength variables, which were selected
more frequently, corresponded to the relevant groups in lignocellulose, protein and lipid
components of the co-AD feedstocks.

3.2.3. Characteristic Wavelengths Selected by DGSA-PLS

GSA-iPLS adopted the same interval division scheme as SiPLS-GSA. For each number
of intervals, the GSA-iPLS algorithm was executed 10 times, and the effective interval
combinations were selected as the selected CSI according to RMSECV. When using GSA-
iPLS to select the CSI, the number of interval partitions was taken as the CL, the population
size was set to 100, and the number of disturbance bits of neighborhood solutions was set
to one tenth of the CL (up rounding). Other parameters of GSA-iPLS were consistent with
SiPLS-GSA. According to RMSECV, the intervals (8 14 16 17 21 26 33 34) were taken as the
CSI of BMP with 398 wavelength variables when spectra were divided into 37 intervals
(gray shaded area in Figure 5).
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GSA-iPLS, the blue histograms are the characteristic wavelengths selected by DGSA-PLS, and the
red line is the mean of the pretreated spectra.

DGSA-PLS took the number of wavelengths in the CSI selected by GSA-iPLS as
CL, generated 160 chromosomes with CL of 398 to construct the initial population, and
the number of perturbation bits of neighborhood solution was set to 20. Other initial
parameters of the algorithm were consistent with SiPLS-iPLS. After performing GSA
50 times, 344 wavelength variables with eight repeated selections were selected as CWs
of DGSA-PLS (blue histogram in Figure 5). There were 31 wavelength variables selected
more than 35 times, which corresponded to second and third overtone regions of the C-H
group, the overtones and combination band regions of N-H, and the combination band
region of the C=O group.

3.2.4. Characteristic Wavelengths Selected by CARS-GSA

When using MCARS to select the CWs of BMP, CARS was executed 500 times first,
and then the corresponding RMSECV was calculated along with increasing the number
of repeated selections. The number of repeated selections with the lowest RMSECV
corresponded to the wavelength variables as the selected BMP CWs of MCARS. MCARS
was performed to obtain 383 alternative wavelengths, and 77 wavelength variables were
selected as the CWs of MCARS corresponding to the number of repeated selections of
39 (Figure 6). This result indicates that MCARS can realize the effective compression of
collinear wavelength variables while eliminating irrelevant wavelengths [40].

When the CARS-GSA was used to select CWs of BMP, the number of CWs selected by
MCARS was taken as the CL to randomly generate 40 chromosomes for the construction of
the initial population. The number of perturbation bits of neighborhood solution was set
to eight, and other parameters were consistent with SiPLS-GSA. After performing GSA for
50 times, 57 wavelength variables with the number of repeated selections of seven were
selected as CWs of CARS-GSA (Figure 6). The CWs of MCAR and CARS-GSA mainly
corresponded to the overtone region of the C-H group, the overtones and combination
band regions of the N-H group, and the second, third overtones and combination band
regions of the C=O group. CARS-GSA mainly eliminated wavelength variables of the third
overtone region in CWs selected by MCARS.
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Str., OT and CB are short for stretch, overtone and combination, respectively.

For the CW selection algorithms proposed in the study, the repeatedly selected CWs,
by four algorithms mainly located in the wavenumber ranges of 7750–8375 cm−1 and
4625–5250 cm−1. The CWs in 7750–8375 cm−1 relate to the C-H second overtone [23]. The
absorption bands within 4625–5250 cm−1 are mainly attributed to the stretch and combi-
nation of the C-H, O-H, N-H and C=O groups [24]. In addition, the stretch first overtone
of the O-H and N-H groups are indicated by spectral regions from 6500–7125 cm−1 [40].
Judging from the number of CWs selected by these four algorithms, CARS-GSA displayed
the best capability in CWs selection for eliminating the uninformative wavelengths, which
can improve the efficiency of the regression model.

3.3. Performance Analysis of Models

To investigate the modeling performance of different CW selection methods, the PLS
regression models of BMP were established using CWs selected by SiPLS-GSA, BiPLS-GSA,
DGSA-PLS and CARS-GSA, respectively. Predicted performances of the models were
compared with those of the models constructed using whole wavelengths (denoted as
Full-PLS) and CWs selected by SiPLS, BiPLS, CARS, and MCARS. Performance indicators
of different models are shown in Table 3.

Table 3. Evaluation indexes of regression models constructed by different wavelength selection methods.

Methods Wavelength
Variables R2

c R2
p

RMSEC
(mL/g VS)

RMSEP
(mL/g VS)

rRMSEC
(%)

rRMSEP
(%) PCs

Full-PLS 1845 0.975 0.899 6.341 12.974 2.609 5.361 8
SiPLS 320 0.931 0.950 14.517 11.695 5.974 4.832 6

SiPLS-GSA 285 0.937 0.953 13.923 11.655 5.729 4.816 5
BiPLS 272 0.954 0.964 11.929 10.797 4.909 4.461 7

BiPLS-GSA 260 0.955 0.973 11.885 8.780 4.891 3.628 7
GSA-iPLS 398 0.927 0.971 14.904 9.260 6.133 3.826 6
DGSA-PLS 344 0.933 0.974 14.288 8.255 5.879 3.411 6

CARS 28 0.957 0.971 11.578 8.592 4.764 3.550 7
MCARS 77 0.969 0.982 9.868 6.599 4.061 2.727 7

CARS-GSA 57 0.970 0.984 9.761 6.293 4.017 2.600 7

R2
c : coefficient of determination for calibration set, R2

p: coefficient of determination for validation set, RMSEC: root mean square error for
calibration set, RMSEP: root mean square error for validation set, rRMSEC: relative root mean square error for calibration set, rRMSEP:
relative root mean square error for validation set, PCs: number of principal components.
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Table 3 shows that the R2
p of models constructed using different wavelength selection

algorithms is larger than 0.95, rRMSEP is less than 4.84, and their performances are superior
to the Full-PLS model. This indicates that the redundant wavelengths of NIRS have a
significant negative influence on the modeling accuracy [23]. It is necessary to eliminate
the irrelevant wavelengths by the variables selection to establish a high-performance NIRS
regression model [33]. It is important to note that the CARS-GSA algorithm acquired the
best modeling performance with the R2

p of 0.984, RMSEP of 6.293 and rRMSEP of 2.600%
for the validation set.

Figure 7 shows the scatter plots of the actual values and the predicted values for the
CARS-GSA model. Overall, scatter points of the actual values and the predicted values
were distributed along the 1:1 line, and the fit line coincided basically with the 1:1 line,
indicating that the prediction precision of the model is excellent [49]. The results illustrate
that the predicted model of BMP constructed by PLS combined with CARS-GSA can meet
the requirement of rapid evaluation for methane production capacity of co-AD feedstocks.
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3.4. Discussion of the Description Results

For the CSI selection algorithms, the modeling performances of their selected wave-
lengths was ranked as GSA-iPLS > BiPLS > SiPLS. The reasons are as follows: Firstly, SiPLS
searches two to four fixed number spectral intervals to obtain the key wavelengths, and
it has a good advantage for the concentrated distribution of CWs [23]. Secondly, BiPLS
eliminates the intervals one by one, and selects the combination intervals with the lowest
RMSECV as the CSI. Compared with SiPLS, BiPLS is more suitable for solving the problem
that CWs are widely distributed in the spectral region [25]. Thirdly, GSA-iPLS combines
the partition strategy of iPLS with the search capability of GSA, and constructs the initial
chromosome through the random combination of intervals [50]. Combining RMSECV with
the temperature parameter to design the fitness function, GSA-iPLS completed the CSI
selection through evolutionary operations. GSA-iPLS has greater random search capability
and higher performance of wavelengths selection than SiPLS and BiPLS [51]. Finally,
many degradable organic compounds (especially carbohydrates, lipids and crude pro-
teins) in co-AD feedstocks have important effects on their methanogenic ability, and their
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corresponding groups are widely distributed throughout the spectral space [40]. There-
fore, the predicted precision of the model constructed using CWs selected by GSA-iPLS
outperformed models based on SiPLS and BiPLS.

Compared with the SiPLS, BiPLS and GSA-iPLS, CARS has a better modeling perfor-
mance. It not only shows the high efficiency of CARS CWs selection, but also shows that
the uninformative redundant wavelengths in CSI selected by SiPLS, BiPLS and GA-iPLS
seriously affect the modeling performance [32]. It is necessary to use other algorithms
to further eliminate the uninformative variables in CSI [45]. SiPLS-GSA, BiPLS-GSA and
DGSA-PLS used GSA to select CWs from the preliminary results of SiPLS, BiPLS and
GSA-iPLS, respectively. They can effectively eliminate the redundant wavelength variables
in CSI selected by SiPLS, BiPLS and GSA-iPLS, thereby further improving the predicted
performance of the regression model [31]. The main reason for this is that GSA can select
the key wavelengths with high correlation to BMP, eliminate the variables with weak
correlation and improve the regression accuracy of the model by selecting RMSECV as
the target function [25]. Based on the powerful random search ability, GSA not only
eliminates the weak correlation variables, but also solves the collinearity problem among
wavelengths [24].

CARS constructs multiple subsets of CWs based on the RMSECV and the absolute
value of the regression coefficient, which can effectively remove irrelevant and collinearity
wavelength variables [52]. By taking repeatedly selected wavelengths as CWs after per-
forming CARS for multiple times, MCARS not only resolves the inconsistency of results
for CWs selected by CARS, but also effectively improves the modeling performance [40].
There may be some weak correlation wavelengths in the CWs selected by MCARS, which
can be eliminated by the CARS-GSA. By the further selection of GSA, the number of CWs
selected by CARS-GSA decreased to 57 and decreased by 25.97% compared with that of
MCARS. The RMSEP of CARS-GSA model was 6.293, which decreased by 4.64% compared
with that of MCARS. The rRMSEP decreased from 2.727% in MCARS model to 2.6000% in
CARS-GSA model. These results indicate that CARS-GSA has an excellent performance in
the CWs selection of BMP by combining MCARS with GSA.

For prediction accuracy of BMP regression model, the proposed NIRS models based
on CARS-GSA is superior to the study results in the literature [27,29,36], such as an RMSEP
of 37 and rRMSEP of 14.52% in the literature [35], RMSEP of 34 and rRMSEP of 11.83%
in the literature [28], and RMSEP of 44 and rRMSEP of 7.42% in the literature [26]. The
main reasons include two aspects: First, it is attributed to the efficiency of CW selection for
CARS-GSA, and the other is that the sample type is relatively singular in this study. Aiming
at the detection demand of BMP for co-AD with CS and LM as the substrate, mixtures of
straw and manure were taken as feedstocks to construct the prediction model of BMP. It
is beneficial to the construction of a special NIRS rapid detection system. However, the
application scope of the model is limited. If the proposed CARS-GSA model is to be applied
for the BMP detection of actual biogas engineering, it is necessary to extend the samples
set to establish the more robust regression model. Especially, to detect BMP of other raw
materials, such as chicken manure and rice straw, the model should be adjusted in addition
to the new sample sampling, which is also the first task to establish a high availability NIRS
detection model. Yao et al. [29] reported that the BMP of aquatic plants and algae was
rapidly evaluated by the NIRS regression model, which was constructed by GA combined
with a support vector machine. The predicted results, with an RMSEP of 16.61 and rRMSEP
of 2.08%, indicate that the combination of CW selection and nonlinear modeling has good
performance in modeling the NIRS regression model of BMP [33]. The combination of the
proposed CW selection methods with nonlinear modeling methods, such as support vector
machine and extreme learning machine, to establish a high-performance BMP prediction
model also represents an important research direction in the future.
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4. Conclusions

Quantitative models were developed with the NIRS data and BMP of co-AD feed-
stocks using four CWs selection algorithms, including SiPLS-GSA, BiPLS-GSA, DGSA-PLS
and CARS-GSA. Among them, SiPLS-GSA, BiPLS-GSA, and DGSA-PLS realized the combi-
nation of characteristic spectral region selection and wavelengths for further optimization.
CARS-GSA combined the CW preliminary positioning of MCARS with the further se-
lection of GSA. By comparing the performance of regression models, it was found that
the CARS-GSA model presented a better performance than other different models. For
the CARS-GSA model, the RMSEP, rRMSEP and number of CWs were 6.293, 2.600% and
57, respectively, indicating that key variable selection by CARS-GSA could significantly
improve the predicted performance of regression model. These results show that NIRS
combined with CARS-GSA model can be successfully used for determination of the BMP
for co-AD feedstocks.
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