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Abstract: Magnetic Levitation is a process in which an object is suspended with the support of the
magnetic field. Despite being an unstable system, Magnetic Levitation Systems (MAGLEV) have
profound applications in various fields of engineering. MAGLEV systems are sensitive, unstable, and
nonlinear and uncertainties always pose a challenge in Controller Design. As a solution, adaptive
controllers came into existence with adaptation mechanisms to cover the system uncertainties. In this
study, a simple, novel, and an effective approach to the Enhanced Adaptive Control scheme is
proposed for the ball position control and tracking of an unstable Magnetic Levitation System. The
proposed Enhanced Model Reference Adaptive Scheme (EMRAC) follows the same phenomenon
of the Model Reference Adaptive Scheme (MRAC) with a slight difference in its control strategy.
The proposed scheme consists of Proportional-Integral-Velocity plus Feed Forward as the control
structure and a modified version of the standard tuning rule is used as the adaptation mechanism.
The control scheme is applied to a standard benchmark Magnetic Levitation System and the tracking
performance of the scheme is tested by applying square and multi-sine pattern trajectories to the
Magnetic Levitation System. The performance of the developed Enhanced MRAC performance is
compared with that of the Proportional Integral Velocity with Feedforward Control (PIV+FF) scheme
and the proposed control scheme is proven to be more suitable. The performance of the proposed
scheme is also analyzed with Power Spectral Density and Root Mean Square Error to evaluate the
ball position tracking control. It is inferred from the experimental results that Enhanced MRAC
accommodates the changes and makes the system more reliable with good tracking ability.

Keywords: control; adaptive; magnetic; levitation

1. Introduction

A Magnetic Levitation System (MAGLEV) involves the suspension of an object by
utilizing a magnetic field and by counteracting the effects of the gravitational force. It is an
unstable nonlinear system so the conventional linear feedback controllers, such as P, PI,
and PID controller schemes, may not be holding good performance due to the variations
in the process dynamics, external disturbances, and model uncertainties associated with
the non-linear unstable processes. To cope up with such non-linearities and model uncer-
tainties, after various research studies in the field of Control Theory, Adaptive Control
Schemes came into existence in the 1960s. MAGLEV has gained remarkable attention in
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recent years due to its applications in various fields, such as transportation engineering,
environmental engineering, aerospace engineering, military weapons engineering, nuclear
engineering, automotive engineering, and biomedical engineering [1]. They find their
emerging utilization in magnetically levitated trains, flying cars, aircraft, wind turbines,
and even in the biomedical field. This system is sensitive to environmental disturbances,
such as light intensity, wind, and opposition to gravitational force. To overcome such
uncertainties and effectively control the ball position and tracking, a modified version
of the Model Reference Adaptive Controller (MRAC) called Enhanced Model Reference
Adaptive Controller (EMRAC) is proposed, which results in a very minimal tracking error
and improved performance. Initially, a Proportional Integral Velocity (PIV) controller is
developed as per system requirements. Then, a novel combination of PIV with MRAC
is carried out. The objective behind the study is to propose an adaptive control scheme
named Enhanced Model Reference Adaptive Controller (EMRAC), which is slightly dif-
ferent from the standard Model Reference Adaptive Control Scheme (MRAC) to levitate
a steel ball to the required position against the gravity using electromagnetic force and
validate the ball position tracking control. Initially, the control schemes are simulated in
MATLAB. Subsequently, the proposed control schemes are implemented and validated
over a standard real-time Benchmark MAGLEV manufactured by Quanser Educational
Solutions with its own Quanser real-time control (QUARC) software and are interfaceable
with the MATLAB environment. The following subsections present a theoretical insight
on the MAGLEV system, which is the mathematical modelling of the system followed by
the controller synthesis for the proposed control scheme. The controller’s performance
efficacy is analyzed with different input trajectories and a comparative analysis between
the proposed control scheme and the conventional control scheme.

1.1. Theoretical Introduction

The MAGLEV system consists of three parts: solenoid coil, steel ball, and photosensor,
as shown in Figure 1. The same benchmark system is used in this study. The solenoid
coil provides the essential electromagnetic force for the ball to levitate. The steel ball
is the object used for levitation and the post where the steel ball rests also consists of a
photosensor to sense the ball position. In addition to that, the system is also provided with
interior lights for visibility [2].
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Adaptive controllers have gained wider attention because of their ability to adjust
automatically to the unknown disturbances and model uncertainties occurring in the sys-
tem. Among the adaptive control schemes, the Model Reference Adaptive Control (MRAC)
finds its wider application in non-linear systems because of its simplicity and its ability to
fine-tune the response characteristics of any system using a reference model [3]. The MRAC
structure consists of four major components: the process model, the reference model, the
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control scheme, and the adaptation mechanism. Research studies are carried out with
variations in a control scheme, such as Proportional Integral and Derivative (PID) with
intelligent controls or optimal control schemes, and variation in the adaptation mechanism
with more heuristic approaches for several kinds of applications [4]. Various controllers
were implemented for the MAGLEV system in the literature, which is discussed as follows.
A Static and Dynamic Sliding Mode Control (SMC) was implemented for MAGLEV to
enhance the robustness for the variation in the system parameters [5,6]. Adaptive learning
rules are used to learn the unknown parameters [7]. An adaptive robust nonlinear con-
troller was proposed for the position tracking problem of a magnetic levitation system.
However, the sensor measurements were found to be inaccurate due to continuous occur-
rences of disturbance. A combination of adaptive and robust control was found to improve
the transient behaviour of the system and the same was verified by simulation and Finite
Element Analysis (FEA) [8]. A non-linear Model Predictive Control (MPC) was proposed
by deriving a non-linear dynamical model of the MAGLEV system and it achieved high per-
formance for the stabilization and rapid set point changes of the levitating object. A robust
controller was designed by combining the feedback linearization and H-infinity controller
to control the ball position and mitigate the effects of external disturbances [9]. Feedback
linearization controllers were also implemented to attenuate high-frequency disturbances.
The progress in superconducting MAGLEV technology is encouraging innovations in
MAGLEV transportation applications. Automatic controllers are designed for non-linear
MAGLEV systems in which the controller parameters were tuned automatically using
metaheuristic algorithms, which enhances design flexibilities [10]. A comparative analysis
of MIT tuning rule-based control and Differential Evolution (DE) algorithm-based control
was carried out for a MAGLEV system. The analysis revealed that the DE-based offline
tuned PID controller performance is better than that of the MIT rule-based online tuned
PID controller [11]. While in the usage of adaptive control schemes, in a standard MRAC, to
rapidly reduce the tracking error, high-gain control behaviour is exhibited by using larger
adaptive gain to achieve fast adaptation. Such a high gain control produces high-frequency
oscillations leading the system to instability. Therefore, a faster adaptation approach was
proposed based on minimizing the squares of the tracking error without affecting the
robustness [12]. Also, various MRAC schemes were proposed based on different controller
approaches and adaptation mechanisms [13–15]. In this study, a simple control approach
with adaptation capability is applied to the MAGLEV system. The performance of the
proposed Enhanced MRAC scheme is compared with that of the conventional Proportional
Integral Velocity with Feedforward Control (PIV+FF) scheme. One of the simplest and the
most effective adaptive control scheme is the Model Reference Adaptive Control Structure
(MRAC), as shown in Figure 2. As the name suggests, the scheme is employed with a
reference model (RM). The deviation (e) between the output of the actual plant model
(yp) and the reference model (ym) is periodically corrected using the controller (C). In
the MRAC scheme, the controller parameters are updated using an adaptive mechanism
(AM). Figure 2 outlines the MRAC scheme. Gradient descent or an MIT tuning approach
is the most preferred adaptation technique in the MRAC scheme. The MIT rule states that
loss function must be minimized. This is achieved by changing the theta parameter dθ

dt
in the direction opposite the gradient’s direction, which is denoted by Equation (1). The
conventional MRAC scheme is further upgraded into Enhanced Model Reference Adaptive
Control (EMRAC) Scheme as shown in Figure 3.

dθ

dt
= −γ

∂J
∂θ

= −γe
∂e
∂θ

(1)

where the γ is the learning rate, e is the error, and J is the loss function [16]. For the larger
value of the command signal, the system may become unstable. To avoid that, a normalized



Energies 2021, 14, 1455 4 of 13

adaptation scheme is preferred. The mathematical representation of the normalized MIT
rule tuning for change in the parameter dθ

dt is denoted by Equation (2).

dθ

dt
= − γe∅

α +∅T∅
. (2)

where ∅ = ∂e
∂θ is called a sensitivity derivative of the system and α is the learning rate,

where α > 0 to remove the difficulty of zero division when ∅ is small.
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1.2. Proportional Integral Velocity Plus—Feed Forward Scheme (PIV-FF)

The schematic representation of the PIV-FF structure is outlined in Figure 2. The
mathematical description of the PIV-FF structure is shown in Equation (3).

u = (Kp +
Ki
s
)(r− y)− Kvr + K f f r (3)

where Kp, Ki, and Kv corresponds to proportional, integral, and velocity controller gains,
respectively. K f f is the feed-forward gain of the system, u, r, and y are control input,
reference, and process output, respectively. However, in this control scheme, a tracking
error with lag still exists.

1.3. Enhanced MRAC Scheme

The MRAC scheme shown in Figure 3, in general, employs a P or PI or Proportional-
Integral-Derivative (PID) control structure. In the Proportional-Integral-Derivative (PID)
scheme, the parameters are tuned concerning the position error at that instant of time
whereas, in PIV, the corrections are based on both the position and velocity error informa-
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tion. This makes the later performance more precise than the former scheme. Also, PIV
is mostly preferred in motion control applications. In this study, PIV + FF is utilized as
a control structure with a standard modified MIT adaptation mechanism and the perfor-
mance analysis is carried out for the non-linear unstable MAGLEV system. The proposed
enhanced MRAC control scheme consists of four gains, namely Kp, Ki, Kv, and K f f and the
adaptation mechanism consists of two tuning parameters, namely the adaptation rate (γ)

and amplification gain (Ka). The controller gains
(

Kp, Ki, Kv, and K f f

)
are evaluated by

a direct comparison method where the closed-loop ball position characteristic equation
is compared with the characteristic equation, which possesses the desired time domain
specifications, which include mainly the overshoot

(
Mp
)

and settling time (ts) parameters.
The reference model (RM) is chosen following the expected behaviour of the system as
time progresses. Proportional-Integral-Velocity (PIV) controllers are generally employed
for precise motion control applications. However, this structure inherently produces some
offset, which is compensated with a Feed-Forward (FF) controller. The capability to learn
and adapt to the changes with the extra bounded condition imposed as a time-domain
specification in PIV + FF makes MRAC into enhanced MRAC.

1.4. Mathematical Modeling of the Maglev System

The schematic representation of a MAGLEV system is shown in Figure 4. The plant
parameters of the benchmark MAGLEV system used in this study are presented in Table 1.
The coil voltage (Vc) supplied to the electromagnet can be obtained by applying Kirchhoff’s
voltage law, as shown in Equation (4). The transfer function of the electromagnet can be
obtained by using Equation (5).

Vc = (RcRs)Ic + Lc
d
dt

Ic (4)

Gc(s) =
Ic(s)
Vc(s)

=
Kc

τcs + 1
(5)

where Kc is the static gain and τc is the time constant.
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Table 1. Parameters of Maglev.

Symbol Description Value

Rc Coil resistance 10 Ω
Lc Coil inductance 412.5 mH
lc Coil length 0.0825 m
rc Coil steel core radius 0.008 m
Rs Current sense resistance 1 Ω
rb The radius of the ball 1.27 × 10−2 m

Mb Mass of the ball 0.068 kg
Tb Ball travel 0.014 m
G Gravitational constant 9.81 m/s2

cmax Maximum coil current 3 A
Kb Ball position sensor sensitivity 2.83 × 10−3 m/V
Km Electromagnet force constant 6.53 × 10−5 N.m2/A2

1.4.1. Equation for the Motion of the Ball

The attractive force acting on the ball due to the electromagnet is given by Equation (6).

Fc =
Km Ic(t)

2

2xb(t)
2 (6)

where xb is the ball position and Km is the electromagnetic force constant. Similarly, the
opposing force acting on the ball due to gravity is given by Equation (7). Hence, the total
force experienced by the ball is given by Equation (8).

Fg = Mbg (7)

Fext = −Fc + Fg = −Km Ic(t)
2

2xb(t)
2 + Mbg (8)

Applying Newton’s second law, we can obtain the following nonlinear equation of
motion (EOM) of the ball.

..
xb(t) = −

Km Ic(t)
2

2Mbxb(t)
2 + g (9)

We can obtain the following transfer function of the magnetic levitation system about
the equilibrium point (xb0, Ic0) by linearizing Equation (9) using Taylor’s series.

Gb(s) =
∆xb(s)
∆Ic(s)

= − Kb

S2 −ω2
b

(10)

where Kb is the direct current gain and wb is the natural frequency in rad/s. Equation (1)
represents the open-loop system, which is unstable. Hence, the maglev plant needs a
feedback controller to stabilize the plant.

1.4.2. Controller Synthesis

The Maglev current (Ic) to position (xb) the transfer function model is given by
Equation (11).

G(s) =
Xb(s)
Ic(s)

=
−2gxb0

Ic0xb0

(
s2 − 2g

xb0

) (11)

Equation (12) is substituted above to get the closed-loop structure.

Ic(s) =
(

Kp +
Ki
s

)
(Xb,d(s)− Xb(s))− KvXb(s) + K f f Xb,d(s) (12)
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The closed-loop ball position control structure can be given by Equation (13).

T(s) =
Xb(s)

Xb,d(s)
=

2gxb0

(
K f f + Kp

)
s + Ki

−Ic0xb0s3 + 2xb0gKvs2 +
(
2xb0gKp + 2Ic0g

)
s + 2xbogKi

(13)

Time-domain specifications are defined for the dynamics of interest. To achieve
1-mm square wave position setpoint from the ball equilibrium position in mid-air, the ball
position behaviour must satisfy the following design performance requirements of Percent
Overshoot, less than 5%, no static steady-state error, (ess = 0), maximum settling time less
than 0.3 s, and minimized control effort produced, which is proportional to the coil input
voltage (Vc). The steel ball position behaviour is subjected to operate at an equilibrium
point with peak overshoot

(
Mp
)

less than 5% and a steady-state error (ess) equal to zero
with a minimum control effort and settling time (ts) of less than 0.3 s. The third-order
system can be defined by Equation (14).

(s + p0)
(

s2 + 2ζωns + ω2
n

)
= s3 + (p0 + 2ζωn)s2 +

(
2p0ζωn + ω2

n

)
+ p0ω2

n (14)

With natural frequency (ωn) of 19.3 rad/s, damping ration (ζ) of 0.69, and a pole (p0)
at 40 rad/s, the desired time domain specifications can be met. The system is assumed
to operate at a static equilibrium condition with xb0 = 6 mm. At the equilibrium point,
the weight of the ball equals the electromagnetic force. From Equation (9), we obtain the
following.

Ic0 =

√
2Mbg

Km
xb0 (15)

Substituting the plant parameters from Table 1, and xb0, Ic0 = 0.86. From Equation (12),
at equilibrium Xb = Xd = Xb0, Ic = Ic0, we get Equation (16).

Ic = Ic0 = K f f xb0 (16)

The feedforward gain K f f can be obtained as K f f =
Ic0
xb0

. Similarly, substituting all the
plant parameters and the ωn, ζ, p0 and equating with Equation (13), Kp, Ki, and Kv can be
obtained. A First-order reference model is chosen on the assumption that the system will
try to have no overshoot once the system has adapted completely during the study. Since
the real-time MAGLEV system is nonlinear and sensitive to environmental disturbances
like varying light intensity and wind, the learning rate parameter/adaptation mechanism
will take care of the fluctuations in dynamics. Failing to which will make the steel ball
jump out of the experimental setup, the learning rate parameter/adaptation mechanism
will take care of the fluctuations in dynamics. In the MRAC scheme, these parameters are
updated periodically with an adaptation mechanism. The reference model (RM) taken for
analysis is given in Equation (17).

RM =

(
k

τs + p

)
(17)

The time constant (τ) is the parameter that determines the speed of response of the
system. The system with less of a time constant will have a faster response time. The
gain (k) determines the final value of the system. The learning or adaptation rate (γ) is
the parameter that forces the processes toward convergence. This parameter is largely
influenced by the magnitude of the input signal. For the tracking of a more complex
pattern, the amplification gain (Ka) is introduced into the process for providing faster
convergence. It is found based on experimentation by various trials. The amplification
gain (Ka) is approximately four times the learning rate (γ) for complex tracking patterns.
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For other standard test signal patterns, the amplification gain is chosen to be 1. However,
the γ is meant to be chosen according to the process input conditions as per Equation (18).

Ka '
{

4γ ; for complex input trajectory tracking
1; for simple input trajectory tracking

(18)

The system is subjected to analysis by a varying learning rate (γ) and the values of
Kv in the obtained range.

fv =
ω2

n
s2 + 2ζωn + ω2

n
(19)

The velocity portion of the control scheme (kv) is integrated with a derivative filter,
as shown in Equation (19) to compensate for noise association during the processes.

2. Results

The proposed control scheme is validated for its performance on the standard bench-
mark MAGLEV system shown in Figure 1. The block diagram of the real-time experimen-
tation setup is shown in Figure 5. The setup consists of a MAGLEV plant, a computer
control system, a data acquisition board associated with a signal conditioning circuit, and
the MAGLEV system parameters, which are presented in Table 1. The MAGLEV system
consists of a current sensor and photo sensor for measuring coil current and ball position,
respectively. The input range and resolution of Data Acquisition (DAQ) are ±10 V and
12 bits, which can measure signals up to a 2 kHz control rate. A power amplifier with a
regulated supply of ±10 V at 3 A governs the current supplied to the electromagnet. The
Quanser real-time control (QUARC) software is used for hardware in loop (HIL) testing.
The control algorithm realized in Simulink interacts with the QUARC software. The con-
troller parameters Kp, Ki, Kv, and K f f are chosen to be −199.7 A

m , −633.2 A/ms, −2.82 As
m ,

and 138.6 A
m , respectively. The damping factor (ζ) and the natural frequency (ωn) are

chosen to be 0.9 and −500 rad/s for experimentation. The first-order model is taken as the
reference model for analysis.
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2.1. Multi-Sine Trajectory Tracking

The attractive force acting on the ball due to the electromagnet is given by Equation (6).
The system is subjected to a performance analysis by applying highly asymmetric, compli-
cated input patterns. The system responds and adapts to the most intricate input patterns.
The combination of sinusoidal inputs was taken for achieving the asymmetric patterns.
The input patterns used for analysis can be mathematically described in Equation (20).

r(t) = Tb
(
xbo u(t) + xsin( fxt) + ysin

(
fyt
)
+ zsin( fzt)

)
(20)

where xb0 is the equilibrium operating point applied with a step test signal in combination
with multiple sine inputs with magnitude x, y, and z and frequency fx, fy, and fz, respec-
tively, with a bias of Tb. Three different set cases have been taken for analysis with the
above-described input model. The results are listed as individual cases below. The input
pattern with x, y, and z as 0.5, 0.5, and 0.5 mm magnitude respectively and fx, fy, and fz
as 0.015 Hz, 0.01 Hz, and 0.5 Hz, respectively, is used for case 1 analysis. The first-order
model is used as the reference model whose general form is denoted in Equation (17) for
analyzing the behaviour of the system. The experimentation is carried for 30 s and the
ball position tracking is shown in Figure 6. The input pattern with x, y, and z as 0.5, 0.25,
and 0.5 mm magnitude respectively and fx, fy, and fz as 0.15 Hz, 0.25 Hz, and 0.5 Hz,
respectively, is used for case 2 analysis.

The input pattern with x, y, and z as 0.5, 0.25, and 0.5 mm magnitude respectively
and fx, fy, and fz as 0.15 Hz, 0.25 Hz, and 0.5 Hz, respectively, is used for case 2 analysis.
All these analyses are carried out with xb0 = 6 mm and Tb = 0.014 mm. The system is
applied with adaptation gain (γ) as −10 and amplification gain (Ka) to be 40 (refer (18)).
It is inferred from the plots of Figure 7 that, as the complexity in pattern keeps increasing
concerning its change in input signals magnitude and frequency, the system performance
is varied. This is mainly because of the learning rate (γ) used during the process. The
adaptation or learning rate largely depend on the magnitude of the input. By changing
γ = −7, the variation in the tracking performance is observed.
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2.2. Symmetric Trajectory Tracking

The symmetric rectangular trajectory with an initial step is applied for analyzing the
system response. The input with a rectangular function is described with a magnitude of 1
and a frequency of 0.05 Hz. Figure 8 shows the ball position tracking with coil current, the
control effort, and the error, respectively. The experimentation is carried out with a period
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of 30 s. It could be observed from the response that the system tracks effectively, and it
converges to the desired trajectory without much delay. The system is provided with an
adaptation gain (γ) of −10 with the amplification gain (Ka) of 40. The first-order model
with τ = 1 ms, p = 10 used as the reference model (refer (17)) for the system to attain the
desired characteristics.
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3. Discussion

The Enhanced MRAC scheme response is compared with the conventional PIV+FF
system and the performance can be visualized from Figure 9. The Root Mean Square Error
(RMSE) value is computed for both the control schemes. It is found that the values for
PIV + FF are 0.2968 mm and for Enhanced MRAC is 0.2913 mm, respectively. Figure 10
illustrates the Power Spectral Density (PSD) of the ball tracking by the PIV + FF controller
and the MRAC-PIV + FF controller scheme. It can be inferred that the later produces lesser
PSD than the former.
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4. Conclusions

The Enhanced MRAC scheme is applied to the MAGLEV system and the performance
is tested by applying different input trajectory patterns, such as multi-sine and square
wave patterns. The relation between the learning rate and amplification gain was framed
through various trials and errors for good tracking performance of the complicated signal.
It is inferred through experiments that the learning rate largely influences the faster system
convergence of the system. The performance evaluation is carried with RMSE and PSD.
The experimental results elucidate that the Enhanced MRAC adapts well to the changes
and provides good tracking capability. As future work, analysis can be extended to a
different reference model as per the requirement along with the suitable choice of the
learning rate parameter. The influence of amplification gain to the reference model and
learning rate could be analyzed. The adaptation mechanism can be made heuristic and the
performance of the tracking could be analyzed with the same PIV+FF control scheme.
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