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Abstract: We investigate data-driven, simple-to-implement residential environmental models that
can serve as the basis for energy saving algorithms in both retrofits and new designs of residential
buildings. Despite the nonlinearity of the underlying dynamics, using Koopman operator theory
framework in this study we show that a linear second order model embedding, that captures the
physics that occur inside a single or multi zone space does well when compared with data simulated
using EnergyPlus. This class of models has low complexity. We show that their parameters have
physical significance for the large-scale dynamics of a building and are correlated to concepts such as
the thermal mass. We investigate consequences of changing the thermal mass on the energy behavior
of a building system and provide best practice design suggestions.

Keywords: energy efficiency; residential buildings; reduced order model

1. Introduction

The “House as a System” approach is gaining traction as a protocol to gain deep
energy efficiency in residential buildings [1]. However, the current approach is focused on
scheduling the order of retrofits (insulation first, replacement of furnace second, etc.) and
thus high capital expenditure actions. In commercial buildings, the cost of such retrofits has
led to development of strategies for optimizing operations of existing systems, focusing first
on fault detection and returning the building operation to a “healthy” state [2]. Beyond the
fault detection methodologies, model-based approaches lead to optimization of existing
systems and potential of deep energy savings for new commercial builds [3], and even
US Army facilities [4]. However, these gains are not currently utilized in the context of
residential buildings.

Therefore, residential buildings have recently gained more attention within the topic
energy efficiency. There are about 136.5 million residential buildings in the United States [5],
creating a large opportunity for energy savings via retrofits and new designs, to create more
efficient homes. Through addition of sensing, communication and actuation of components,
devices are made “smart”, such that they communicate wirelessly with each other and
transmit data to help reduce use during peak demand periods. With energy monitoring
and cost savings, smart home technologies have potential to deliver benefits such as
convenience, control, security and monitoring, environmental protection, and simply
enjoyment from engaging with the technology itself [6]. In order for retrofits and newly
designed systems to work properly, smart technology must be introduced and implemented.
Smart technology incorporates sensors, actuators and algorithms. Here we present a
reduced order model (ROM) for indoor temperature of a single zone, with the goal of
improving energy efficiency for residential buildings that can serve as a basis for all energy
saving algorithms which requires no cloud computing.

In this work we present a modeling approach that takes a global, physical point of
view. Namely, based on model order reduction ideas emerging from Koopman operator
theory [7], we introduce a class of linear second order thermal model. Work using Koopman
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operator theory has been done and proved as a valuable incite in deriving our model
ref. [8,9]. Using this framework we explore the model coefficients reflect well-known
physical properties such as the thermal mass, thermal damping, conduction and radiation.

We show that despite the nonlinearity of the underlying dynamics, in this study
we show that a linear second order model embedding, that captures the physics that
occur inside a single or multi zone space when given a specific data set. We fit the model
parameters to simulated temperature data from EnergyPlus and we show that the reduced
order model is able to capture the nonlinear thermodynamics. This class of models has
low complexity implying its potential role for use on a system on chip. We show that their
parameters have physical significance for the large-scale dynamics of a building and are
correlated to concepts such as the thermal mass. We investigate consequences of changing
the thermal mass on the energy behavior of a building system and provide best practice
design suggestions.

The paper is organized as follows: In Section 2, we derive the general form of a
reduced order model using Koopman operator theory. In Section 3, we introduce the
Energy Plus model that we use to validate the reduced order model. In Section 4, we
present our model for a single-zone and multi-zone building. In Section 5, we will discuss
the results of the model compared to the EnergyPlus simulation. In Section 5, we also
discuss model parameter meaning in the physical space and future work.

2. Methodology

There are a of number current attempts to use modeling approaches for control in
commercial buildings [10–12]. These are typically based on thermal models that are at-
tempting to capture the details of all the thermal interactions in buildings [12]. This leads to
high complexity of the models, making them less likely for implementation without cloud
computation, as well as lack of insight into the global properties of the thermal dynamics.
Moreover, to transfer such technology to residential building, the model underlying control
has to be simple, computable “at the edge” instead on the cloud and amenable to exploit
innovative control actuation such as active thermal mass control.

The model of building physics we develop here is simple, yet it captures the relevant
large-scale physical effects. Our methodology is inspired by data-driven approach to
control utilizing Koopman operator methods. Starting from papers [7,13] these methods
gained widespread adoption in fields as diverse as fluid mechanics [14], power grid [15]
and control theory [16]. The theory utilizes Koopman operator eigenfunctions to develop
linear reduced order models of dynamical systems. Namely, an eigenfunction z of the
Koopman operator satisfies

ż = λz = (σ + iω)z. (1)

where λ is the associated eigenvalue. Then

z̈ = (σ2 −ω2)z + i2σωz. (2)

through expansion,

z̈ = (σ2 −ω2)z + i2σωz

= (σ2 −ω2)z + 2σ(ż− σz) (3)

= −(σ2 + ω2)z + 2σż.

In viscously damped vibrations such equations are used, and special values of σ and ω
are used to obtain the real solution, that follows from a second order equation that involves
a real, velocity-dependent damping force. Namely, if we require

ω2
n = σ2 + ω2. (4)
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where,

σ = −ξωn. (5)

through substitution of (5) into (4),

ω2
n = σ2 + ω2 = ξ2ω2

n + ω2. (6)

which implies

ω2 = (1− ξ2)ω2
n. (7)

the classical viscous damping result. We can also observe σ = −c/2m, and ξ = −c/2k
where c is the damping coefficient, k is the stiffness and m the mass of the vibrating system.

Motivated by the above discussion, we make an assumption that the temperature
dynamics of a building can be represented by its first Koopman mode, thus obtaining
a second order linear differential equation with constant coefficients as our model for
temperature inside a particular space/thermal zone. Labeling the state x as the temperature,
the equation reads,

c1 ẍ + c2 ẋ + c3x = u + c4. (8)

where u is external input, or

ẍ = − c3

c1
ẋ− c2

c1
x +

1
c1

u +
c4

c1
. (9)

It is intuitive from the discussion above that c1 should represent the “mass” param-
eter, in this thermal model being the thermal mass. We rewrite the equation in a state
space representation: [

ẋ
ẍ

]
=

[
0 1
−c3
c1

−c2
c1

][
x
ẋ

]
+

[
0
1
c1

]
u +

[
1
0

]
c4

c1
. (10)

In order to search of the optimal parameters based on the data set or building con-
struction, we performed a grid search for c1, c2, and c3. Error was calculated using the
euclidean norm where Tsimulation and Tmodel are indoor air temperature from the EnergyPlus
simulation and second order model indoor temperature respectfully and N was the total
number of data points,

||E|| =

√√√√ N

∑
k=1
|Tsimulationk

− Tmodelk |2 (11)

3. Simulation Design Experiment

The residential building model used in the analysis was constructed in Sketchup
(Computer-aided design (CAD) software) [17] and then applied using OpenStudio [18]
and EnergyPlus software to run a year long simulation. EnergyPlus is only used for the
simulation of the data set for each construction build we do, and then we try to best find
a model to fit that data set. The location used in this study is Santa Barbara, California.
The outdoor temperature for Santa Barbara is obtained from the Department of Energy
EnergyPlus website for the year 2009. The model zone of a building, as seen in Figure 1
has dimensions of 7.72 m × 7.72 m × 3.046 m with an approximate volume of 181.5 m3.
The building has three windows and one door. All the material used is based on ASHRAE
189.1 standard corresponding to the location of the test area.
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Figure 1. The sketchup model construction used for EnergyPlus as the single zone house.

In OpenStudio, a wide-variety of conditions such as setpoints, occupant schedules,
HVAC equipment, loads, and more (see Figure 2) can be specified. We first developed the
nominal, no-actuation, no-load model, that enables us to parameterize important physical
concepts such as the thermal mass by turning off all thermal loads. The model outputs
were compared with a reduced order model the development of which we describe next.

Figure 2. OpenStudio Application work flow, displays how a sketchup model can be loaded in and configured prior to
running a EnergyPlus simulation.

4. Results

In this section, we report results obtained using a single-zone model and multi-zone.
In OpenStudios we turned off all interior loads such as electrical loads and human schedule
paterns for each particular space. We kept the thermal properties of heat transport according
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the each specific space type standards. In order to illustrate some of the complexity of
temperature changes, in Figures 3 and 4 we provide the indoor and outdoor temperature
plots for our observation period in these simulations of 286 operational hours. There is
a noticeable shift (delay) between the peaks of temperature between the outdoor and
indoor temperatures. Control of the shift can be done, e.g., by the old fashioned manual
implementation of opening the window before the sun is out and closing it afterwords in
order to cool the home. However, the complexity of the delay timing indicates a system on
chip control would be better in determining the exact times for such action, especially if
the actuation is done using non-standard means such as active thermal mass.

Figure 3. Hourly indoor-outdoor simulation temperature data during 2/26 to 3/09.

Figure 4. Indoor-outdoor temperature closeup of a 72 h window within the data above.

Once implement the grid parameter search in order to get the optimal coefficients
described in Equation (9). The modeled indoor temperature compared to the “actual”
indoor temperature from single zone building simulation from the EnergyPlus is shown
in Figure 5. The percentage error found between the actual indoor temperature from
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simulation to our model is 6.3512% using Equation (11) to calculate error. This initial result
is promising but we can extend it even further.

0 50 100 150 200 250 300
14

15

16

17

18

19

20

21

T
em

pe
ra

tu
re

 (°
C

)
Indoor
Model

Figure 5. Single zone coefficients fit to a single zone building using the second order model.

In order to better represent a model of a “real“ building or house structure, we need
to investigate different properties within each particular space. We provide Sketchup and
OpenStudio visual constructions in Figures 6–8. Figure 7 is defined in OpenStudio after
the construction was made, where each definition of a new space type will have it’s own
unique properties. Each different space type will represent certain properties associated
such as load, schedule of use, and even amount of airflow through the given area [19].
Zoning based on thermal properties of neighboring spaces based on Koopman operator
methods was done in [20]. Since we have four different space types, we compute one
thermal zone for the entire building which is illustrated in Figure 8. This one thermal zone
is used in the EnergyPlus simulation as our true indoor temperature.

Figure 6. The multi-zone sketchup model construction used for EnergyPlus.



Energies 2021, 14, 1453 7 of 14

Figure 7. OpenStudio diagram of the four different space type declarations, where each different
space type will have different properties such as electrical usage.

Figure 8. Single thermal zone representation of a multi-zone building.

In Figure 9, we see that the proposed model performance is similar, with a 4.1515%
difference from the “true” indoor temperature obtained using EnergyPlus. Even with
having one thermal zone but four different spaces in a house, we see that the model
will still capture the temperature regardless of the thermal properties between the spaces.
In this sense, the reduced order model recognizes the homogenized coefficients such as
the thermal mass for the whole building, indicating that the modeling can be done using a
systematic layered approach, where both single zone and multi zone reduced order models
are constructed.
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Figure 9. Second order model for indoor air temperature of a multi-zone building.

Using the optimized parameters we found for a single zone building (Figure 5),
we explored how well would that model do if we changed the construction parameters
(i.e., more space types) while keeping the construction build material the same. In order
to preform this test, we took the EnergyPlus simulation data from a multi-zone building
(Figure 6) and tried to fit our model to it. In this experiment our model has never fit
multiple zones and was not initial exposed to it, so this particular data set would be unique.
Our model ended up preforming just as google as the single zone model on the single zone
building, getting an astonishing percent difference of 6.7037%, seen in Figure 10.

0 50 100 150 200 250 300
14

15

16

17

18

19

20

21

T
em

pe
ra

tu
re

 (°
C

)

Indoor
Model

Figure 10. Single zone coefficients fit to a multi-zone building using the second order model.
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5. Discussion

The result of this work provides framework for reduced order models to be imple-
mented on embedded system on chip platforms. Studies have shown that retrofitting
and introducing smart technology in buildings is the future for low energy consumption
refs. [21,22].

Optimization of our coefficients in Equation 9 was an important factor in order to
come up with the best model for our simulation results. It can be seen from our results
that we can use the single zone model parameters that we fit and apply it to the same
construction type regardless if more space types are added. It is better to fit the model
parameters once we are exposed to a new construction such as adding more space types,
this will make the model preform better which we saw when we refit our model to adjust
to multi-zones.

In order to better understand the physical properties of our equation we examine
Equation (10) closer to see what each parameter represents. The thermal mass influences
the c1 term strongly. Thermal mass is a very important aspect in buildings due to it being
the main source of absorption of outside and inside thermal and passive control of the
living space inside. The thermal mass is influenced by the physical structure of the walls of
the building, because of the varying ability of the material to absorb and store heat energy.
For example, a lot of thermal energy is needed to change the heat inside a building that
has been constructed out of brick, due to the fact that the density of the material is high.
In fact, any material that has greater thermal mass can store more heat and therefore it will
take longer to release the thermal energy after the heat source or the sun is gone. Studies
has shown maintaining healthy and comfortable conditions inside a residential building
without causing high energy consumption can be implemented by using high thermal
mass build material like concrete instead of lightweight timber [23,24].

Thermal insulation affects the “damping term” c2. It is used to reduce heat loss or
gain by providing a barrier between areas that are significantly different in temperature.
Insulation is commonly added between the outside walls and inside walls of the house,
this is what provides that barrier of protection from the sun. Insulation and thermal mass
both slow down the movement of heat between exterior and interior space. Insulation is
used when a desired temperature differential is wanted between the indoor and outdoor
space. Thermal mass is inertial, as it involves a substance that will slowly take on heat and
then slowly release it over time [25].

Heat conduction affects the c3 term. Thermal conduction happens when internal
energy or heat is transferred by collision of particles and movement of electrons. Material
within the walls have different heat conduction properties. The coefficient c3 affects is in a
sense a “global” heat conduction coefficient. Changing the materials in the walls affects
both the thermal mass, and the thermal conduction term.

Thermal radiation, the heat transferred by electromagnetic waves such as the visible
light or transfer of heat within or through two bodies affects the term c4 in our equation.
It was shown in [26] that radiation heat transfer results in an increase in the heat transfer
rate reflecting significant radiation effects that contribute to less thermal resistance.

We note that the coefficients above are also affected by factors such as the orientation
of the building. Thus, various physical and design considerations affect the coefficients in a
heterogeneous way. Roughly, thermal mass affects c1, insulation affects c2, heat conduction
coefficients c3, and thermal radiation c4. The above ROM (9) reduces computational
complexity, from a computationally expensive EnergyPlus simulation to the simple model
that can be implemented using embedded controllers and has all the essential physics
encoded in its coefficients. Having ROM’s it is also easier to understand the nature of
systems due to its simplicity.

Future Work

The proposed model also has some improvements that can be made. These improve-
ments are adding load actuation to it, in terms of heating and cooling. This would be a
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easy addition to the model by adding another set of coefficients to our equation and doing
another grid search for that new model parameter. The methodology described in [27,28],
using occupancy based control would be a great implementation to our model for load
actuation. This of course increases the model size in terms of having to search for more
than three coefficients but now having to search for four or five, however this will still be
faster than any EnergyPlus simulation.

We also mentioned system on chip capabilities and this is where the model would
fit well. If we have real data from a residential building, we would be able to try and
fit our model to that particular building. This system could live on the thermostat and
recalculate if needed but after doing an initial calculation, the building itself will not change
it’s orientation, size or construction type. Therefore one calculation would be needed to
best fit the model to the real building and then let the thermostat regulate the actuation of
the heating and cooling system as discussed above.

6. Conclusions

In this paper, we proposed a reduced order modeling methodology based on the
backing of Koopman operator theory. The methodology leads to linear second order zone
models featuring coefficients related to global physical properties of the space, such as the
thermal mass. In fact, our effort can be seen as a way to define thermal mass for a zone as
the coefficient c1 in the reduced order model.

We tested the approach using simulated data from Energy Plus model for single
and multi-zone buildings and found that optimized coefficients provide a good match of
the reduced order model with the data. Building materials can affect the reduced order
model coefficients substantially, illuminating their role in performance and efficiency of
the thermal design of a building. In the Appendix A we present results of reduced order
model coefficients with a variety of building materials, showing their effect on physical
coefficients. From the results, it is evident that the variation of the thermal mass coefficient
c1 can be substantial, almost an order of magnitude. The damping coefficient c2 and the
“thermal stiffness” c3 are affected less. In all the cases, the optimal coefficients provided for
a good match with the Energy Plus data.

The low complexity, high accuracy reduced order models developed here can be used
in development of controllers with standard actuation, but also non-standard, such as the
active thermal mass actuation.
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Appendix A. Variation of Coefficients of the Reduced Order Model with
Different Materials

Appendix A.1. Standard Model

We created test models in OpenStudio with different structural materials (steel and
brick) and different wall material. The size of the test building is 11.86 m× 13.99 m× 4.57 m
and will have three windows and one door.
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Figure A1. The sketchup model used for varying internal parameters.

We used the total of 288 hourly data points. In the tables below we show Energy Plus
model construction settings.

Table A1. Standard model construction settings.

Name Material External Wall Setting

Standard Model
1/2in gypsum

Wall insulation [39]
MAT-sheath

Steel-framed

For the standard model, we observed: c1 = 0.4350, c2 = 10.2650, c3 = 2.2750. With an
error of 6.1112% and the model read

ẋ =

[
0 1

−5.2299 −23.5977

]
x +

[
0

2.2989

]
u +

[
1
0

]
1.10

0.4350
(A1)

Appendix A.2. Brick Model

The brick design used four different cases of materials showm in Table A2.

Table A2. Brick case study construction layout.

Name Material External Wall Setting

Brick Model

1in stucco
8in concrete
1/2 gypsum

Wall insulation [40]

Brick-framed
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Table A2. Cont.

Name Material External Wall Setting

Brick and Insulation

1in stucco
8in concrete
1/2 gypsum

Wall insulation [40]
Wall insulation [40]

Brick-framed

Brick, Insulation,
and Gypsum

1in stucco
8in concrete
1/2 gypsum

Wall insulation [40]
Wall insulation [40]

1/2in gypsum

Brick-framed

Brick, Insulation,
and Concrete

1in stucco
8in concrete
1/2 gypsum

Wall insulation [40]
Wall insulation [40]

8in concrete

Brick-framed
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Figure A2. Comparison of the indoor temperature for the three different internal structures of
the model.
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Figure A3. Second order model plot of the four test cases with varying brick construction parameters defined in Table A2.

For the pure brick model the coefficients were found to be, c1 = 0.3800, c2 = 15.2800,
c3 = 3.2550 and c4 = 1.1. Error = 7.7222%, and the model read

ẋ =

[
0 1

−8.5658 −40.2105

]
x +

[
0

2.6316

]
u +

[
1
0

]
1.10

0.3800
(A2)

For the brick mode with added insulation the coefficients were found to be, c1 = 0.1240,
c2 = 7.7750, c3 = 4.6750 and c4 = 1.1. Error = 6.0809% and the model reads

ẋ =

[
0 1

−37.7016 −62.7016

]
x +

[
0

8.0645

]
u +

[
1
0

]
1.10

0.1240
(A3)

For the brick mode with added insulation and gypsum teh coefficients were found to
be, c1 = 0.1400, c2 = 8.950, c3 = 4.7650 and c4 = 1.1. Error = 5.9672% and the model read

ẋ =

[
0 1

−34.0307 −64.1786

]
x +

[
0

8.33

]
u +

[
1
0

]
1.10

0.1400
(A4)

For the brick mode with added insulation and concrete the coefficients were found to
be, c1 = 0.0600, c2 = 6.3350, c3 = 7.3400 and c4 = 1.1. Error = 3.3882% and the model reads

ẋ =

[
0 1

−122.3330 −105.5833

]
x +

[
0

16.667

]
u +

[
1
0

]
1.10

0.0600
(A5)



Energies 2021, 14, 1453 14 of 14

References
1. Hoicka, C.E.; Parker, P. Assessing the adoption of the house as a system approach to residential energy efficiency programs.

Energy Effic. 2018, 11, 295–313. [CrossRef]
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