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Abstract: The lattice Boltzmann method (LBM) has recently been used to simulate wave propagation,
one of the challenging aspects of wind turbine modeling and simulation. However, standard
LB methods suffer from the instability that occurs at low viscosities and from its characteristic
lattice uniformity, which results in issues of accuracy and computational efficiency following mesh
refinement. The local radial point interpolation cumulant lattice Boltzmann method (LRPIC-LBM) is
proposed in this paper to overcome these shortcomings. The LB equation is divided into collision
and streaming steps. The collision step is modeled by the cumulant method, one of the stable LB
methods at low viscosities. In addition, the streaming step, which is naturally a pure advection
equation, is discretized in time and space using the Lax–Wendroff scheme and the local radial point
interpolation method (RPIM), a mesh free method. We describe the propagation of planar acoustic
waves, including the temporal decay of a standing plane wave and the spatial decay of a planar
acoustic pulse. The analysis of these specific benchmark problems has yielded qualitative and
quantitative data on acoustic dispersion and dissipation, and their deviation from analytical results
demonstrates the accuracy of the method. We found that the LRPIC-LBM replicates the analytical
results for different viscosities, and the errors of the fundamental acoustic properties are negligible,
even for quite low resolutions. Thus, this method may constitute a useful platform for effectively
predicting complex engineering problems such as wind turbine simulations, without parameter
dependencies such as the number of points per wavelength Nppw and resolution σ or the detrimental
effect caused by the use of coarse grids found in other accurate and stable LB models.

Keywords: local radial point interpolation cumulant LBM; aeroacoustics; dispersion; dissipation;
wind turbine

1. Introduction

Evidence of early sailing boats on the Nile and of Persian pumps and mills from
the first century B.C. shows humans have been interested in Wind Energy since ancient
times [1]. In general, a wind turbine is defined as a device which converts the wind’s
kinetic energy into electrical energy [2,3]. It plays a key role on producing intermittent
renewable energy and implementing a strategy to lower costs and reducing the reliance
on fossil fuels [4,5]. Wind turbines have unique aerodynamic and aeroacoustic behavior
that makes their prediction most challenging [6,7], particularly their simulation needs an
enormous number of grid points or cells, and long enough time samples [8]. Researchers
and centers such as the National Renewable Energy Laboratory (NREL) and the National
Wind Technology Center (NWTC) have initiated multi-year programs on aeroacoustic
wind turbine modeling [9] to develop efficient and appropriate computational aeroacoustic
(CAA) implementations. Among particular issues specified to wind turbine problems,
the propagation of sound is always a significant computational challenge [10,11]. With this
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aim, different numerical approaches were developed in the field of computational aeroa-
coustics. Tam [12] and Wells et al. [13] proposed popular numerical schemes such as
compact and non-compact optimized schemes like the high-order compact difference
scheme [14] and the dispersion-relation-preserving (DRP) scheme [15]. Cheong et al. pro-
posed grid-optimized dispersion-relation-preserving (GODRP) schemes for aeroacoustic
simulations [16]. Due to the huge cost of CAA simulations, hybrid methods using two
sets of equations, one for the flow and another one for the acoustic disturbance field were
developed [17].

Direct aerostatic simulations are computer-intensive due to the small ratio between
sound pressure and pressure variation as a whole, the spreading of acoustic fields over a
large area, and the time-consuming nature of traditional methods [18]. As an illustration,
the direct numerical simulation of waves using Navier–Stokes equations requires schemes
of fifth-order accuracy in space and fourth order accuracy in time [19,20]. Therefore,
the lattice Boltzmann method (LBM), an explicit time marching scheme [21], has been
widely used as an alternative to simulate sound wave propagation due to its kinetic
nature, relative simplicity of implementation and parallelization. The LBM as a mesoscopic
method uses probability density functions (probability of finding particles within a certain
range of velocities at a certain range of locations at a given time) to model the momentum
distribution in discrete space, thereby economizing computer resources [22]. Buick et al. [23]
and Dellar et al. [24] studied sound wave propagation using LBM and achieved acceptable
results. Bres et al. [25] and Gorakifard et al. [26] presented the dissipation and dispersion
of acoustic waves using the BGK-LBM and the cumulant LBM, respectively. Furthermore,
a regularized method for the BGK-LBM [27] and the recursive and regularized LBM (LBM-
rrBGK) [28,29] have been developed to model wave propagation.

One of the drawbacks of the LBM is lattice uniformity, originated from symmetric lat-
tice velocity models such as the square and cubic lattice meshes in 2D/3D simulations [30].
Lattice uniformity causes the streaming step to occur at uniform neighboring grid points.
Thus, the LBM is only applied to uniform meshes, whereas issues of accuracy and compu-
tational efficiency mainly affect simulations of problems that require non-uniform meshes.
For example, numerical simulations with curved and irregular boundaries, common in
wind turbine simulations, encounter difficulties when fitting the grids to the boundaries
or adapting complex computational domains. Grid refinement schemes or adaptive LBM
can help to simulate curved and moving boundaries more accurately [31]. Wood [32] used
refinement in LBM simulations to analyze wind energy and utilized adaptive LBM for
moving boundaries [33]. However, these schemes are associated with higher computational
costs and even additional perturbations in acoustical problems [34].

Generally, the methods commonly used along with the LBM on non-uniform meshes
include three distinct categories [35]. The first is the interpolation-supplemented LBM
(IS-LBM) [36,37]. This method adds an interpolation step to the collision and streaming
steps of the LBM. Two major drawbacks of the IS-LBM are its inefficiency due to the
need to interpolate at each time-step, and the appearance of negative particle distribu-
tions [38]. The second method is the combination of the LBM with the finite difference
method (FDLBE) [39], finite volume methods (FVLBE) [40–42], or finite element methods
(FELBE) [43–45] used to stabilize the computation. The third method is the Taylor-series
expansion and least-squares-based lattice Boltzmann method (TLLBM) [46,47] instead of
direct interpolation. These methods, the implementation of which is somewhat simple, use
continuous distribution functions in physical space.

Although the above numerical schemes show robustness for complex problems, they
are affected by the inherent shortcomings of using meshes in numerical methods, such as
the enormous cost of generating meshes, the low level of stress accuracy in fluid–structure
interaction simulations (FSI) [48], obstacles in the adaptive analysis, and limitations in
simulations of physical phenomena with singular, or nearly singular behavior. Mesh-free or
meshless methods have been devised to eliminate mesh-related problems [49]. The MFree
method based on Liu’s definition [50] is “a method that generates a system of algebraic
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equations for the entire problem domain without consideration of a predefined mesh”.
This means that the method needs a set of scattered nodes inside the problem domain and
on the boundaries of the domain called field nodes. In addition, the relationship between
the nodes for the interpolation or approximation of the unknown field variables is not
required [49]. Some of these well-known methods are the local point interpolation method
(LPIM) [51], the local radial point interpolation method (LRPIM) [52], and the meshless
local Petrov–Galerkin method (MLPG) [53,54].

The coupling of LBM and MFree methods has achieved acceptable results in some
applications [55–58]; however, this approach is at an early stage of development and must
be improved to address instability in low viscosities and high Re numbers. A key point
in the stability and the accuracy of these methods is the collision operator, which is not
remarkable in early LB methods such as the BGK model and the multi-relaxation times
(MRT) model [59], both of which also violate the principle of Galilean invariance. Therefore,
using a suitable collision operator to simulate complex engineering problems accurately
has been recognized as a necessity. The advent of the more stable cumulant LBM [60,61]
could dramatically improve MFree-LB methods and contribute to their advancement as
powerful numerical tools for complex simulations.

The aim of this paper is to study the capability of the local radial point interpolation
cumulant LBM (LRPIC-LBM) to simulate the propagation of planar acoustic waves, includ-
ing the temporal decay of a standing plane wave and the spatial decay of a planar acoustic
pulse of Gaussian shape and calculate the deviation from theoretical results, and to deter-
mine whether this method might be useful for wind turbine problems. The LB equation
is deconstructed into collision and streaming parts. The collision step is performed by
means of the cumulant method. The streaming step, which represents a pure advection
equation, is discretized first in time using the Lax–Wendroff scheme, and then in space
using the local radial point interpolation method (RPIM). Thus, this paper is arranged in
the following sections; Section 2 is devoted to a brief summary of our new LB method.
Section 2.1 presents the collision part referred to as cumulant collision step. Section 2.2
is devoted to the second most important part of the LBM, the streaming step. The Mfree
shape function construction (RPIM shape function), time discretization (Lax–Wendroff
scheme), and space discretization (LRPIM) are discussed in Sections 2.2.1–2.2.3. Section 3
reports the results of the LRPIC-LBM. Particularly, the planar standing wave and planar
pulse wave propagation results are discussed in Sections 3.1 and 3.2.

2. The Lattice Boltzmann Method

The lattice Boltzmann method (LBM) is obtained from the kinetic theory of gases.
In the LBM, a key point for modeling the momentum distribution in discrete space is
the use of probability density functions [22]. The lattice Boltzmann equation without an
external force is

fi
Ä

x + exic∆t, y + eyic∆t, t + ∆t
ä
− fi(x, y, t) = Ωi (1)

where fi, Ωi, and c are the particle distribution function, the collision operator, and the
lattice speed, respectively.

In general, the LBM consists of collision and streaming steps. In the local radial point
interpolation cumulant LBM (LRPIC-LBM), the cumulant method is used for the collision
part and the local radial point interpolation method (RPIM) is used for the streaming parts.

2.1. Collision Step

The cascade method has been proposed [62,63] as a way to overcome the instability
problems and modeling artifacts of previous LB methods. However, it is hindered by
the effects of lower order moments over higher order moments. The cumulant method,
presented by Seeger to solve the Boltzmann Equation [64,65], effectively resolves these
issues. Cumulants can be efficiently generated from central moments. The cumulant
method for solving the LBM is briefly described in this section.
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The probability density function (PDF) [22] is

f (ξ, η) =
∑

ij

f (ξi, ηj)δ(ξ − ξi)δ(η − ηi), (2)

where f is a probability mass function (PMF) and ξ, η are discrete random variables
with ranges Rξ = {ξ1, ξ2, . . .}, Rη = {η1, η2, . . .} based on microscopic velocities in x, y
directions.

Using the moment-generating function, M(Ξ, H) =
∑
ij

f (ξi, ηj)eΞξi eHηj , the moments

can be determined without any discontinuity issues as [66]

µ′ξmηn =
∂m∂n

∂Ξm∂Hn M(Ξ, H)

∣∣∣∣
Ξ=H=0

, (3)

where H, Ξ are the normalized wave numbers.
It is a good idea to shift the moment-generating function into the moving reference

frame of the fluid to reduce the Galilean invariant issues in the collision process. Therefore,
using the central moment-generating function, ıM(Ξ, H) = e−Ξu/c−Hv/c M(Ξ, H), the cen-
tral moments can be defined as [67]

µξmηn =
∂m∂n

∂Ξm∂Hn
ıM(Ξ, H)

∣∣∣∣
Ξ=H=0

. (4)

The cumulants are calculated using the logarithm form of the moment-generating
function [68] as follows:

cξmηn =
∂m∂n

∂Ξm∂Hn ln(M(Ξ, H))

∣∣∣∣
Ξ=H=0

. (5)

Each cumulant relaxes with an individual relaxation rate [69].

c∗ξmηn = cξmηn + ωξmηn(ceq
ξmηn − cξmηn), (6)

where ceq
ξmηn are the cumulants of the equilibrium state.

The sound speed and the kinematic viscosity are defined as cs = ∆x/(
√

3∆t) and
υ = ∆tc2

s (1/ω− 0.5), respectively.

2.2. Streaming Step

To model the streaming step, the second most important part of the LBM, a pure ad-
vection equation is normally solved from a Lagrangian approach within uniform structured
meshes with CFL numbers equal to one. However, considering the Eulerian perspective
for the calculation can effectively resolve this step when meshes are non-uniform and
unstructured. The pure advection equation is

∂ fi
∂t

+ ci,α
∂ fi
∂xα

= 0, (7)

One alternative is a semi-discrete formulation with time and space derivatives dis-
cretized separately. Thus, Equation (7) is discretized using the explicit Lax–Wendroff
scheme in time, followed by the local radial point interpolation method (LRPIM) in space.
In addition, it is important to approximate the unknown field functions using trial (shape)
functions as an approximate solution for the partial differential equation.
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2.2.1. MFree Shape Function Construction—Radial Point Interpolation Shape Functions

Radial point interpolation method (RPIM) shape functions were developed to circum-
vent the singularity problem arising in the point interpolation method (PIM). The RPIM
interpolation augmented with polynomials is

f h(x, t) =
n∑

i=1

Ri(x)ai(t) +
m∑

j=1

pj(x)bj(t) = RT(x)a(t) + pT(x)b(t) (8)

where Ri(x) is a radial basis function (RBF), and pj(x) is monomial in the coordinate space
xT = [x, y]: RT = [R1(x) R2(x) · · · Rn(x)] and pT = [p1(x) p2(x) · · · pm(x)]. Parameters
n and m are the number of RBFs and polynomial basis functions. Variables ai and bj are
time dependent unknown coefficients. It should be noted that the independent variable in
RBF Ri(x) is the distance between the point of interest x and a node at xi.

Different radial basis functions (RBF), and their characteristics have been studied
extensively in the meshless RPIM. In this paper, the multi-quadrics (MQ) function is
used as

Ri =
Ä

r2
i + (αcdc)

2
äq

(9)

where αc = 1.0, q = 1.03, and dc = 3.0.
To determine the n + m unknown coefficients in Equation (8), some specific constraint

equations and the Kronecker delta function property are dictated. These constraints are

n∑
i=1

pj(xi)ai(t) = PT
ma(t) = 0, j = 1, 2, ..., m (10)

where

PT
m =


1 1 · · · 1
x1 x2 · · · xn
y1 y2 · · · yn
...

...
. . .

...
pm(x1) pm(x2) · · · pm(xn)

 (11)

Thus, the approximation function can be obtained as

f h(x, t) =
n∑

i=1

φi(x) fi(t) = Φ(x)F(t) (12)

where F is a vector containing the nodal values of the distribution function and Φ is a
vector containing the first n components of the Φ̃ vector

Φ̃ =
î
RT pT

ó
G−1 (13)

where

G =

ï
R0Pm
PT

m0

ò
, R0 =


R1(r1) R2(r1) · · · Rn(r1)
R1(r2) R2(r2) · · · Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) · · · Rn(rn)

, rk =
»
(xk − xi)

2 + (yk − yi)
2. (14)

2.2.2. Semi-Discrete Formulation—Time Discretization

The Taylor series expansion of the particle distributions is

f n+1
i = f n

i + ∆t
∂ fi
∂t

∣∣∣∣n + ∆t2

2
∂2 fi
∂t2

∣∣∣∣∣
n

+ O(∆t3), (15)
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where here n refers to the time step. Substituting the time derivatives in terms of the t
derivatives up to second order results in the time discretization of Equation (7) based on
the Lax–Wendroff scheme,

f n+1
i = f n

i − ∆tci,α
∂ f n

i
∂xα

+
∆t2

2
ci,αci,β

∂2 f n
i

∂xα∂xβ
. (16)

2.2.3. Semi-Discrete Formulation—Space Discretization

The local radial point interpolation method (LRPIM) was developed to avoid the
side effects of using global background cells in the global weak-form. In this method,
the numerical integration is performed within the local domain consisting of a set of
distributed nodes. The LRPIM is based on the RPIM shape functions with the delta
function property. The main advantage of the LRPIM is the excellent interpolation stability
of RBFs.

MFree local weak-form methods use the weak form of the problem obtained from the
method of weighted residuals (MWR). The weighted residual statement of Equation (16)
on the local domain ΩI of point I bounded by ΓI is posed as∫

ΩI

wI f n+1
i dΩ =

∫
ΩI

wI f n
i dΩ− ∆t

∫
ΩI

wIci,α
∂ f n

i
∂xα

dΩ +
∆t2

2

∫
ΩI

wIci,αci,β
∂2 f n

i
∂xα∂xβ

dΩ (17)

where wI is the local weight function of node I considered as

wI(r) =


2
3 − 4r2 + 4r3 r ≤ 0.5
4
3 − 4r + 4r2 − 4

3 r3 0.5 < r ≤ 1
0 r > 1

(18)

where r = |x− xi|/dmax and dmax is the radius of the compact support. Equation (17) is
applied to all nodes in the problem domain.

To work with a continuous approximate solution, it is necessary to decrease the differ-
entiation requirements of the unknown in the weighted residual statement by employing
integration by parts in Equation (17),∫

ΩI

wI f n+1
i dΩ =

∫
ΩI

wI f n
i dΩ−

∫
ΩI

Ç
∆twIci,α

∂ f n
i

∂xα
+

∆t2

2
ci,αci,β

∂wI
∂xβ

∂ f n
i

∂xα

å
dΩ +

∆t2

2

∫
ΓI

wIci,αci,β
∂ f n

i
∂xα

nβ dΓ (19)

where ΓI is the boundary of the local domain ΩI and nβ is the unit outward normal vector.
Substitution of the approximate solution given in Equations (12) into the weak form

given by Equation (19) leads to

NI∑
J=1

MI J f n+1
i,J =

NI∑
J=1

[
MI J + Ki,I J

]
f n
i,J (20)

where MI J and Ki,I J are the nodal mass and stiffness matrix, respectively, defined as

MI J =

∫
ΩI

wIΦJ dΩ (21)

Ki,I J = −
∫

ΩI

Ç
∆twI +

∆t2

2
ci,β

∂wI
∂xβ

å
ci,α

∂ΦJ

∂xα
dΩ +

∆t2

2

∫
ΓI

wIci,α
∂ΦJ

∂xα
ci,βnβ dΓ (22)
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Thus, the global equation system for all nodes in the entire domain is obtained as

M f n+1
i = [M + Ki] f n

i (23)

where M, K, and fi are the global mass matrix, stiffness matrix, and particle distribution
vector, respectively. This system has N equations with N unknowns which is solved
separately for each direction.

To numerically evaluate the area and the curve integrals in Equations (21) and (22) the
Gauss quadrature scheme is used as follows

MI J =

ng∑
k=1

w̃kwI(xk)ΦJ(xk)
∣∣∣JΩI

∣∣∣ (24)

Ki,I J = −
ng∑

k=1

w̃k

Ñ
∆twI(xk) +

∆t2

2
ci,β

∂wI
∂xβ

∣∣∣∣∣
xk

é
ci,α

∂ΦJ

∂xα

∣∣∣∣
xk

∣∣∣JΩI
∣∣∣+ ∆t2

2

nb
g∑

k=1

w̃kwI(xk)ci,α
∂ΦJ

∂xα

∣∣∣∣
xk

ci,βnβ

∣∣∣JΓI
∣∣∣ (25)

where ng and nb
g are the total number of Gauss points in the quadrature domain and

boundaries, w̃k is the Gauss weight factor for Gauss point xk, JΩI and JΓI are the Jacobian
matrix for the domain and boundary integrations, respectively.

3. Results and Discussion

One of the complicated phenomena that has recently received major interest from
researchers using the LBM is wind turbine aeroacoustics [32,33,70,71], which can be directly
simulated without additional computational cost. In this section, our aim is to demonstrate
the standard analysis procedure using the local radial point interpolation cumulant lattice
Boltzmann method (LRPIC-LBM) to predict acoustic properties for benchmark cases. Thus,
numerical studies are conducted for the propagation of planar acoustic waves, concentrat-
ing on numerical dissipation and dispersion. Considering the total pressure equation as
p = p0 + p′, where p0 is the atmospheric pressure and p′ is the acoustic pressure, a lossy
wave equation is [72] Å

1 + τs
∂

∂t

ã
∇2 p′ =

1
c2

s

∂2 p′

∂t2 (26)

where
τs =

1
ρ0c2

s

Å
4
3

η + ηB

ã
.

where η is the coefficient of shear viscosity, and ηB is the coefficient of bulk viscosity.
A quantitative assessment of the method’s two setups, including the temporal decay of a
standing plane wave in a periodic domain and the spatial decay of a propagating planar
acoustic pulse of Gaussian shape for regular and irregular nodal distributions (shown in
Figure 1a,b) are discussed below. It should be noted that the default nodal arrangement is
a regular distribution; the base units are in the LB system.
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Figure 1. Nodal arrangement for the propagation of planar acoustic waves in LRPIC-LBM simulations: (a) Regular nodes.
(b) Irregular nodes.

3.1. Planar Standing Wave

As an initial case study, we performed a temporal analysis on a standing plane acoustic
wave in a periodic domain. The dissipation and dispersion relations based on the temporal
analysis of Equation (26) are [25]

cT = cs

√
1−
Å

kν

cs

ã2
(27a)

αT = k2ν (27b)

where k is the wave number. The assumptions for this set-up are presented in Table 1. They
were chosen as in reference [26] for ease of comparison.
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Table 1. Parameters for the planar standing wave.

Variables p′(x, y, 0) ρ′ u′ v′ A

Description A sin
Ä

2πx
λ

ä p′

ç2
s

p′
ρ0çs

0 10−3 p0

The acoustic pressure at time t is [26]

p′(x, y, t) = A exp[−αTt] sin[k(x− cTt)] (28)

It should be noted that the results of the temporal analysis can be considered as a
function of the number of points per wavelength Nppw = λ/∆x or the non-dimensional
wave-number k∆x = 2π/Nppw.

In accordance with the concepts discussed in [26] to study the accuracy of the prop-
agation of waves using the local radial point interpolation cumulant lattice Boltzmann
method (LRPIC-LBM), various viscosities and different resolutions (i.e., the number of
points per wavelength) were studied. Figure 2 shows the acoustic pressure time history
for ν = 1.0× 10−2 ( ∆x2

∆t ) with Nppw = 12 points per wavelength. The analytical result is
represented by a solid black line, whereas the cumulant LBM and the LRPIC-LBM are
shown with a red dashed line and a blue five-pointed star, respectively. The deviations of
the numerical phase speed and the temporal dissipation rate from the theoretical values
are less than one percent for the BGK LBM [25] and the cumulant LBM [26] for resolutions
lower than 12 points per wavelength. However, the LRPIC-LBM exhibits even better
behavior in predicting the acoustic pressure of the analytical values.

0 5 10 15 20 25 30 35

Time Step

−1

−0.5

0

0.5

1

1.5

p

10−3

Cumulant LBM
Analytical
LRPICLBM

Figure 2. Acoustic pressure ( kg
∆x∆t2 ) versus time step (∆t) for ν = 1.0× 10−2 ( ∆x2

∆t ) with Nppw = 12
points per wavelength.

The acoustic pressure time history for ν = 1.0× 10−4 ( ∆x2

∆t ) with Nppw = 12 points
per wavelength is presented in Figure 3. It shows the comparison between the analytical
solution, the cumulant LBM and the LRPIC-LBM numerical solution at low viscosities.
One of the most problematic issues in the BGK LBM is the low viscosity limit, which
makes the solution unstable. However, the cumulant LBM, with phase speed and temporal
dissipation rate errors of less than 1 percent, as in reference [26], did not present difficulties
at low viscosity. Although both approaches were successful, the new method exhibited
better performance, closely following the theoretical result for the same viscosity value.
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0 5 10 15 20 25 30 35

Time Step

−1

−0.5

0

0.5

1

1.5

p

10−3
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Figure 3. Acoustic pressure ( kg
∆x∆t2 ) versus time step (∆t) for ν = 1.0× 10−4 ( ∆x2

∆t ) with Nppw = 12
points per wavelength.

An important characteristic highlighted by some researchers [25,26] is that these
numerical deviations are only a function of Nppw and are independent of other parameters
such as frequency and viscosity. They found that the errors of the BGK [25] and the
cumulant LBM [26] are about 7 percent for Nppw = 4. However, the acoustic pressure

time history for ν = 1.0× 10−2 ( ∆x2

∆t ) with Nppw = 4 points per wavelength illustrated in
Figure 4 for the analytical solution, the cumulant LBM and the LRPIC-LBM reveals that the
deviation is less than 2 percent for the LRPIC-LBM, with ∆t = 0.25. Thus, the LRPIC-LBM
is much more successful in predicting theoretical results even with a low number of points
per wavelength.
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Figure 4. Acoustic pressure ( kg
∆x∆t2 ) versus time step (∆t) for ν = 1.0× 10−2 ( ∆x2

∆t ) with Nppw = 4
points per wavelength with ∆t = 0.25.

The choice of the time step size has an influence on the accuracy and stability of the
solution. A smaller time step leads to more accurate results, especially in a hyperbolic
partial differential Equation (PDE). To minimize the phase speed and dissipation rate
errors, the time step was reduced. Figure 5 shows the acoustic pressure time history for
ν = 1.0× 10−2 ( ∆x2

∆t ) with Nppw = 4 points per wavelength and ∆t = 0.1. The LRPI-CLBM
replicates the analytical results with negligible errors. Therefore, this method makes it
possible to predict wave motion more accurately with no dependency on the number of
points per wavelength Nppw.
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Figure 5. Acoustic pressure ( kg
∆x∆t2 ) versus time step (∆t) for ν = 1.0× 10−2 ( ∆x2

∆t ) with Nppw = 4
points per wavelength with ∆t = 0.1.

Although the results of the propagation of acoustic waves for regular nodal distri-
butions were good, it is important to adequately estimate accuracy when considering
irregular nodes (Figure 1b). The acoustic pressure time history for ν = 1.0× 10−2 ( ∆x2

∆t )
with Nppw = 12 points per wavelength is presented in Figure 6. The results show that the
local radial point interpolation cumulant lattice Boltzmann method (LRPIC-LBM) with
irregular nodal distributions again very closely reproduced the analytical acoustic pressure.

0 5 10 15 20 25 30 35

Time Step

−1

−0.5

0

0.5

1

1.5

p

10−3

Analytical
LRPICLBM

Figure 6. Acoustic pressure ( kg
∆x∆t2 ) versus time step (∆t) for ν = 1.0× 10−2 ( ∆x2

∆t ) with Nppw = 12
points per wavelength with irregular nodal distributions.

3.2. Planar Pulse Wave

Next, we studied a planar pulse wave by replacing the plane wave with a Gaussian
shape planar pulse, initially located at the center of the domain. The dissipation and
dispersion relationships derived from the spatial analysis of Equation (26) are [25]

cS =
√

2cs

Ã
1 + (ωτs)

2»
1 + (ωτs)

2 + 1
(29a)

αS =
ω√
2cs

Ã»
1 + (ωτs)

2 − 1

1 + (ωτs)
2 (29b)
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The variables and parameters for this case are presented in Table 2. A planar pulse
emits from the origin throughout the domain, where periodic boundary conditions
are imposed.

Table 2. Parameters for the planar pulse wave.

Variables p′(x, y, 0) ρ′ u′ v′ A σ

Description A exp
Ä
− ln(2) x2

σ2

ä p′

ç2
s

p′
ρ0çs

0 10−3 p0 0.06− 0.1

To assess the accuracy of the LRPIC-LBM in simulating the pulse wave emission,
we proceeded as in reference [26]. Different viscosities and resolutions (which are related
to the choice of σ) were studied. Figure 7 depicts the acoustic pressure time history for
ν = 1.0 × 10−2 ( ∆x2

∆t ) with σ = 0.1. The cumulant LBM results (dashed red line) are
compared to the LRPIC-LBM (solid black line). As stated in [25,26] the intensity loss at any
location is proportional to the distance of propagation, regardless of the precise location.
Thus, the data were extracted from the center of the domain, and at 5, 11, and 17 nodes
apart from the center. For resolutions up to σ = 0.1, deviations between the cumulant LBM
and the LRPIC-LBM results were less than 1 percent.

0 5 10 15 20 25 30 35

Time Step

0
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6

8

10

p

10−4

Figure 7. Acoustic pressure ( kg
∆x∆t2 ) versus time step (∆t) for ν = 1.0× 10−2 ( ∆x2

∆t ) with σ = 0.1:
the cumulant LBM (dashed red line), LRPIC-LBM (solid black line).

The acoustic pressure time history for ν = 1.0× 10−4 ( ∆x2

∆t ) with σ = 0.1 is shown in
Figure 8. It presents the comparison between the cumulant LBM and the LRPIC-LBM at
low viscosity. While the standard BGK LBM creates instabilities and noisy results, less than
1 percent deviation was found between the cumulant LBM and this method, with stable
behavior at low viscosities. In addition, as in the case of the temporal results shown
in Figure 3, reducing the viscosity in the considered range did not substantially impact
the results.

Like the parameter Nppw introduced in the temporal analysis of the first set up, σ
is another effective parameter used in spatial analysis which affects the accuracy of the
LBM results.The acoustic pressure time history is depicted in Figure 9 for ν = 1.0× 10−2

( ∆x2

∆t ), with σ = 0.06. It shows that the deviations between the cumulant LBM and the
LRPIC-LBM results increase after the reduction of σ. The wiggling observed in the results
of the cumulant LBM is due to the reduction of the number of nodes inside the pulse, which
brings the accuracy of the results into question. However, the LRPIC-LBM graphs are
smooth and unaffected by the lesser number of nodes. To better assess the accuracy of the
LRPIC-LBM compared to the cumulant LBM, the data shown in Figure 9 were compared
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with the analytical results. The Fourier transform of the pressure time history of the passing
wave yields the Fourier coefficient of pressure “p′(x, ω) = “p′(x, 0) exp[−αSx] exp

î
iω x

cS

ó
which is the solution to Equation (26) [25]. Figure 10 shows the ratio “p′(x, ω)/“p′(x, 0) as
a function of angular frequency for the analytical solution. This figure shows that the
LRPIC-LBM is more successful than the cumulant LBM at predicting theoretical results
with σ = 0.06. Thus, this method can model wave propagation more accurately even at
smaller resolutions.
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Figure 8. Acoustic pressure ( kg
∆x∆t2 ) versus time step (∆t) for ν = 1.0× 10−4 ( ∆x2

∆t ) with σ = 0.1:
the cumulant LBM (dashed red line), LRPIC-LBM (solid black line).
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Figure 9. Acoustic pressure( kg
∆x∆t2 ) versus time step (∆t) for ν = 1.0× 10−2 ( ∆x2

∆t ) with σ = 0.06:
the cumulant LBM (dashed red line), LRPIC-LBM (solid black line).

Figure 11 illustrates the acoustic pressure time history for ν = 1.0× 10−2 ( ∆x2

∆t ) with
σ = 0.1 considering irregular nodes (Figure 1b). The cumulant LBM and the LRPIC-LBM
results are represented by a dashed blue line and a solid black line, respectively. The data
are extracted as in Figure 7. The results show that the LRPIC-LBM with irregular nodal
distributions reproduced the behavior observed previously.
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Figure 10. The ratio “p′(x, ω)/“p′(x, 0) as a function of angular frequency ( 1
∆t ) for the analytical

solution, the cumulant LB and the LRPIC-LB methods.
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Figure 11. Acoustic pressure ( kg
∆x∆t2 ) versus time step (∆t) for ν = 1.0× 10−2 ( ∆x2

∆t ) with σ = 0.1
considering irregular nodal distributions: the cumulant LBM (dashed blue line), LRPIC-LBM (solid
black line).

4. Conclusions

This paper presents a numerical study of the propagation of acoustic waves, one of
the challenging issues occurring in wind turbine simulations, that includes the temporal
decay of a standing plane wave and the spatial decay of a planar acoustic pulse, using
the local radial point interpolation cumulant lattice Boltzmann method (LRPIC-LBM).
The LB equation is divided into collision, modeled by the cumulant method, and streaming,
discretized in time and space, using the Lax–Wendroff scheme and the local radial point
interpolation method (RPIM). The LRPIC-LBM results were compared with the cumulant
LBM and the analytical solutions. Both methods showed a similar acoustic pressure time
history, and the deviations for the phase speed and the dissipation rate were minor for
high number of points per wavelength Nppw and resolution σ. In addition, they showed
that reduced viscosity does not affect the stability of either LB method due to the intrinsic
characteristics of the cumulant method. Unlike LB methods such as the BGK LBM and
the cumulant LBM, the time history for the acoustic pressure and the phase speed and
dissipation rate predicted by LRPIC-LBM showed considerably smaller errors for low Nppw
and σ due to the construction of the meshless method itself. Moreover, the LRPIC-LBM
with irregular nodal distributions reproduces the same propagation of acoustic waves
obtained with regular nodal distributions.
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In summary, the freedom to scatter nodes based on problem conditions and the
occurrence of sharp gradients plus the accuracy obtained from the RPIM along with the
good stability and simplicity achieved by the cumulant LBM may provide an adequate
platform with which to model wind turbine problems.
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DRP Dispersion relation preserving scheme
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