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Abstract: Particulate matter (soot) emissions from combustion processes have damaging health and
environmental effects. Numerical techniques with varying levels of accuracy and computational
time have been developed to model soot formation in flames. High-fidelity soot models come
with a significant computational cost and as a result, accurate soot modelling becomes numerically
prohibitive for simulations of industrial combustion devices. In the present study, an accurate
and computationally inexpensive soot-estimating tool has been developed using a long short-term
memory (LSTM) neural network. The LSTM network is used to estimate the soot volume fraction
(fv) in a time-varying, laminar, ethylene/air coflow diffusion flame with 20 Hz periodic fluctuation
on the fuel velocity and a 50% amplitude of modulation. The LSTM neural network is trained using
data from CFD, where the network inputs are gas properties that are known to impact soot formation
(such as temperature) and the network output is f,. The LSTM is shown to give accurate estimations
of fy, achieving an average error (relative to CFD) in the peak f, of approximately 30% for the training
data and 22% for the test data, all in a computational time that is orders-of-magnitude less than that
of high-fidelity CFD modelling. The neural network approach shows great potential to be applied in
industrial applications because it can accurately estimate the soot characteristics without the need to
solve the soot-related terms and equations.

Keywords: soot concentration; estimator; neural network; LSTM; transient diffusion flame; computa-
tional fluid dynamics

1. Introduction

Soot emission from combustion systems can be a substantial threat to human health
and to the environment [1]. Increasingly strict emissions regulations (e.g., the EURO 6
standard) are emerging to combat the negative effects of soot emission, leaving designers
with two major avenues-experiments and numerical simulations—to model, understand,
and reduce soot formation in combustion systems. A general advance in the knowledge
and capabilities of the soot modelling community has allowed a push past empirical
or semi-empirical soot models and into robust soot models inspired by the underlying
physico-chemical processes of soot formation. These high-fidelity soot models (e.g., [2])
generally give detailed consideration to phenomena such as nucleation from polycyclic
aromatic hydrocarbons (PAHs), PAH condensation, physical coagulation, surface growth by
the hydrogen-abstraction-carbon-addition (HACA) mechanism, oxidation, and oxidation-
induced fragmentation on soot formation and evolution. Recent advancements, including
reversible nucleation [3] and condensation [4,5] models, detailed models to track soot
maturity [6] and internal structure [7], and the consideration of chemical bond formation in
the inception process [8], have greatly advanced high-fidelity CFD models. However, many
knowledge gaps, particularly in the inception step [9], still remain in CFD soot modelling.

In general, the consideration of the above-mentioned phenomena is extremely time-
consuming, especially as the sub-models become more detailed and physically realis-
tic. The cumbersome nature of high-fidelity models has pushed many industries to use
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semi-empirical soot models which, although faster, may sacrifice a good deal of accuracy
compared to their high-fidelity counterparts (relative errors of 1-2 orders of magnitude
in soot volume fraction prediction [10-13]). To circumvent the clash between accuracy
and cost in traditional soot modelling methods, a novel computational concept called the
“soot estimator” has been recently introduced [14-17]. In the soot estimator concept, only a
validated combustion model is needed, and the soot characteristics are estimated without
solving the soot-related terms and equations. In a practical context, relieving the need to
calculate the soot-related terms will save valuable computational time and may greatly
facilitate the design process in industry. The soot estimator approach is essentially a soot
post-processing tool that is linked to computational fluid dynamics (CFD) simulations of
combustion environments. In this approach, gas-related properties such as temperature
and species mass fractions are obtained from the solution of gas-phase conservation equa-
tions (mass, momentum, energy and species mass fractions). The gas properties are then
used to estimate the soot characteristics, such as soot volume fraction f;:

folt) = f(T(t),Yi(t), P(t),...), )

where T is the gas temperature, Y; is the mass fraction of species i, P is the pressure, and ¢
is the time. Bozorgzadeh [14], who first introduced the soot estimator concept in 2014,
reasoned that the larger timescales of soot formation and destruction relative to those of
flow and gas-phase chemistry implied that the residence time of the soot particles should
be considered. Therefore, Bozorgzadeh suggested that local instantaneous soot properties
such as soot volume fraction should be a function of the temporal (time-integrated) histories
of the above-mentioned gas-related variables. Temporal integration was performed over
the pathlines of the soot particles, which were extracted from CFD using the Lagrangian
approach. Equation (1) then becomes:

fo(8) = f(Tu(t), Yin(t), Pu(t), - -.), ©)

where the subscript & represents the time-integrated history of the corresponding variable.
To keep true to the premise of a low-cost (yet accurate) soot estimator, it was necessary to
select key variables to track, so as to limit the dimensionality and reduce computational
cost. For example, Equation (3) below:

fo(t) = f(Tu(t), MEy(£), Hp (1)), ®)

would attempt to relate the soot volume fraction in the flame to selected gas parameters,
namely: the histories of temperature, mixture fraction, and H, concentration, respectively.
The relationship between the soot characteristics and the gas-related parameters (i.e., the
function f in Equation (3)) is central to the soot estimator concept and was a major focus in
previous developments [14-17].

In [14-17], previous versions of the soot estimator were used to estimate the soot char-
acteristics of steady coflow laminar diffusion flames at atmospheric pressure. In these stud-
ies, the CFD code called CoFlame [2] was used to generate the required data, i.e., the gas pa-
rameters such as temperature and species concentrations. In the work of Bozorgzadeh [14],
polynomial functions were used to link the CFD results to the desired soot characteristic.
At first, soot concentration was related to temperature history, and later to both temperature
and acetylene histories. The author found that in both cases, polynomial functions were
not able to reproduce the soot concentration accurately. The addition of other parame-
ters such as 0, (Which can be considered an indicator of oxidation and soot reduction)
helped increase the estimation accuracy. However, this increase in the dimensionality
of the function was accompanied by a steep increase in computational cost, leading to a
new estimation approach in [15,16]—tabulating the relationships between the histories of
gas-related variables and the soot concentration.
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To generate the lookup tables (also referred to as the libraries), Alexander et al. [15] and
Zimmer et al. [16] grouped the histories of the gas-related variables into bins. Each variable
is a “dimension” of the table and each dimension has a certain number of bins. In [16],
4D tables (i.e., fy and the histories of three variables) were generated for steady laminar
diffusion flames using 300 bins in each dimension. In these studies, the number of dimen-
sions and the number of bins were very sensitive parameters. An increase in the number of
dimensions or bins could result in a disproportionate increase in memory requirement and
computational time. In addition, the variable selection had a large impact on the results.
For example, Zimmer et al. [16] showed that changing the variables in the table from
[Ty, (t), MFy,(t), Hy ()] to [Ty, (t), MFy(t), Oy (t)] increased the error (measured relative to
model predictions) in f, estimation by around 57%. Furthermore, the tabular scheme may
not scale well to more complex problems. As originally discussed by Zimmer et al. [16],
the dimensionality issues become more significant when the tool is extended to transient
and turbulent diffusion flames, where the the amount of required data can be much larger
than in steady laminar flame simulations.

The above-mentioned limitations inspired the deep learning approach recently devel-
oped by Jadidi et al. [17]. As in many fields, the use of deep learning and artificial neural
networks (ANN) is becoming increasingly pervasive in combustion research. As far back
as the mid 1990s, Christo et al. [18,19] used an ANN to estimate the reaction chemistry
in turbulent flames. Christo et al. [18] found that the ANN can yield predictions of “rea-
sonable” accuracy (absolute errors on the order of 10~7) in a computational time that was
one order of magnitude less than the direct integration approach. The authors went on to
stress that the accuracy of the ANN model was strongly dependent on the selection of the
training data sets and that a broad, dynamic range of training samples can improve the
accuracy and generality of the ANN. In the recent work of Ranade et al. [20], an ANN was
used to develop a computationally inexpensive chemical kinetics model. As the authors
explain, an ANN may be applied to relieve some of the complexity and computational
requirements inherent in the development of a detailed chemistry model. In [20], a shallow
ANN was used to fit temporal profiles of fuel fragments, and a deep ANN was used to
predict chemical reaction rates during pyrolysis. The ANN approach showed reasonable
agreement with the detailed chemistry results.

These works, and a selection of others (e.g., [21-27]), show that an ANN is a versatile
tool that can be used to reduce computational time at the expense of a minor decrease in
accuracy (compared to traditional tools). As such, a handful of recent works have applied
ANN s to the field of soot estimation [17,28-31]. The work of Talebi-Moghaddam et al. [28]
used an ANN to efficiently and accurately estimate the light scattering kernel that is used
in experiments to infer the morphological characteristics of soot particles. Furthermore,
a handful of studies [29-31] have used ANNSs to couple engine operational parameters
such as crank angle or fuel consumption to the soot emissions from engines. In [29],
a shallow (1 hidden layer) multilayer perceptron ANN was used to predict the soot, CO,,
and NO, emissions from a direct injection diesel engine. The study used the CFD-computed
quantities of crank angle, temperature, pressure, liquid mass evaporated, equivalence ratio,
and O, concentration as input to the ANN. The optimal ANN architecture achieved a
mean squared error on the order of 10~* for the soot, CO,, and NO, predictions (soot,
CO,, and NO, predictions on the order of 1073,1072, and 104, respectively). The study
of Ghazikhani and Mirzaii [30] used a shallow multilayer perceptron ANN to predict
the soot density in the exhaust of a turbo-charged diesel engine. Six experimentally
measured parameters (inlet manifold pressure, inlet manifold temperature, inlet air mass
flow rate, fuel consumption, engine torque, and speed) were used as input to the neural
network and the network achieved a mean absolute percent error of about 6% relative to
experimental measurements.

The study of Alcan et al. [31] used a gated recurrent unit (GRU) neural network
(which is similar to the long short-term memory neural network used in the present
study) to estimate the soot emission from a diesel engine. The network inputs were
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experimentally determined and consisted of engine speed, total injected fuel quantity, main
start of injection, rail pressure, and intake oxygen ratio. The results showed accuracies of
77% on the training data and 57% on the validation data. Finally, the study of Yang et al. [32]
used a long short-term memory (LSTM) neural network—the same type of neural network
used in the present study—to predict NO, emissions from coal burners. The study used
35 experimentally measured parameters that are relevant to NO, emissions from a coal
burner as input to the LSTM. The authors concluded that the LSTM could give reasonably
accurate NO, estimations, with 54% of the test data showing a relative error less than 0.01
and an overall root mean squared error of 2.271 (for NO, emission levels on the order of
102). While these studies have laid the groundwork for the present objective of devising a
more broadly applicable ANN system of soot prediction, each of them considers one or few
specific operating configurations. By contrast, the present work is a step toward developing
an ANN to predict soot characteristics in a broad range of conditions and configurations.

In the recent work of Jadidi et al. [17], the authors used a multilayer perceptron
ANN to pair the combustion conditions (the input) to the resulting soot characteristics
(the target). As in the previous studies [14-16], CoFlame [2] was used to generate the
flame data. After generation of the combustion data, the Lagrangian histories of soot-
containing fluid parcels were calculated using the approach developed by Zimmer et al. [16].
Subsequently, eight parameters, selected due to their significant influence on soot formation,
were fed to the network as the input dataset. These eight parameters were the temperature
history (T},), mixture fraction history (MF;), oxygen history (O, ), carbon monoxide history
(COy,), carbon dioxide history (CO; ;,), hydrogen history (H; ;,), hydroxide history (OHj,),
and acetylene history (Co Hj,). The soot volume fraction was the output of the network.
Overall, the ANN approach of Jadidi et al. [17] was successful; the authors found that
the network could estimate the shape of the soot regions as well as the values of soot
concentration very well and with low computational cost. Additionally, the use of eight
parameters highlighted the network’s ability to handle a high-dimensional input, providing
a degree of flexibility that was not present in the previous studies [14-16] (i.e., the amount of
dimensions can be changed depending on the accuracy and computational requirements).

While the multilayer perceptron ANN of [17] was applicable to a steady flame, there
exist more complex and versatile neural network architectures (namely, recurrent neural
networks or RNNs) that were designed specially for time-series data. Therefore, as practical
combustion devices are inherently transient, the main objective of the current study is to
extend the capability of the ANN-based soot estimator to time-dependent flames. Ulti-
mately, the aim of this and future works is to develop the ANN-based soot estimator into a
tool for industry end use that quickly and accurately estimates soot characteristics without
requiring a large amount of computing resources. In the present study, a time-varying,
laminar, ethylene/air coflow diffusion flame with 20 Hz periodic fluctuation on the fuel
velocity and a 50% amplitude of modulation, the same as [33], is considered. An LSTM
neural network, a type of RNN, will be used for the soot estimator tool. The numerical sim-
ulation of this flame, which was performed and validated by Dworkin et al. [33], is used as
the LSTM neural network’s training and testing data. The use of an LSTM neural network
for soot estimation is, to the authors” knowledge, novel. Further novelty (relative to the
above-mentioned ANN/soot studies) of the present work (as well as [17]) stems from the
soot estimator tool being trained using a detailed CFD model. The ANN is trained using
inputs that are fundamental to the soot inception, growth, and oxidation processes (such
as OH and C,H, mass fractions), thereby training the ANN to recognize the foundational
relationships between the gas phase and soot concentration.

An LSTM network is better-suited for transient flame predictions, compared to
a multilayer perceptron ANN, due to the LSTM’s inherent ability to learn long-term
temporal interdependencies between time steps of sequential data [32]. Furthermore,
the use of an LSTM will eliminate assumptions and potential sources of error that were
present in the previous works. In the previous implementations of the soot estimator
tool [16,17], it was necessary to (1) calculate the pathlines of soot containing fluid parcels,
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(2) compute the history of a given variable (i.e., the time integration of the variable over its
lifetime), and (3) perform linear interpolation to distribute the estimated f, values from the
pathlines onto the 7-z coordinate system [17]. In the present work, the gas-related variables
computed by CFD can be fed directly to the LSTM (eliminating the need for steps 1-3),
since the LSTM inherently considers time-dependence. By design, the LSTM learns the
temporal relationships between the input and output data. Therefore, the widely varying
characteristic time scales between combustion kinetics and soot formation are accounted
for without issue. Previously, step 2 assumed, without validation, the simplest form of
the time integration, i.e., it assumed that the history of a variable had a linear relationship
with the variable itself, with an implied weighting function of unity. The use of the LSTM
network eliminates the need for that assumption and the potential error associated with it.

In the following section, the CFD simulations, flame conditions, and LSTM fundamen-
tals are explained. Subsequently, the data preprocessing, network architecture, and the
LSTM'’s performance and error relative to CFD are discussed.

2. Methodology
2.1. CFD Simulations and Flame Conditions

In the present study, the numerical simulation of Dworkin et al. [33] is used to train
and test the neural network. In the numerical study of Dworkin et al. [33], a high-fidelity,
parallelized CFD code was used to solve the time-dependent, 2D axisymmetric equations
for the conservation of vorticity, velocity, chemical species, energy, and soot. The CFD
employed a sectional soot model with 20 logarithmically spaced sections. The soot model
considers inception, coalescence, surface growth, and oxidation. Briefly, the following
boundary conditions were applied: a symmetry condition at the centerline of the diffusion
flame (r = 0), a free slip condition (normal component of axial velocity set to 0) at the far-
radial boundary (r — o0), a zero gradient condition at the axial outlet (z — o), and velocity
inlet conditions for fuel and air at the burner (z = 0). Full expressions for the governing
equations and the boundary conditions are given in the original study [33].

The flame, originally considered in [33], is a transient laminar sooting ethylene/air
coflow diffusion flame with a periodic fluctuation of 20 Hz on the fuel velocity. The fuel
was a mixture with a mass fraction of 0.32 for ethylene and 0.68 for nitrogen. Different
amplitudes of modulation (30%, 50%, 70%, and 90%) were imposed on the fuel velocity
in [33], although only the 50% case was taken for the present study since those results were
validated against experimental data. The equation for the inlet fuel velocity is:

2
. T
s inlet, fuel = 20;,qvg (1 + asin 27 ft) [1 — () ], 4)

r

where v, g4 is the average spatial and temporal fuel inlet velocity (35 cm/s), r is the radial
value, rq is the inner radius of the fuel tube, « is the amplitude of modulation, and f is the
frequency of modulation.

It is pertinent to mention here that, as input to the soot estimator, any errors in the
CFD modelling (relative to experiment) would propagate into the soot estimator. While
the error between CFD and experiment varies depending on the complexity of the flame
and CFD submodels, most CFD models are able to capture the trends and gradients of soot
characteristics very well (e.g., see [2,5,34,35]). As the soot estimator tool is geared towards
industry design use, the ability to estimate trends in soot emissions is a valuable trait.
Moreover, as CFD simulations become more accurate, the propagation of error between
CFD and the LSTM will be reduced.

2.2. LSTM Theory

Before LSTM networks are discussed in detail, a brief review of ANNs is warranted.
An ANN is a computational tool that is used to predict an output when given input data.
The network has layers of “neurons” (also referred to as nodes) that have weights and
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biases. Input data is passed to a neuron, multiplied by the weight, the bias is added on,
and then the result is passed through an activation function (for example, the hyperbolic
tangent function). The result of the activation function is passed to the nodes in the next
layer, where the process continues until the final layer of nodes in the network (the output
layer). This output is the prediction of the neural network.

In the current context, the input data is computed CFD data, such as temperature
and gas composition, and the output is the soot volume fraction in the flame. A training
data set is assembled, where the inputs and outputs are known. The prediction from
the network is compared to the expected “answer” in the training data and the weights
and biases are updated such that the difference between the network’s prediction and the
expected answer is minimized. This process is repeated for a specified number of epochs,
where an epoch is one pass through the whole training data set. After the network is
trained, it is ready to be applied to a new problem and predict an output without needing
to have the answer pre-computed. Neural networks are at the heart of deep learning and
have facilitated sensational progress in fields such as finance, medicine, natural language
processing, and autonomous vehicle operation [36]. Further detail on the theory and
operation behind fully connected (or dense) neural networks may be found in [17].

An LSTM network [37] is an advanced neural network architecture that is used in
problems with sequential or time series input data such as in fluid mechanics and combus-
tion. LSTM networks were based on the recurrent neural network (RNN) architecture and
were designed to solve the stability issues inherent to traditional RNNs [38]. An RNN is a
broad class of neural networks where the output of the hidden layer (the layer of nodes
where weights and biases are applied) is returned back into the network [38]. Figure 1
shows an illustration of the general RNN concept. In Figure 1, the input at time step t — 1
(i-e., x;_1) is fed to a neuron with a tanh activation function, and the output (h;_1) from that
time step is fed as input (along with x;) to the subsequent node. This procedure allows the
network to “remember” information from previous time steps and make predictions in an
environment where knowledge of prior information is necessary (for example, predicting
the next word in a sentence). This method effectively permits time-history consideration
that is necessary for soot prediction, especially given the varying timescales of soot growth
and combustion kinetics. However, the self-feedback of the basic RNN model can lead
to an amplification problem, where the gradients computed during process of updating
the weights and biases can either explode or vanish over many time steps (the so-called
exploding or vanishing gradient problems) [32,38].

ht.l ht ht+1

Xt-1 Xt Xt+1

Figure 1. An illustration of an RNN network.

LSTM networks retain the basic concept of RNNSs, but use a set of gates to control
the passage of information between neurons. An LSTM layer is composed of “memory
cells” which consist of the following 4 components: a forget (f;), input (i), and output gate
(01), as well as an input node (C;) [32,38]. The structure of an LSTM memory cell is shown
below in Figure 2, where the squares represent trainable nodes (i.e., they have weights and
biases) and the circles represent pointwise mathematical operations. The writing inside
the squares and circles shows the activation function and the mathematical operation,
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respectively. The 2 activation functions, sigmoid (denoted by ) and hyperbolic tangent
(denoted by tanh) are defined below in Equations (5) and (6) [32].

1
= —, 5
7(2) = 7o ©)
2 — 2
tanh(z) = . 6
anh(z) = S ©
ht A
Ct
Mathematical
@ operation
Trainable
neuron
h¢
(%)~ .

Figure 2. A schematic of the inner workings of an LSTM memory cell.

Within the memory cell, the input gate controls how much of the input the network
should retain (i.e., it “gates” the input) [38]. The sigmoid activation function is used
because it ranges from 0 to 1, where 0 would denote that none of the input is retained
and 1 would denote that all of the input is retained. The outputs of the input gate and the
input node undergo a pointwise multiplication and the result is then added to the internal
state of the memory cell. The internal state can be thought of as the cell’s memory because
information from the previous cells are stored there (from the input C;_1). This retention of
information from previous nodes is the key element to LSTM networks and allows them
to work well with data where patterns or important information is spread across large
gaps [38]. The forget gate also interacts with the internal state, and it determines how
much of the internal state to neglect [38]. In essence, the forget gate drops part of the cell’s
memory after seeing the current input. The input gate and input node are multiplied and
after the addition of that quantity to the internal state, the hyperbolic tangent function is
used to scale the result between —1 and 1. The scaled result is multiplied by the result of
the output gate, which controls how much of the internal state to send to the next cell [38].

In Figure 2, the input to the memory cell, x;, is from the input data set. Vertically,
the cell outputs /; to the corresponding cell in the next LSTM layer. Horizontally, C; and
h; send the cell’s internal state and output, respectively, to the next LSTM cell in the
current layer. The mathematical expressions for the LSTM memory cell are listed below in
Equations (7)-(12) [38].

fr = o(Weexe + Wenhy 1 + by), @
ir = c(Wipxy + Wihy_1 + 1), ®)

Cr = tanh(We,xi + Wehi—1 + be), ©)
or = 0(Woxxt + Wophi—1 + bo), (10)
Ci=fi-C_1+ir-Cy, (11)

hy = tanh(Cy) - o4, (12)

where Wi is the weight vector for gate j and connection k (i.e., either the input connection
x or the recurrent connection h), b; is the bias for gate j, o and tanh are the sigmoid and
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hyperbolic tangent functions defined above, and - represents the pointwise multiplication
of vectors [38].

2.3. LSTM Application

As mentioned above, the input to the soot estimator is a selection of gas-related
properties and the output of the soot estimator is the soot volume fraction f,. In this
study, the gas-phase temperature as well as the mass fractions of C,H,, O,, OH, H,, C,H,,
with respect to time, are the inputs to the LSTM neural network. Note that the LSTM does
not receive any soot-related terms as input, which can save a large amount of computational
time. The merit of the soot estimator approach rests in the fact that, for a well-trained
neural network, the savings in computational time do not sacrifice significant accuracy
compared to CFD predictions. In fact, the results of [17] have shown that a neural network
can predict soot volume fraction (given non-soot related terms as inputs) to within 20%
of a high-fidelity CFD model such as CoFlame [2]. Here, it is also worth reiterating the
scope and application of this tool. The soot estimator is built for industry end use, where
acceptably accurate temperature and species data can be obtained through experiment or
CFD modelling and fed as a correct input to the soot estimator.

Figure 3 shows a visual example of part of the input data set. Figure 3 shows the
H, mass fraction, computed by CFD, at 10 equally spaced time steps between 0.7475 and
0.7925 s. The input from T, C,H,, O,, OH, C,H, take the same form. The first 9 time steps
were taken as the the training data for the network and the last time step was taken as the
test data. In neural networks, the training data set is the data that is used to update the
weights and biases. The test data set is only used to compare the network’s prediction to
the expected answer. It is not used to update the weights and biases and thus represents an
independent evaluation of the network’s predictive accuracy.

! ! n h h E
cm) r cm)
t=0. 7475 5 t=0.7525s t=0. 7575 s t= 0 7625 s t=0.7675s

cm) cm) r( cm)
t= 077255 t=0.7775s t=0.7825s t= 078755 t=0.7925s

z (cm)

z (cm

Figure 3. An example of part of the input data: H, mass fraction at 10 time steps. The first 9 time
steps is the training data while the last time step is the test data.
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In this problem, both the input and output data are functions of space (axially and
radially) and time. As such, the data from each input variable was collapsed into a
“spatiotemporal array”, where the values from the rows of the CFD’s computational mesh
were concatenated into a vector containing all of the time steps in the simulation. Figure 4
shows the concatenation process and the final form of the spatiotemporal array for each
input variable. The grids shown are a simple representation of the computational mesh
(in reality the mesh is non-uniform), where i and j are indicative of the radial and axial
directions, respectively, and k indexes the 10 time steps from the CFD simulation. The soot
volume fraction (the output of the LSTM) was also a spatiotemporal array. The structure
and contents of the spatiotemporal arrays for soot volume fraction and temperature are
shown in Figures S1 and S2 in the Supplementary Material. MATLAB R2019b was used to
create the spatiotemporal arrays and to use and train the LSTM neural network.

time step # 1 time step # 2 time step # k

3 3 3
2 2 2
1 1 1
123 i 123 i 123 i
| |
r Al 1 I 1 r 1
OTTT T T T T e [T e -
N - l—le = N Y =N -
A — e ™ o o m 233 =7
AR o G d - BB ~ g
\ L ) \ J L J
. . T ) T
1t row, 1= time step 2" row, 1% time step 3 row, 2" time step ™ row, k' time step

1 J

I
spatiotemporal array (total number of indices = kxjxi)

Figure 4. The concatenation process to convert the 3 dimensional input (time plus the axial and
radial dimensions in space) into a spatiotemporal array. Every input variable, as well as the output
variable of soot volume fraction, has its own spatiotemporal array.

3. Results and Discussion

Given as a generalized algorithm, developing a model on the basis of an ANN
should proceed as follows: (1) identification and collection of input/output data pairs
(which in the present study are CFD-obtained gas parameters and soot volume fraction),
(2) data preprocessing, (3) testing and optimization of the network architecture, (4) train-
ing the network, (5) testing the network, and (6) evaluation of the network predictions.
Figure 5 illustrates the general model development procedure when using a deep learning
approach. As in the previous study [17], data preprocessing was an essential step in obtain-
ing satisfactory results. Recall that the core principle of training an artificial neural network
is to update the network’s weights and biases such that the error between the network’s
prediction and the actual outcome is minimized. Without some form of data preprocessing,
differences in scale between the input and target data (potentially coupled with large
variances within the data itself) may make the weights and biases hypersensitive to change.
Updating the weights and biases in that kind of environment may lead to inaccuracies, low
reproducibility, and inefficiency in the training process. Indeed, in the previous study [17],
the greatest enhancement to the network’s predictive accuracy was the inclusion of data
preprocessing. Prior to data preprocessing, the data was highly skewed (far from a normal
distribution) and the network was predicting nonphysical results. The application of a log
transformation gave a much more symmetric, bell-shaped distribution [17]. Similar results
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were obtained by Christo et al. [19] upon the application of a log transformation to their
data set. In the current study, the unprepared data (both the input and target data sets) was
processed by applying a log transformation and by standardizing the data (i.e., ensuring a
mean of 0 and a standard deviation of 1).

Data from CFD

l

Data
preprocessing

Test data Training data

Initial tests to find the appropriate training
algorithms and the range of hyper-parameters

l

¥

Grid search iterations

l

1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
|
I
Storing the predicted data, computational !
1
I
1
1
1
1
1
1
1
1
1
1
!
1
1
1
I
1
1
1
]
1

time, and different errors for each case

l

Is Grid search iteration ended?

l\"es

Analyzing computational time and errors to find
the best network

Hyperparameter tuning and finding the best network

LSTM network

l

Final evaluation

Figure 5. A generalized algorithm for the development of an ANN-based model.

The network architecture has a significant impact on training time and predictive
accuracy. The time-dependent nature of this problem implied that LSTM layers should
be the core of the network. Beyond this initial framework, it is important to realize that
there is no definitive way to determine the ideal features of the neural network. This is due
to the inherent complexity of a neural network. For example, consider the learning rate
parameter. The learning rate of the network is the rate at which the weights and biases of
the network are updated. While it is clear that the learning rate should not be too high (or
else there may be instability in the training process), the optimal value is not immediately
clear for a given problem.

Opverfitting, one of the most significant issues in the training and application of ANNs,
is a common example of a phenomenon that the network architecture impacts in a vague
manner. Overfitting is a network behaviour that occurs when the predictive accuracy is
higher for the training data than for the test data. The amount of overfitting is regarded
as a measure of the general applicability of the network (i.e., the range of problems the
network can successfully handle) and is a result of the network being excessively tuned to
noise or specific features in the training data. The problem of excessive training can occur
when there are many more trainable parameters (weights and biases) than data points.
Consequently, a neural network with more layers or nodes is not guaranteed to give an
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increase in predictive accuracy. It is for this reason that structural parameters such as the
number of hidden layers and number of nodes per layer become subject to experimentation.

The dropout process [39] is a regularization technique that is used to help reduce
overfitting [32]. Dropout refers to the removal of certain nodes during the training process.
Essentially, some nodes in a layer (chosen randomly) are dropped out and the network
is trained without them for that iteration [32]. When the network is used after training,
neurons are not dropped out. Rather, their output is scaled by 1 — p, where p is the
probability of being dropped out during training [39]. Dropout may be thought of as an
averaging process, where the final network has a predictive capability averaged over all the
different networks from the training process (the networks with different nodes dropped
out). Dropout aims to prevent the network from overemphasizing the importance of any
specific piece of data in the training data set, hopefully broadening its range of use. In the
current network, dropout is only applied between nodes transferring information in the
same time step f [32], i.e., it is used in the vertical direction only (referring to Figure 2).
The percentage of nodes to be dropped out and the number of layers to apply dropout on
are more characteristics that must be tested.

In the present study, a grid search was performed to explore the parameter space
and select the network with the best performance. The network’s accuracy and its compu-
tational time (time taken to train the network) are the major considerations in assessing
network performance, with accuracy being the more dominant consideration. Readers
are referred to the previous work [17] for more detail on the selection of the network
parameters. The accuracy of the network was evaluated using 3 metrics: the relative error
in the peak f, prediction, the relative error in the volume integral of f, across the whole
domain, and the root mean squared error (RMSE), where all errors are relative to the
CFD predictions. The error in peak f, measures the LSTM’s ability to predict the flame’s
maximum soot concentration. The RMSE and error in the f, volume integral approxi-
mately quantifies the LSTM’s ability to predict the shape and distribution of the whole
fo field. The errors for peak f,, the volume integral, and the RMSE are defined below in
Equation (13,14,15), respectively. Note that in the discussion on the performance of the
LSTM, Equation (13,14) are expressed in percentages.

epeak _ |fvmaxC1’:le _Cf;ZaXLSTMl (13)
o — [y 27 fo(r,2) drdzcep — [ [y 2707 fo(r,2) dr dz spp| (14)
int [ [ 2mrfo(r, z) drdzepp
n _ 2
RMSE — \/211 (fv,CPDn foLsTm) (15)

where r and z are the radial and axial coordinates in the 2D axisymmetric domain, respec-
tively, i represents the index in the spatiotemporal array, and # is the total number of points
in the spatiotemporal array.

The full list of hyperparameters and their tested values are shown in Table 1, where
the parameters of the selected network are shown in bold. The selected network exhibited
the best balance between accuracy and computational time, taking about 1 h to train on
an NVIDIA GeForce GTX 1660 desktop graphics processing unit (GPU) and displaying
good accuracy (to be discussed in detail below). A visualization of the final network is
shown in Figure 6. Note that in Table 1, a dropout layer is not actually a layer of nodes.
Rather, it signals that dropout has been applied to the previous layer of nodes. After the
LSTM layers, there is a fully connected layer containing one node. This was the output
node that returned the soot volume fraction and therefore was not changed throughout the
grid search. For further information regarding the training options for a neural network,
the reader is referred to the Mathworks documentation [40].
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Table 1. Hyperparameters tested for the LSTM structure. Bold entries represent the selected hyper-

parameters.
No. of LSTM layers 1,2,3
No. of dropout layers 1,2,3
No. of hidden units/LSTM layer 10, 20, 30, 50, 75, 100, 150, 200, 250, 300
No. of epochs 20, 25, 30, 35, 50, 75, 100, 200, 300, 500, 1000
Gradient threshold 0.1,0.25,05,1,15,2,5
Learning rate schedule Piecewise
Initial learning rate 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5
Learning rate drop period 10, 20, 50, 100
Learning rate drop factor 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1
Dropout (%) 1,5,10,50
Training algorithm Adam, Stochastic Gradient Descent

Figure 6. The architecture of the selected neural network. Note that the dropout bubbles are not their
own layers of nodes, but they signal that dropout has been applied on the previous layer of nodes.

Figure 7 shows the predictions of the selected network compared to the CFD predic-
tions. The images show the soot volume fraction at the 9 time steps in the training data set,
where the left side is the prediction from the neural network and the right side is the CFD
simulation. The network’s predictions on the training data match very well with the corre-
sponding CFD prediction; the general shape and magnitude of the soot volume fraction
contour is very similar between the CFD and the LSTM. The largest errors in e, and e;
(defined above in Equations (13) and (14)) occur in the earlier time steps, with accuracy
steadily increasing from e,e,x = 65.60%, €j; = 33.16% at t3 t0 epeqr = 9.24%, iy = 1.67%
at t9. Note that the color bar on the right hand side of each pair of images corresponds
to the CFD prediction. For example, at 5, the peak f;, prediction from CFD was 0.45 and
the peak prediction from the neural network was 65.60% higher than that (0.75 ppm).
Table S1 in the Supplementary Material shows the values of f,,., eint, and RMSE for
CFD and the LSTM for each time step (rather than expressing them in a relative error
percentage). The approximately fivefold decrease in ey, between f5_4 and t7_9 may be
because the overall shape of the f, contour changes less rapidly at larger time steps, i.e., the
change in f, shape from t; to t5 is more pronounced than from t5 to t9. Effectively, this may
mean that the weights and biases are more tuned to predict an f, field that is similar to
tg than one that is similar to ¢, (since there are more shapes in the training data that are
similar to tg than to ;). This may be resolved by including more data in the training data
set that resembles the shape of the f; contour at t;.
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Figure 7. Soot volume fraction f, (ppm) compared at different time steps between CFD and the
neural network (training data only). Left: LSTM neural network, right: CFD.

Overall, the shape of the soot volume fraction contours predicted by the LSTM are
very similar to the CFD contours. Early on (¢; to t5), the neural network does not predict
enough soot in the “tails”; however, this issue seemed to decrease as time increased (likely
for the reasons stated in the previous paragraph). Even at ¢1, which is notably different
than the rest of the time steps, the shape of the f, profile is fairly similar between the LSTM
and CFD.

The average relative errors across all time steps in the training data were: epeqk,,, =
30.21%, ejpt,, . = 15.91%, and RMSE;yg = 0.0393. Despite the errors in peak f, for t3, t3
and t4, the accuracy of the network is beyond satisfactory when one considers the massive
reduction in computational time awarded by the neural network. As mentioned above,
the selected neural network only took about 1 h to train on a desktop GPU, which is orders-
of-magnitude less than the time it took to obtain a converged solution with CFD. The CFD
calculations take on the order of 1 week to converge using approximately 400 CPUs.
Furthermore, once the network was trained, it took seconds to run on the test data. This
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incredible speed-up, accompanied only by an average error of ~30% in peak f, (relative
to a high-fidelity CFD code) may be very valuable in an industry setting. In an industry
use-case, high-fidelity CFD tools may not be practical and the designer may turn to semi-
empirical soot models that are generally inaccurate yet expedient. Therefore, the availability
of a soot estimating tool that can replicate a high-fidelty CFD model to within ~30% in
epeak and ~15% in e;;; may not only facilitate the design cycle (through fast predictions),
but provide an increase in accuracy relative to a semi-empirical model.

Figure 8 compares the prediction of the LSTM to CFD on the test data set (the 10th
time step). Recall that the test data was not used to update the weights and biases of the
neural network and therefore represents an independent measure of the network’s accuracy
and general applicability. The results on the test data were very reasonable: e,,.,x = 21.98%,
eint = 3.25%, and RMSE = 0.055. The error with the LSTM predictions in the present study
is comparable to the error in a recent study that used an LSTM to predict NO, emissions
from a coal burner [32]; in both studies, the RMSE values were approximately 1-2 orders
of magnitude lower than the magnitudes of the predicted quantities (i.e., soot and NO,).
In the results on the test data, there is perhaps some under-prediction of f; in the tails of
the flame and some over-prediction of f; in the center and top; however, the overall shape
and distribution of the f, field is quite similar between CFD and the LSTM.

t10: epmk = 2198%,
eint = 3.25%, RMSE = 0.055
1 ppm

0 ppm

-1 0 11 0
r(cm) r (cm)

Figure 8. Soot volume fraction f, (ppm) compared between CFD and the neural network for the test
data (the 10th time step). Left: LSTM neural network, right: CFD.

The test results are encouraging because (1) e,¢qk,,,, and e;py,,,, were similar to Cpeakang
and éjpt,,, from the training data set, indicating negligible overfitting and (2) the test results
were fairly accurate despite the challenges associated with the f; contour at t19 being
qualitatively dissimilar to the f, contour from t; to t9. The fact that the network can still
give reasonable accuracy (compared to CFD) for a f, contour that is dissimilar to the f,
contours in the training data set indicates that it could potentially be applied to a wide
range of problems. As in many problems that involve neural networks, the best way to
increase the network’s general applicability is to broaden the training data set. Therefore,
improvement to this network will involve an expansion of the training data set. Additional
changes may be made to try to improve the accuracy of the prediction tool in future uses,
including the use of a deeper network (more hidden layers) and an exploration of more
advanced deep learning techniques (such as attention).
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Given the novelty of the soot estimator and its potential application over a wide range
of fy,itis appropriate to discuss different types of error. Equation (16) below was developed
in [17] to analyze the absolute error for the soot estimator and will be applied here.

1 1
e — | Jo 27 focep (r,2)dr — [ 2701 fo 70 (1, 2)dr |

(16)
fol 27trdr

Equation (16) is only a function of z (axial height) because it is averaged in the radial
direction. The averaging process in the radial direction reduces the error fluctuations
significantly and makes the presentation and interpretation clearer. The error is averaged
over r € [0,1] because it covers the sooting region for all time steps. Figure 9 shows ¢ for all
time steps in the training and test data (the test case is the largest time step). Interestingly,
the largest values of e are for the time steps where ¢, and e;;,; are lowest, which indicates
that the LSTM can give accurate predictions for all time steps if the predictions are averaged
in the radial direction. Across all time steps, the maximum error is slightly over 0.012 ppm.
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Figure 9. Absolute error for all time steps. Left: time steps 1-5, right: time steps 6-10.

Figure 10 shows a graph of the LSTM and CFD predictions of soot volume fraction as
a function of their index in the spatiotemporal array. Since the spatiotemporal arrays have
tens of thousands of entries, the x-axis was limited to about 500 entries in order to improve
readability. Figure 10 shows that the neural network can follow the CFD data across rapid
changes in f,, which may bode well for its potential use in more complicated problems
such as turbulent combustion. However, it remains to be seen whether this approach will
thrive in a turbulent environment, where there may be many random or irregular changes
in f, or any of the input parameters. The application of this LSTM to complex problems
like transient, turbulent diffusion flames may be the subject of future works.

14

——LSTM prediction
12 e CFD

1k i
0.8k ' ' ’ : ]
061 : ; 3 3 g 5 :

04r

Soot volume fraction (ppm)

0.2r
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Figure 10. LSTM and CFD predictions of f; over a select range of the spatiotemporal index.
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4. Conclusions and Recommendations

This study used an LSTM neural network to accurately estimate the soot volume frac-
tion from a time dependent laminar sooting coflow diffusion flame, originally considered
by Dworkin et al. in [33]. A high-fidelity CFD code was used to simulate this flame in
Dworkin et al. [33] and the data from that simulation was used to train this neural network.
The LSTM network received 6 input parameters from CFD (temperature and mass fractions
of H,, C,Hy, O,, OH, and C,H,) and outputted soot volume fraction f,. The input data
was collapsed into a spatiotemporal array and the network was trained on 9 consecutive
time steps and tested on the 10th time step.

The input data was preprocessed by applying a log transformation and by standard-
ization, which helped give a more normal distribution to the data, and subsequently, more
accurate results to the network. The final LSTM neural network had 2 LSTM layers (each
with 10% dropout), 100 LSTM hidden units per layer, and 35 epochs. The LSTM showed
excellent estimation capability, closely matching the neural network in both shape and
strength of the soot volume fraction contour for most time steps. The reduced compu-
tational time of the neural network compared to CFD is a major advantage; the trained
LSTM only takes seconds to run on a modern desktop computer (after being trained for
approximately 1 h), while a high-fidelity CFD model like CoFlame [2] may take weeks on a
large supercomputer.

The successful implementation of this approach is a step forward in advancing the
capabilities of the soot estimator idea. Although [32] has used LSTM neural networks
to predict NOy emissions from a coal burner, this approach is, to the best of the authors’
knowledge, the first attempt to use an LSTM for soot prediction. Combined with the
previous study [17], these works represent the first uses of neural networks to estimate soot
concentration based on a detailed and high-fidelity CFD input. This detailed CFD input
trained the network to recognize the foundational relationships between the gas phase
properties and soot concentration. The reasonably accurate predictions on the training
and test data bodes well for the use of the LSTM approach in more complex problems
like transient, turbulent combustion. Overall, the success of the soot estimator tool in
increasingly complex flames paves the way toward its adoption as the accurate, easy-to-
use, and computationally inexpensive tool that the combustion industry acutely needs.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/1996-107
3/14/5/1394/s1, Figure S1: The contents of the spatiotemporal array for temperature. From top to
bottom, the figure is zoomed in., Figure S2: The contents of the spatiotemporal array for soot volume
fraction. From top to bottom, the figure is zoomed in., Table S1: The peak f,, volume integral, RMSE,
and relative errors for LSTM and CFD at each time step.
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