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Abstract: The effective prediction of gas concentration and the reasonable formulation of correspond-
ing safety measures have important significance for improving the level of coal mine safety. To
improve the accuracy of gas concentration prediction and enhance the applicability of the models,
this paper starts with actual coal mine production monitoring data, improves the accuracy of gas
concentration prediction through multi-parameter fusion prediction, and constructs a recurrent
neural network (RNN)-based multi-parameter fusion prediction of coal face gas concentration. We
determined the performance evaluation index of the model’s prediction method; used the grid search
method to optimize the hyperparameters of the batch size; and used the number of neurons, the
learning rate, the discard ratio, the network depth, and the early stopping method to prevent overfit-
ting. The gas concentration prediction models—based on RNN and PSO-SVR and PSO-Adam-BP
neural networks—were compared and analyzed experimentally with the mean absolute percentage
error (MAPE) as the performance evaluation index. The result show that using the grid search
method to adjust the batch size, the number of neurons, the learning rate, the discard ratio, and
the network depth can effectively find the optimal hyperparameter combination. The training error
can be reduced to 0.0195. Therefore, Adam’s optimized RNN gas concentration prediction model
had higher accuracy and stability than the BP neural network and SVR. During training, the mean
absolute error (MAE) could be reduced to 0.0573, and the root mean squared error (RMSE) could be
reduced to 0.0167; however, the MAPE could be reduced to 0.3384% during prediction. The RNN gas
concentration prediction model and parameter optimization method based on Adam optimization
can effectively predict gas concentration. This method shows high accuracy in the prediction of gas
concentration time series and can be used as a reference model for predicting mine gas concentration.

Keywords: coal mine safety; recurrent neural network; deep learning; grid search method

1. Introduction

Coal mine gas concentration is among the most important parameters affecting coal
mine safety and production. This impacts the economic development of coal mines and
is of course important for its own sake. However, it is possible to effectively predict the
dynamic behavior of gas concentration and suggest efficient measures to control coal
mine gas.

Local and international researchers have conducted a large amount of research on the
problem of gas concentration prediction. An improved SVM-based prediction algorithm
was proposed based on the support vector machine (SVM) method by Fu [1–3]. Liu [4]
applied the method of fuzzy information granulation combined with SVM to predict
the gas concentration. Wang Qijun [5] proposed an immune neural network prediction
model based on a neural network. Liu proposed a prediction method combining a genetic
algorithm with a BP neural network [6], and Li proposed a dynamic fuzzy neural network
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prediction method of gas concentration based on an immune genetic algorithm [7]. Other
researchers have used the modified time series method for prediction; Yang Li [8] adopted a
multi-distribution model prediction method; Wang [9] proposed a prediction method based
on wavelet transform and an optimized predictor; Wu [10] integrated wavelet transform
with an extreme learning machine for prediction; and Ma Xiliang [11] adopted the gray
prediction model. The aforementioned methods have greatly improved the accuracy of gas
concentration prediction. However, the training samples for sample selection are few, and
short in time span; for this reason, the methods have certain limitations for applications
with more complicated gas concentration changes.

In recent years, with the development of big data and artificial intelligence, deep
learning has been widely applied in various fields. The representative recurrent neural
network (RNN) has made a breakthrough in speech and video processing [12–15], social
applications [16,17], and text sentiment analysis [18–20]. RNN is suitable for processing
data related to time series [21–23].

The author of this manuscript constructed a multi-parameter fusion prediction model
of gas concentration based on RNN. The performance evaluation index of the prediction
method of the model is determined. The regression algorithm feature selection is performed
on the gas concentration time series [24]. It can effectively remove characteristic changes
that are less relevant to the target variable in the gas concentration time series. It can
retain variables that have a greater correlation with the target variable. It can improve
the interpretability of the gas concentration time series. The three variables selected by
the feature include return air flow gas concentration, upper corner gas concentration, and
temperature. The grid search method is used to adjust the hyperparameters of the batch
size, the number of neurons, the learning rate, the discard ratio, and the network depth. It
can effectively find the optimal hyperparameter combination and reduce the training error.
Based on the RNN gas concentration prediction model and parameter optimization method,
the gas concentration can be effectively predicted. This method has higher accuracy in the
prediction of gas concentration time series, and can provide certain reference opinions for
mine gas concentration prediction.

2. Materials and Methods

The recurrent neural network represents the repeated use of the same network struc-
ture [25,26]. Compared with the traditional neural network, the recurrent neural network
is not only fully connected between layers but also interconnected between neurons [27,28].
An error feedback mechanism is added to the hidden layer; that is, the output of the current
hidden layer of an RNN includes the output information of the hidden layer from the last
moment, such that RNN retains the output information of the last moment by using a
recurrent feedback mechanism [29]. RNN has short-term memory and is more suitable for
dealing with problems related to time series. Figure 1 shows an RNN structure diagram,
where blue circles represent neurons in the hidden layer and the output layer (including
activation function), and white circles represent the input layer.

Figure 1. A recurrent neural network (RNN) structure diagram.
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2.1. The Information of the Hidden Layer of the Recurrent Neural Network

The operational principle of the RNN relies on two things: the hidden layer and the
output layer. Figure 2 shows the schematic diagram of the RNN forward propagation.
where t and t − 1 are moments, Wxh is the weight matrix from the input layer to the hidden
layer, Whh is the weight matrix from the hidden layer to the hidden layer, Why is the weight
matrix from the hidden layer to the output layer, x is the input layer information, and h is
the hidden layer. y is the output layer information, f is the hidden layer activation function,
and g is the output layer activation function. Generally, the hidden layer activation function
uses the tanh function or rectified linear units; the output layer activation function has a
linear function and a softmax function; each activation function is shown in Figure 3.

Figure 2. A diagram of the operational principle RNN’s forward propagation.

Figure 3. Sigmoid function diagram.

The output information of the hidden layer consists of two parts: the output informa-
tion of the hidden layer at the previous moment and the output information of the input
layer at the current moment.

The input information of the input layer is:

h1 = Wxhxt (1)
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The output information of the hidden layer at the previous moment is:

h2 = Whhht−1 (2)

The output information of the hidden layer is the sum of h1 and h2:

ht = f (h1 + h2)

= f (Wxhxt + Whhht−1)
(3)

h2 is the influence of information of the hidden layer at the previous moment on
the current moment, indicating the information content that can be memorized, and
ut = Wxhxt + Whhht−1 is the N × 1 hidden layer’s latent vector.

In addition, the output at the previous moment is sometimes used to update the state
at the next moment. At this time, the state variable is:

ht = f
(

Wxhxt + Whhht−1 + Wyhyt−1

)
(4)

2.2. Calculation of The information of the Output Layer of the Recurrent Neural Network

The information taken from the hidden layer to the output layer can be expressed as yt.
The output information ht of the hidden layer can be derived from Equation (3). Suppose
the input layer contains K neurons, the hidden layer contains N neurons, and the output
layer contains L neurons. Then, the weight matrix Wxh from the input layer to the hidden
layer is a K × N order matrix, the weight matrix Whh from the hidden layer to the hidden
layer is an N × N order matrix, and the weight matrix Why from the hidden layer to the
output layer is an N × L order matrix. Then, the output of the hidden layer is:

vt = Whyht (5)

The output information of the output layer is:

yt = g(vt)

= g
(

Whyht

) (6)

where Whyht + ht is the latent vector of the L × 1 output layer.
Combining all of the above information, the output information of the output layer is:

yt = g
(

Why f (Wxhxt + Whhht−1)
)

(7)

2.3. The Backpropagation of Circulating Nerves over Time

Back propagation through time (BPTT) is used calculate the error between the inputs
and outputs of neurons. Through the backpropagation of the network error and the
regression of each layer, one can minimize the loss function, reach the optimization goal,
and adjust the weights and thresholds of the neural units of each layer. The cyclic neural
network studied in this paper is a regression task, and the square error is used as the loss
function of the cyclic neural network:

E = c
T

∑
t=1
‖ It − yt ‖ 2 = c

T

∑
t=1

L

∑
j=1

(lt(j)− yt(j))2 (8)

where E is the loss function using the square error, yt is the true value, and it is the predicted
value. To facilitate the subsequent derivative calculation of the paper, the value of c is 0.5.
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In the training process, the gradient descent method is used to determine the structural
parameters of the neural network, and the loss function is minimized as the optimization
goal. Equation (9) presents the weight update principle:

wnew = w− γ
∂E
∂w

(9)

where γ is the learning efficiency.
To calculate the descent gradient, the following network error terms are defined in

Equation (10):

δ
y
t (j) = − ∂E

∂vt(j)

δh
t (j) = − ∂E

∂ut(j)

(10)

where δ
y
t (j) is the output neuron’s error, and δh

t (j) is the hidden neuron error.
For the last time frame (T), the error of the hidden layer is:

δh
T(j) = −

(
L
∑

i=1

∂E
∂vT(i)

∂vT(i)
∂hT(j)

∂hT(j)
∂uT(j)

)
=

L
∑

i=1
δ

y
T(i)why(i, j) f ′(uT(j))

f or j = 1, 2, . . . N
(11)

After matrixing:
δh

T = WT
hyδ

y
T• f ′(uT) (12)

Here, the chain rule is used to derive the error function, and the vt calculated in the
previous step can be directly applied to the calculation of the subsequent error term until
the partial derivative of ut is calculated.

The error term for other time frames is:

δ
y
t (j) = (lt(j)− yt(j))g′(vt(j))

f or j = 1, 2, . . . , L
(13)

After matrixing:
δ

y
t = (It − yt)•g′(vt) (14)

The error term for the recursive calculation of output nodes and hidden layer nodes is:

δh
t (j) =

[
N
∑

i=1
δh

t+1(i)whh(i, j) +
L
∑

i=1
δ

y
t (i)why(i, j)

]
f ′(ut(j))

f or j = 1, 2, . . . , N
(15)

After matrixing:
δh

t =
[
WT

hhδh
t+1 + WT

hyδ
y
t

]
• f ′(ut) (16)

The error term δ
y
t is obtained from the backpropagation of the output layer in time

frame t, and δh
t+1 is the result of the backpropagation of the hidden layer in time frame

t + 1. It should be noted that in contrast to time T, the intermediate time contains two parts
of the backward error of backpropagation. For the last item at time T, there is no sub-
sequent neuron, so there is only one reverse error term, y. As such, the T moment is a
special moment.

2.4. Weight Updating for Reverse Broadcasting over Time

According to the weight update principle, Equation (9) can be used to obtain the
updated status of the weight of each layer.
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Output layer:

wnew
hy (i, j) = why(i, j)− γ

T
∑

t=1

∂E
∂vt(i)

∂vt(i)
∂why(i, j)

=why(i, j)− γ
T
∑

t=1
δ

y
t (i)ht(j)

(17)

After matrixing:

Wnew
hy = Why + γ

T

∑
t=1

δt
yhT

t (18)

Input layer:

wnew
xh (i, j) = wxh(i, j)− γ

T
∑

t=1

∂E
∂ut(i)

∂ut(i)
∂wxh(i, j)

=wxh(i, j)− γ
T
∑

t=1
δh

t (i)xt(j)
(19)

After matrixing:

Wnew
xh = Wxh + γ

T

∑
t=1

δt
hxT

t (20)

Hidden layer:

wnew
hh (i, j) = whh(i, j)− γ

T
∑

t=1

∂E
∂ut(i)

∂ut(i)
∂whh(i, j)

=whh(i, j)− γ
T
∑

t=1
δh

t (i)ht−1(j)
(21)

After matrixing:

Wnew
hh = Whh + γ

T

∑
t=1

δt
hhT

t−1 (22)

The pseudo-code of RNN backpropagation is shown in Algorithm 1.

Algorithm 1. The time back propagation algorithm of a single-layer RNN with a square sum
error function

1: procedure BPTT({xt, It}1 ≤ t ≤ T )
2: for t← 1; t ≤ T ; t← t + 1 do
3: ut ←Wxhxt + Whhht−1
4: ht ← f (ut)
5: vt ←Whyht
6: yt ← g(vt)
7: end for
8: δ

y
T ← (IT − yT)•g′(vT)

9: δh
T ←WT

hyδ
y
T• f ′(uT)

10: for t← T − 1; t ≥ 1T ; t← t− 1 do
11: δ

y
t ← (It − yt)•g′(vt)

12: δh
t ←

[
WT

hhδh
t+1 + WT

hyδ
y
t

]
• f ′(ut)

13: end for
14: Why ←Why + γ ∑T

t=1 δt
yhT

t
15: Whh ←Whh + γ ∑T

t=1 δt
hhT

t−1
16: end procedure



Energies 2021, 14, 1384 7 of 18

3. Experiment and Results
3.1. Construction of a Predictive Model

To combine the characteristics of the gas concentration time series and the advantages
of RNN processed time series, the Adam optimization algorithm is used to optimize
the solution process, and the RNN-based gas concentration prediction algorithm for the
working face is constructed. The RNN face gas concentration prediction can be divided
into three parts: data processing, network training, and network prediction. The RNN
gas concentration prediction process is shown in Figure 4. The data processing processes
include data cleaning, feature extraction, data partitioning, and data normalization. The
network training process take the loss function minimization as the optimization goal and
adopts adaptive moment estimation (Adam) optimization. For network prediction, the
trained RNN prediction algorithm predicts the gas concentration time series.

Figure 4. RNN gas concentration prediction process flowchart.

The main research object of the hidden layer is network training. First, we de-
fine the gas concentration time series Fo = { f1, f2, . . . , fn} in the network input layer;
fi = {x2i, x5i, x7i, x0i}, i < n is the gas concentration time series after Lasso feature
selection, where in the divided training set is Ftrain = { f1, f2, . . . , fm}, the test set is
Ftest = { fm+1, fm+2, . . . , fn}, and the relationship between m and n is m<n, m,n∈N. The
MinMaxScaler method (denoted as min–max) is used to normalize fi, and the normalized
training set is:

F′train =
{

f ′1, f ′2, . . . , f ′m
}

(23)

To unify the input format of the hidden layer in the network, the data are divided into
F′train, and the length of the divided window is set to L. Then, the output of the divided
model is:

X = {X1, X2, . . . XL} (24)

Xp =
{

f ′p, f ′p+1, . . . , f ′m−L+p−1

}
(25)

f ′p =
{

x2p, x5p, x7p
}

(26)

1 ≤ p ≤ L; p, L ∈ N (27)

The corresponding theoretical output is:

Y = {Y1, Y2, . . . YL} (28)
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Yp =
{

x′0(p+1), x′0(p+2), . . . , x′0(m−L+p)

}
(29)

The output, X, is sent to the hidden layer. It can be seen from Figure 4 that the
hidden layer contains L RNN units linked before and after time. After the hidden layer is
calculated, X can be expressed as:

P = {P1, P2, . . . PL} (30)

Pp = RNN f orward
(
Xp, Cp−1, Hp−1

)
(31)

Among them, Cp−1 and Hp−1 represent the state and output of the previous RNN unit,
respectively; RNN f orward is t Equations (1)–(7). We set the unit state vector size to Sstate;
then, the size of both Cp−1 and Hp−1 is Sstate. Therefore, the dimensions of hidden layer
output P and theoretical output Y are (m − L, L, 1), which is a three-dimensional array. In
addition, the loss function used in this experiment is the mean square error:

loss =
L(m−L)

∑
i=1

(pi − yi)
2/[L(m− L)] (32)

Taking the minimum loss function as the optimization principle, the Adam optimiza-
tion algorithm is used to update the network weights, and finally the optimal hidden layer
network is obtained.

Adam (a method for stochastic optimization) is a first-order optimization algorithm.
Compared with the traditional gradient descent algorithm, the optimization performance
has been greatly improved. Based on the training sample data, the network is continuously
iterated to update the weight and threshold of the neural network. Adam combines the
superior performance of AdaGrad and RMSProp algorithms, and can solve most of the
sparse gradient and noise problems by setting parameters. The parameters in the Keras
framework are lr = 0.001, β1 = 0.9, β2= 0.999, and ε = le^08; lr is the learning efficiency; β1
and β2 are the exponential decay rates of the moment estimation; ε is a very small number
to prevent division by zero in the calculation; the initial value of both mt and vt is 0. The
algorithm update method is as follows:

First-order moment estimation and second-order moment estimation:

mt = β1 ∗mt−1 + (1−β1)∗gt (33)

vt = β2 ∗ vt−1 + (1−β2)∗gt^2 (34)

First-order moment estimation deviation correction and second-order moment estima-
tion deviation correction:

m′t =
mt

(1− β1^t)
(35)

v′t =
vt

(1− β2^t)
(36)

Parameter update:

θt = θt−1 − α ∗ m′t(√
v′t + ε

) (37)

3.2. Experimental Verification of Multi-Parameter Fusion Prediction Model of Pressure Relief Gas
Concentration Based on RNN

This experiment used coal mine production monitoring data from 1 July to 2 November
2018 as the training sample, a total of 10,000 pieces of data, based on the gas concentration
time series data. This experiment used the cubic exponential smoothing method to impute
missing items in the data. The approximate mean method was used to replace outliers in
the data. The MinMaxScaler method was used to normalize the data, and the Lasso method
was used to perform feature selection on the data samples. It uses a 7:3 data set division
and divides the processed data into a training set and a test set. The training set was used to
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train the prediction model. The test set was used to test the learning effect of the predictive
model. Therefore, the training set had 7000 pieces of data, and the test set had 3000 pieces
of data. There were three characteristic variables related to the gas concentration in the
working face, the gas concentration in the upper corner, the gas concentration in the return
air flow, and the temperature. A detailed view of the time series of gas concentration is
shown in Figure 5.

Figure 5. A time series diagram of gas concentration diagram.

To ensure the performance of the prediction model, two evaluation indicators, mean
square error (MSE) and running time, were used to evaluate the performances of the
following trained RNN prediction models. The prediction model’s operating principle is
shown in Equation (38):

MSE =
1
n

n

∑
i=1

( fi − yi)
2 (38)

where fi is the predicted value of the gas concentration; yi is the true value of the gas
concentration.

In addition, the computer configuration used in this experiment was as follows:
the processor was CPU (i7-8700), the speed was 3.2 GHz/3.19 GHz, the memory was
32.00 GB, the operating system was Windows10 (64-bit), and the programming language
was python3. 6.5—integrated development environment PyCharm Community Edition
2017.2.3. In the program design process, the RNN, SVR, and BP neural network were
implemented by Keras 2.2.4 and scikit-learn 0.19.1 program packages.



Energies 2021, 14, 1384 10 of 18

4. Discussion
4.1. Comparison of the Hyperparameter Tuning of Learning Rate, Batch Size, and Neuron

(1) Setting the hyperparameters
According to Algorithm 2. this experiment first fixed the values of non-key parameters—

random seed, seed = 2, and 100 training steps—and then set the value ranges of three
parameters—batch size {2, 4, . . . 48}, number of neurons {12, 16, . . . 104}, and the learning rate
{0.001, 0.003, 0.005, 0.01}—and finally set the objective function to the minimum MSE.

Algorithm 2. the training and prediction of a gas concentration prediction model for a working
face based on the RNN.

Input: Fo, m, L, Sstate, seed, steps, η

1. get Ftrain,Ftest from Fo by m
2. F′train= min-max(Ftrain)
3. get X,Y from F′train by L
4. create RNNcell by Sstate
5. connect RNNnet by RNNcell and L
6. connect RNNnet by seed
7. for each step in 1: steps
8. P =RNN f orward(X)

9. loss = ∑
L(m−L)
i=1 (pi − yi)

2/[L(m− L)]
10. update RNNnet by Adam with loss and η

11. get RNN∗net
12. for each j in 0: (n-m-1)

13. Pf+j = RNN∗net

(
Yf+j

)
14. append P0 with Pf+j [−1]
15. Pte = de_min−max(Po)
16. error measure ε(Ptest, Ftest),εe(Ptrain, Ftrain)

The batch size represents the maximum number of samples for each model’s training.
As the batch size increases, the convergence speeds up; however, it is easy to miss the
optimal solution; the number of neurons represents the learning ability of the model, and
the expression ability of the model increases as the number of neurons increases. However,
the operating cost will also see a corresponding increase while increasing the probability
of overfitting.

The RNN model training process mainly involves the input layer, hidden layer, output
layer, and network training part. The prediction process mainly involves the output layer.
RNNnet means the hidden layer network of the RNN model, RNNcell means the neural
unit in the hidden layer of the RNN model, and εmeans the error measurement function.

(2) Analysis of experimental results
Figure 6 shows the training results of using the grid search method to optimize RNN

hyperparameters. The independent variable in each sub-graph is batch size, and the
dependent variable is the number of neurons. Different sub-graphs correspond to different
values. Mse is the minimum MSE in the sub-graph. The lighter the color of a square in
the grid, the smaller the MSE. Figure 6 shows that with an increase in batch size, the MSE
became larger. When = 0.001, the MSE could converge to the lowest range; at the same
time, the batch size value range was [10,20], and the neuron value was 68. It was easy to
obtain a higher accuracy, and the minimum MSE was 0.0191.
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Figure 6. Results of grid search with three parameters.

(3) Experimental results
The top five optimal parameter combinations of the RNN model and the correspond-

ing model accuracy are shown in Table 1.

Table 1. Number of batches and neurons, and training performance.

Rank
Model Parameters

MSE Time/s
Batch Neurons η

1 10 68 0.001 0.0191 421
2 12 100 0.001 0.0192 601
3 34 68 0.003 0.0219 312
4 20 68 0.003 0.0221 352
5 10 104 0.001 0.0222 782

It can be seen that it was easier to obtain higher accuracy when η was 0.001. When
the number of batches was 10 and the number of neurons was 68, the model’s prediction



Energies 2021, 14, 1384 12 of 18

accuracy was the best. The experimental results show that, for η, the smaller the value,
the higher the prediction accuracy. At the same time, selecting reasonable values for the
numbers of batches and neurons can effectively avoid over-fitting problems, increase the
learning ability of the model, and improve the prediction accuracy of the model.

4.2. Hyperparameter Tuning Comparison of Network Depth and Discard Ratio

(1) Hyperparameter setting
According to the training results, this experiment first fixed the parameter values:

random seed, seed = 2, 100 training steps, 10 batches, 68 hidden layer neurons, learn-
ing rate η = 0.001. Then, it set two parameters: the value ranges of the dropout ratio,
Dropout ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and network depth ∈ {1, 2, 3, 4, 5}; finally, it set the
objective function to be the minimum MSE.

Dropout represents the proportion of randomly inactivated neurons in the prevention
of overfitting. A decrease in the proportion will increase the capacity of the model. Fewer
dropped parameters means that the adaptability between model parameters and the
capacity between models will increase, but this will not necessarily increase the model’s
accuracy. When the discarding ratio is too large, the model parameters will be reduced,
thereby reducing the ability of the model to learn and express; an increase in the network
depth of the model means an increase in the model capacity; under the same conditions, an
increase in the network depth means more parameters and a stronger fitting ability; as the
network depth increases, the model becomes increasingly complex, and it is increasingly
likely to cause over-fitting.

(2) Analysis of experimental results
Figure 7 shows the training results of using the grid search method to optimize the

RNN hyperparameters. As the discarding ratio increased, the model’s ability to prevent
overfitting became stronger; however, the problem of underfitting became increasingly
serious. As shown in Figure 7, as the discarding ratio increased from 0.1 to 0.5, the model’s
error became larger (see the darker colors in the figure); in addition, as the network depth
increased, the parameters increased increasingly in number, and the model learned and
showed capability when the number of parameters was increased to a certain extent.
Although the model’s learning and predictive abilities were very strong, the complexity of
the model increased gradually, which caused a higher probability of overfitting, leading
to higher errors and model depth. When it had 1 to 3 layers, the model’s error gradually
decreased (see the lighter colors in the figure), and when the model’s depth increased
to five layers, the predictions started to improve (see the darker colors in the figure). In
addition, the experiment found that the smaller the model’s discarding ratio, the smaller
the training error; as the network depth increased, the model’s training error showed a
parabolic trend, and the error first increased and then decreased.

Figure 7. Results of a grid search with two parameters.
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(3) Experimental results
The detailed performance in terms of the dropout ratio and network depth for the

RNN gas concentration prediction method is shown in Table 2.

Table 2. Dropout ratio and network depth performance.

Rank
Model Parameters Performance

Dropout Ratio Layers MSE Time/s

1 0.1 3 0.0191 600
2 0.2 3 0.0255 631
3 0.1 4 0.0261 871
4 0.1 2 0.0271 125
5 0.1 1 0.0277 57

From the table, the model’s parameter discarding ratio was 0.1, and when the network
depth was three layers, the minimum model error was 0.0191. In addition, when the
discarding ratio was 0.1, the probability of obtaining a lower error was higher.

Based on the optimization results of the previous two sections, this experiment first
fixed the values of the key parameters: random seed, seed = 2, 100 training steps, 10 batches,
68 hidden layer neurons, learning rate 0.001, and dropout ratio 0.1. The network depth was
three layers, and finally the objective function was set to the highest prediction accuracy
(minimum MSE) at the test point, and the early stopping method was used to find the best
training times. The training effect of the early stopping method is shown in Figure 8.

Figure 8. The early stopping method’s training effect diagram.

This experiment used the early stopping method for training, while monitoring the
error of the validation set. When the error in the validation set increased continuously for
five training times, the training was stopped, and the weight parameter in the previous
iteration result was used to the model the final parameters. As shown in Figure 8, when
the number of training epochs was 80, the validation set’s error was 0.0195, and the
error continued to increase during five consecutive trainings; the validation set error was
0.0201. The experiment found that after 85 training epochs, the RNN prediction model
appeared to be over-fitting, and the error of the training set continued to decrease, but
the corresponding validation set error gradually increased, and the validation set error
oscillated. According to the principle of the early stopping method, this experiment will
train the sample 80 times.
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4.3. Comparison of Prediction Performances of Different Models

To ensure the prediction performance of the prediction model, the average absolute
percentage error (MAPE) evaluation index was used to evaluate the prediction performance
of the three optimized prediction algorithms (SVR, BP, and RNN). This operation is shown
in Equation (39):

MAPE =
1
n

n

∑
i=1

∣∣∣∣ fi − yi
yi

∣∣∣∣ ∗ 100% (39)

where fi is the predicted value of the gas concentration; yi is the true value of the gas
concentration.

The fitting diagram of the multi-parameter fusion prediction effect of the working
face gas concentration using the SVR method is shown in Figure 9. Based on the figure,
the SVR method could learn the changing trend of the gas concentration time series, and
could roughly fit the changing trend of the gas concentration. However, as the prediction
length increased, the prediction error of the SVR prediction method gradually increased. In
particular, at the inflection points of some gas concentration changes, the prediction error
was too large.

Figure 9. Prediction fitting based on PSO-SVR.

Figure 10 shows the fitting diagram of the multi-parameter fusion prediction of the
coal face gas concentration using PSO-Adam-BP. The parameter set in the PSO-Adam
model needs to analyze the actual optimization problem. This paper used a three-layer
neural network structure. The number of hidden layer neurons was 48, the batch size
was 10, the activation functions of the hidden layer and the output layer used the “tansig”
and “relu” functions, a dropout layer was added to prevent overfitting, the discarding
ratio was 0.1, and the number of training samples optimized by the early stopping method
was 20. From the figure, the PSO-Adam-BP method could learn the changing trend of
the gas concentration time series, and could essentially fit the changing trend of the gas
concentration. Compared with the SVR method, the prediction performance was better,
but with the increases in the length of the prediction, the prediction error of the method
based on PSO-Adam-BP was gradually increased. In particular, at the time inflection points
of some gas concentration transformations, the prediction error was too large.

To study the universality and popularization of the RNN method, the coal mine
production monitoring data were used as the research object to compare and analyze the
prediction performance of each method in other mine applications. The comparison of the
prediction results of different methods is shown in Figure 11.
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Figure 10. Prediction fitting based on PSO-Adam-BP.

Figure 11. A comparison of the prediction results of the different methods.

The SVR, BP neural network, and RNN can roughly fit the gas concentration change
trend in the prediction process; however, the prediction of the RNN performed best at the
time inflection points of certain concentration changes. As shown in the Figure 11, at the
A~D stages, the three prediction methods could fit the changing trend of gas concentration,
but at the time inflection point of certain gas concentration changes—at points A, B, C, and
D in the figure—the error of the RNN was obviously smaller than the prediction errors
of the SVR and BP neural network models; in addition, when the prediction length was
40–50 units, the RNN prediction method could fit the changing trend of gas concentration,
but the SVR and BP neural network methods could no longer achieve adequate prediction,
especially at point E in the figure; there, the prediction errors of the SVR and BP neural
network methods were relatively large.

Generally speaking, the RNN had better predictions than the SVR and BP.
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4.4. Comparative Analysis of Gas Concentration Prediction Errors Based on the SVR, BP,
and RNN

The MAPEs of predictions by different methods are shown in Figure 12. The SVR and
BP neural network prediction methods had many large prediction errors in the prediction
process. Unlike the SVR and BP neural network prediction methods, the prediction of the
BP neural network method’s MAPE was mainly concentrated between 0.19% and 0.59%.

Figure 12. MAPE box and whisker plots of the predictions of different methods.

Table 3 shows a detailed performance comparison of the prediction errors of different
models. The experimental results showed that the average MAPEs of the SVR and BP
neural network were 0.4872% and 0.4458%, respectively; the average MAPE predicted by
the RNN could be reduced to 0.3384%; the median MAPE of SVR and BP neural network
are 0.4134% and 0.3842%, respectively; the RNN’s median MAPE was 0.2825%.

Table 3. Comparison of prediction errors of different models.

Models SVR BP Neural Network RNN

Average MAPE /% 0.4872 0.4458 0.3384
Median MAPE /% 0.4134 0.3842 0.2825

5. Conclusions

(1) Adam’s optimized RNN model had higher accuracy and stability than the BP neural
network and SVR. During training, MAE can be reduced to 0.0573 and RMSE can be
reduced to 0.0167, while MAPE can be reduced to 0.3384% during prediction.

(2) Compared with the RNN gas concentration prediction model, SVR was more suitable
for processing data samples with small data volumes and weak feature correlation.
For gas concentration time series problems with large data samples and strong fea-
ture correlation, the prediction accuracy cannot meet the requirements; a BP neural
network can be applied to large samples and high-dimensional samples; however,
the ability to deal with data before and after the correlation is weak; compared to the
BP neural network and SVR, RNN was more suitable for processing data related to
time series due to its memory cell structure.

(3) The recurrent neural network has the advantages of memory function, reasonable
weight distribution, gradient descent, and backpropagation. It can memorize the
current input information. When it comes to continuous, context-related tasks, it has
more advantages than traditional artificial neural networks.

(4) Compared with the RNN, although SVR and BP neural network methods could learn
the transformation trend of a gas concentration time series, when it involved the
inflection point of a gas concentration change associated with the front and back, the
prediction performance was poor.
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(5) The RNN gas concentration prediction method and parameter optimization method
based on Adam optimization can effectively predict gas concentration. Compared
with the traditional BP neural network and the SVR method, the RNN method had
higher accuracy and, at the same time had better robustness and applicability in terms
of prediction stability. Therefore, this method has higher accuracy and could provide
guidance for mine gas management.
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Abbreviations

BP back propagation
BPTT back propagation through time
GRU gate recurrent unit
MAE mean absolute error
MAPE mean absolute percentage error
MSE mean square error
PSO-Adam particle swarm optimization-Adam
PSO-SVR particle swarm optimization-support vector regression
RNN recurrent neural network
RMS root mean square
RMSE root mean squared
SVM support vector machine
Symbols
f the hidden layer activation function
g the output layer activation function
h the hidden layer
x the input layer information
y the output layer information
γ the learning efficiency
δ

y
t (j) the output neuron’s error

δh
t (j) the hidden neuron’s error

δ
y
t the error term

Wxh weight matrix from the input layer to the hidden layer
Whh weight matrix from the hidden layer to the hidden layer
Why weight matrix from the hidden layer to the output layer
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