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Abstract: The energy consumption for space cooling is growing faster than for any other end-use in
buildings, more than tripling between 1990 and 2016. Energy efficiency is an important topic in the
drive to reduce the consumption of electricity, particularly in air conditioning. This paper presents
a simulation of an absorption cooling system with a parabolic trough collector under dynamic
conditions using TRaNsient SYstem Simulation (TRNSYS) software. The thermal analysis seeks to
evaluate a storage tank at three different configurations: (1) sensible heat, (2) latent heat, and (3) latent
heat incorporating a tempering valve. The latent heat storage tank is a rectangular heat exchanger
using MgCl2·6H2O as the phase change material, programmed in EES software; in addition, water
and synthetic organic fluid were analyzed as heating fluids. The process was analyzed while varying
the solar collector area from 20 to 40 m2 and the storage tank volume from 0.25 to 0.75 m3. The
results showed that the solar collector of configuration 1 is unable to satisfy the energy demand.
Configuration 2 can satisfy the demand with water and a storage tank volume above 0.50 m3 and
30 m2, while configuration 3 can satisfy the demand above 0.50 m3 and 20 m2 with water.

Keywords: phase change material; absorption cooling system; parabolic trough collector; tempering
valve; thermal energy storage

1. Introduction

The use of air conditioners and electric fans in buildings is responsible for nearly 20%
of the total electricity consumption around the world. This consumption is increasing
due to demographic growth and the fact that more people naturally wish to live under
comfortable temperature [1]. Renewable energy initiatives have been implemented in
many countries to reduce greenhouse emissions. However, the problem associated with
some renewable energies such as solar and wind is that they are only available for a finite
period of time [2].

Energy storage has become an important complement to renewable energy technol-
ogy systems. Thermal energy storage is a technology that stocks thermal energy that
can be used at a later date for heating or cooling applications [3]. Absorption chillers
are an interesting technology used to acclimatize spaces; however, they are not able to
economically compete with conventional cooling (vapor compression). Therefore, moving
forward, the research and development (R&D) projects must optimize the cycle, minimize
parasitic losses, improve the auxiliary system, numerous controls and operation aspects,
and improve the design and integration of thermal storage [4].

Sensible heat is commonly used in storage tanks for absorption systems when radiation
is not available. This is a significant drawback because they require large spaces and
heavy tanks. Phase change materials (PCMs) have recently been used in absorption
cooling systems to reduce the size of the tanks because it can save more thermal energy in
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smaller spaces because of the latent heat. Fan et al. [5] presented a numerical study of a
shell-and-tube heat exchanger as a latent heat storage tank (LHST) using hydroquinone,
combined with a solar-driven H2O/LiBr double-effect absorption system. The phase
change was numerically solved using the enthalpy method. The results indicated that
natural convection cannot be neglected in the solidification process; in addition, the peak
cooling demand (100 kW) was satisfied by only using 12.55 m3 of LHST and parabolic
trough collectors for a 2400 m2 office building.

Pintaldi et al. [6] analyzed the benefits of using sensible (water and oil) and latent
(KNO3/NaNO3 and AlSn) storage systems coupled with a triple effect chiller operation.
The thermal energy is provided through the parabolic trough collector at 200 ◦C using a
vertical shell and tube heat exchanger as storage tank. The results showed that the latent
heat storage systems obtained high storage efficiencies compared to sensible heat storage
systems since the reduced storage sizes yielded lower heat losses. Alternatively, solar
collectors had a higher yield using a sensible heat storage medium.

Zhou et al. [7] numerically and experimentally analyzed a single/double hybrid effect
(SDHE) absorption system composed of linear Fresnel reflector solar collector arrays. A
shell and tube heat exchanger was used as a thermal storage tank to store molten salt.
The coefficient of operation was varied from 0.73 to 1.09 when the operation mode of
the SDHE switched from single effect to double. Meanwhile, the inlet temperature of
hot water increased from 141.5 to 155.4 ◦C. The optimized region of the solar collector
area and thermal storage capacity were within the ranges of 900–1100 m2 and 5.0–8.5 m3,
respectively.

At present, sensible heat storage tanks are usually used in absorption chillers due
to the relatively low cost, easy design, and high heat capacity of water. PCMs have not
yet been widely adopted in designs in this field; however, it is a promising candidate to
reduce the size of the storage tank material for solar absorption cooling systems [4]. This
paper presents a thermal analysis of a single-stage LiBr-H2O absorption chiller heated
by a parabolic trough collector (PTC) using three configurations in order to evaluate the
efficiency of the system: (a) sensible heat (SHST), (b) latent heat (LHST) storage tank and
(c) LHST with a tempering valve. The LHST is modeled in two dimensions and transition
conditions. In addition to water, synthetic organic fluid was analyzed as a heating fluid.

2. Latent Heat Storage Tank Model Development

A rectangular heat exchanger was chosen as the LHST. It consisted of three flat
containers that included a phase change material (PCM) and four channels in which
heating fluid (HF) flows were used to extract or supply energy (see Figure 1). The following
assumptions were made in the development of the mathematical model:

• the PCM is homogeneous and isotropic;
• the thermophysical properties of the PCM are independent of temperature;
• the phase change of the PCM is assumed to be isothermal;
• the thermal resistance of the metal wall of the plates is insignificant;
• the temperatures of the input and output heating fluid are considered well mixed.

The mathematical model was solved by a finite difference scheme; each node was
discretized in time in two dimensions, as shown in Figure 2a. Symmetry was considered to
simplify the simulation and reduce the number of nodes by half. The m and n subscripts
are the node counts in the x and y directions (Figure 2b).
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2.1. Governing Equations

The following equations are the governing conservation equations expressed in the
finite difference formulation in transient conditions, solved using the implicit method:

Heating fluid

mHFCpHF

(
Ti+1

m−1,n− Ti+1
m,n

)
+ mHFCpHF

(
Ti+1

m+1, n − Ti+1
m,n

)
+ hi+1

HF ∆Ay

(
Ti+1

m,n+1 − Ti+1
m,n

)
+hi+1

HF ∆Ay

(
Ti+1

m,n−1 − Ti+1
m,n

)
=

ρHFCpHF∆V(Ti+1
m,n−Ti

m,n)
∆t

(1)
where m, T, Cp, h and ρ are the flow rate (kg/s), temperature (◦C), heat capacity (kJ/kg
◦C), convection heat transfer coefficient of the heating fluid (kW/m2 ◦C) and density
(kg/m3), respectively; ∆Ay and ∆V are the area in the y direction and volume element,
respectively. Ti

m,n and Ti+1
m,n are the temperatures of node m, n at times ti = i∆t and ti+1 =

(i+1)∆t, respectively. ∆t is the step time.
PCM container
Center. The energy balance is carried out in the center of the PCM container (see

Figure 2a) as follows:
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kPCM∆Ax(Ti+1
m−1,n−Ti+1

m,n)
∆x +

kPCM∆Ax(Ti+1
m+1,n−Ti+1

m,n)
∆x +

kPCM∆Ay(Ti+1
m,n+1−Ti+1

m,n)
∆y

+
kPCM∆Ay(Ti+1

m,n−1−Ti+1
m,n)

∆y

=
ρPCMCpPCM∆V(Ti+1

m,n−Ti
m,n)

∆t ,

(2)

where ∆x and ∆y are the nodal points spaced throughout the rectangular mesh (see
Figure 2b) and k is the thermal conductivity (kW/m ◦C).

Interphase. The energy balance is carried out between the PCM container and heat-
ing fluid.

kPCM∆Ax(Ti+1
m−1,n−Ti+1

m,n)
∆x +

kPCM∆Ax(Ti+1
m+1,n−Ti+1

m,n)
∆x + hi+1

HF ∆Ay

(
Ti+1

m,n+1 − Ti+1
m,n

)
+

kPCM∆Ay(Ti+1
m,n−1−Ti+1

m,n)
∆y =

ρPCMCpPCM∆V(Ti+1
m,n−Ti

m,n)
∆t

(3)

Lost energy. This is the energy lost between the insulated wall and the environment:

kINS∆Ax(Ti+1
m−1,n−Ti+1

m,n)
∆x +

kINS∆Ax(Ti+1
m+1,n−Ti+1

m,n)
∆x

+Ui+1∆Ay

(
Ti+1

ENV − Ti+1
m,n

)
+ hi+1

HF ∆Ay

(
Ti+1

m,n−1 − Ti+1
m,n

)
=

ρINSCpINS∆V(Ti+1
m,n−Ti

m,n)
∆t

(4)

Ui+1 =
1

1
hENV

+ thINS
kINS

(5)

where th is the thickness (m) and the subscript INS and ENV represent the insulation and
environment; U is the overall heat transfer coefficient from insulation to the environment.

The Nusselt number (Nu) inside the channel in the HF [8] for a Reynold number
<2800 is calculated as:

NuHF =
0.03 Dh

L RePr

1 + 0.016
(

Dh
L RePr

)2/3 (6)

The Nusselt number for natural convection [8] from the insulating wall to the environ-
ment for the horizontal plate and 107 < Ra < 1011 is calculated as:

NuENV = 0.15Ra1/3 (7)

where Re, Pr and Ra are the Reynolds, Prandtl and Rayleigh numbers. Dh and L are the
hydraulic diameter and longitude of the channel.

The PCM can be classified as organic (paraffin and nonparaffin) or inorganic (salt
hydrates, salt composites, metallic alloys) [9]. Some advantages of using hydrate salts are
the high density of volumetric latent heat (around 350 MJ/m3), higher thermal conductivity
than organic compounds and lower cost than paraffin and other organic compounds [2,10].
On the other hand, some disadvantages are chemical instability, the loss water during
every heating cycle, the fact that some salts are chemically aggressive towards the struc-
ture material and low conductivity [11]. Table 1 presents a comparison of some thermal
properties of organic and salt hydrate compounds.

It is difficult to identify the most appropriate PCM to satisfy the requirements of the
process [9]; however, MgCl2·6H2O was selected as the PCM because it met the minimum
temperature in the generator (111 ◦C) of the absorption cooling system and due to the
suitability of the thermophysical properties according to the data.
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Table 1. Thermophysical properties of some Phase change materials (PCMs) [9,10,12,13].

Compound
Melting

Temperature,
◦C

Heat of Fusion,
kJ/kg

Thermal
Conductivity,

W/m ◦C
Density, kg/m3

Inorganic

MgCl2·6H2O 117 168.6 0.69 (solid)
0.57 (liquid)

1569 (solid)
1450 (liquid)

Mg(NO3)2·6H2O 89 162.0 0.61 (solid)
0.49 (liquid)

1636 (solid)
1550 (liquid)

CaCl2·6H2O 29 190.8 1.09 (solid)
0.53 (liquid)

1710 (solid)
1530 (liquid)

Organic

Paraffin wax 64 173.6 0.346 (solid)
0.167 (liquid)

916 (solid)
790 (liquid)

Naphthalene 80 147.7 0.341 (solid)
0.132 (liquid)

1145 (solid)
976 (liquid)

2.2. Mathematical Model Validation

The simulation was validated with experimental data obtained by Zivkovic and
Fujii [13] because its geometry was similar and the heating fluid (air) flowed in the sides
of the container; moreover, a hexahydrate salt was also used as the PCM (CaCl2·6H2O).
The rectangular container had a length (lt) and width (wt) = 0.1 m, and the height (ht)
varied from 0.01 to 0.02 m (see Figure 3). Air flowed in the sides of the PCM as the
heating medium.
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Figure 4 shows the temperature profiles at the output of the PCM container as a
function of time. The initial temperature was 14 and 60 ◦C for the PCM container and air,
respectively. The figure shows that the phase change finished after 20.70 and 22.67 min in
the interphase (TINT) and center (TCEN) of the PCM, respectively, for htPCM = 0.01 m, and 45
and 49 min for ht = 0.02 m. This time delayed in the interphase and center occurred because
the phase change was obtained first in the interphase, so the temperature is constant and
heat transfer from the interphase and the center was low. Once the phase change finished
in the interphase, the temperature started to increase and heat transfer increased from
the interphase and center, and the phase change was completed within a short period of
time. Moreover, it could be observed that the temperature increased faster in the liquid
phase than in the vapor phase due mainly to the thermal conductivity. The temperature
differences obtained between the experimental values (TEXP) and the simulation (in the
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center) were lower than 10% (see Figure 4); only two points yielded values higher than
15% at the beginning of the liquid phase at htPCM = 0.01 m, caused mainly by the lack
of thermophysical properties in the phase change zone. However, similar temperature
behavior was detected; moreover, the phase change time between the experimental data
and simulation was less than 5 minutes for both thicknesses.
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3. Methodology

The present study considers the cooling of a building via an H2O-LiBr single-stage
absorption cooling system (ACS) using a parabolic trough collector which supplies thermal
energy to the storage tank (SHST), as can be seen in Figure 5a. There are two main circuits:
solar collector (red line) and cooling (magenta line). In the solar collector circuit, heating
fluid is pumped from the SHST into the PTC and returned to the SHST. In the cooling circuit,
the same heating fluid is sent to the auxiliary system to control the supply temperature
to the generator component of the ACS and return to the tank. The auxiliary system
consists of a heating system (HS) and a dissipating system (DS) in order to control the
input temperature in the generator of the ACS from 111.0 to 116.1 ◦C.
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Three configurations are evaluated: the first uses a sensible heat storage tank (SHST),
which means that there is no phase change (Figure 5a). The second configuration uses a
latent heat storage tank (LHST), as can be seen in Figure 5b. Configuration 3 (Figure 6) uses
an LHST and introduces a tempering valve (TV) that eliminates the dissipating system.
The TV consist of a diverter and a mixer component and its objective is to keep the input
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temperature at the maximum range of operation (111 ◦C) when the temperature of the
storage tank is higher than the limit of operation of the ACS. The function consists of
mixing the stream resulting from the high temperature of the storage tank with a relatively
low temperature stream coming from the ACS, changing the flow rates of each stream.
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3.1. Operation Time

An analysis of the environmental conditions was carried out in order to select the
time of operation of the ACS. Type 15-2 (weather data) was built in the TRaNsient SYstem
Simulation (TRNSYS) software to simulate the environmental conditions of Temixco City,
Morelos, Mexico. A typical week in summer was selected from 1996 to 2164, as Figure 7
shows. The environmental temperature (TENV) oscillates from around 32 to 20 ◦C (blue
line). A building was simulated in a previous work [14]; some building characteristics are
shown in Table 2. The maximum cooling demand (red line) was 8 kW. In addition, the
figure shows that the cooling heat load is somewhat lower on the first day than on the
others, which presents the opportunity to store energy in the storage tank.
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Table 2. Building characteristics.

Concept Quantity

North and south wall 35 m2

Ceiling and floor 75 m2

West and east wall 12.5 m2

4 windows 1 m2

Air change of ventilation 6 h−1

3.2. Solar Cooling System Simulation

The TRNSYS [15] software was used to simulate the solar chiller for cooling a building.
Figure 8 shows a schematic diagram of the process with the implementation of the TV
(configuration 3). There are four main circuits: the solar collector (red line), heating tank
(magenta line), chilled water (blue line), and cooling water (green line). In the solar collector
circuit, a heating fluid is pumped (Type 3d-3) from a storage tank (Type 66a, programmed
in the Equation Engineering Solver software [16]) into the PTC (Type 1288) and returned to
the tank. In the heating storage circuit, the heating fluid is pumped (Type 3d-4) from the
storage tank to the tempering valve (Type 62, programmed in Excel software) to the ACS
(Type 107-2) to supply energy to the generator. When the temperature of the storage tank is
lower than the minimum temperature of the working operation of the ACS, a heater (Type
6) is turned on.
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The chilled water circuit is used to control the temperature of the building (Type 56)
using a cooling thermostat (Type 1503) at 25 ◦C ± 1 ◦C. The chilled water is pumped (Type
3d) from the evaporator from the ACS (Type 107-2) to a heat exchanger (Type 91) and
exchanges heat with the airflow rate (Type 3d-2) from the building and returns to the ACS.
Finally, the cooling water circuit is used to extract the heat load from the condenser and
absorber of the ACS. A water flow rate is pumped (Type 3d-5) from the ACS, and it is
sent to a cooling tower (Type 510) which decreases its temperature, and it is returned to
the chiller.

The pump in the solar circuit is controlled by Type 2b, and it is turned off when the
output is higher than the input temperature of the storage tank or when the temperature
of the tank reaches a maximum temperature of operation, namely 180 ◦C, to avoid high
pressure when water is used as the heating fluid. The thermostat (Type 1503) controls the
pumps in the heating tank, chilled water and cooling water circuits.
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Details of the mathematical model of the heating tank, cooling and chilled water
circuit can be found in Cerezo et al. [14]. Table 3 shows the parameters of the parabolic
trough collector [17].

Table 3. Parabolic trough collector data.

Parameter Value

F’(τα) 0.611
Collector efficiency coefficient, C1 1.42
Collector efficiency coefficient, C2 0.021
Collector efficiency coefficient, C3 0.0
Collector efficiency coefficient, C4 0.0
Collector efficiency coefficient, C5 6.653
Collector efficiency coefficient, C6 0.0

The solar fraction (SF) is defined in Equation (8).

SF =
QSC

QSC + QHS
(8)

QSC and QHS represent the energy of the solar collector and the heating system in kJ.

4. Results
4.1. Thermal Analysis of the LHST

The storage tank was studied with two types of heating fluid: water and synthetic
organic (SO) fluid [18]. Both heating fluids were analyzed because the PTC should supply
temperatures up to 117◦C to the PCM to reach a fusion latent state; then, the pressure vapor
should present problems using water. Table 4 lists some of the thermal properties of the
heating fluids. The pressure vapor of the SO is negligible compared to water; however, the
thermal conductivity and heat capacity are lower than those of water.

Table 4. Thermal properties of water and synthetic organic.

Property at 120 ◦C Water Synthetic Organic

Heat capacity, kJ/kg ◦C 4.25 1.97
Thermal conductivity, kW/m ◦C 0.67 0.11

Pressure vapor, bar 1.98 0.01
Density, kg/m3 943.2 889.8

Viscosity, centipoise 0.23 0.62

Figures 9–11 show the temperature profiles of the heating fluids over time for an
LHST with a geometry of length = 3 m and width = 0.5 at different heights for HF (htHF)
and PCMs (htPCM). Figure 9 shows the temperature profile at htPCM = 0.05 m. It can be
observed that when htHF is reduced, the phase change time is shorter and finishes at 40,
50 and 75 min for htHF = 0.005, 0.01 and 0.02 m, respectively, for SO. In the case of water,
the phase change time is reduced significantly: it takes 12, 15 and 20 min to complete the
process. Figures 10 and 11 illustrate similar behavior to that shown in Figure 9; however,
much more time is needed to complete phase change. A value of htHF = 0.005 m was used
for the simulation of the absorption cooling system.

It was observed that water requires less phase change time than SO, due to the thermal
resistance (TR) in the heating fluid. Table 5 shows the thermal resistances inside the LHST
at different htPCM at a flow rate of 1200 kg/min, which corresponds to a convection transfer
coefficient (hHF) of 0.09 and 0.52 kW/m2 ◦C for SO and water, respectively. It can be
seen that the global heat transfer (U) is almost doubled when htPCM is 0.05 m for SO
(0.050 kW/m2 ◦C) and water (0.094 kW/m2 ◦C); however, the difference in U values is
reduced when htPCM is 0.15 m (0.027 and 0.035 kW/m2 ◦C). The U values were affected
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more noticeably by the water than SO. The reduction in U values ranged from 0.050 to
0.027 kW/m2 ◦C for SO and 0.094 to 0.035 kW/m2 ◦C when htPCM was increased. This
means that the thermal resistance was more dominant in SO than water, because the
convective resistance was lower in water than SO.
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Figure 9. Temperature profile over time for a height of PCM = 0.05 m using (a) SO and (b) water.
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Figure 10. Temperature profile over time for a height of PCM = 0.10 m using (a) SO and (b) water.
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Figure 11. Temperature profile over time for a height of PCM = 0.15 m using (a) SO and (b) water.
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Table 5. Thermal resistances (TRs) in the latent heat storage tank (LHST).

HF hHF,
kW/m2 ◦C

htPCM,
m

TRHF,
m2 ◦C/kW

TRPCM,
m2 ◦C/kW

U,
kW/m2 ◦C

SO 0.09 0.05 11.11 8.77 0.050
SO 0.09 0.10 11.11 15.54 0.035
SO 0.09 0.15 11.11 26.32 0.027

water 0.52 0.05 1.92 8.77 0.094
water 0.52 0.10 1.92 17.54 0.051
water 0.52 0.15 1.92 26.32 0.035

The storage tank sizes selected for this study were 0.25, 0.50 and 0.75 m3, which
correspond to htPCM of 0.049, 0.10 and 0.16 m, respectively, at fixed widths of 0.5 m and
lengths of 3 m.

4.2. Thermal Analyses of the Absorption Cooling System

Figure 12 shows the behavior of the temperature and flow rates of the LHST from
1995 to 2015 h (around a day) for water, at a storage tank volume of 0.25 m3 and 20 m2 of
the solar collector area. The operation of the solar absorption cooling system with LHST
in dynamic condition can be explained in three steps: (1) only the solar collector flow
rate (black line) is activated, (2) both the solar collector and the heating tank (yellow line)
flow rate are activated and (3) heating tank flow rate is activated. The initial temperature
of the PCM (TPCM) was 115 ◦C. In step 1, the input (red line) and output (orange line)
temperatures started to increase at around 2001 h. The input (TIN) and output (TOUT)
temperatures are the average temperatures of the solar collector and the heating tank
circuits (described in Section 3.2). When the TPCM (blue line) reached 117 ◦C, the phase
change began and lasted around two hours, after which the liquid phase started and the
temperature began to increase. The second step started at around 2006 h when the flow
rate of the solar collector and heating tank circuits entered the storage tank; then, the
temperatures started to oscillate because the heating circuit flow rate was switched off or
on every 12 or 18 min, depending on the ACS. The energy of the solar collector and storage
tank was supplied to the generator of the ACS and temperatures started to decrease. The
solar collector was switched off at around 2010 h and the third step began, with the energy
supplied to the ACS coming from the storage tank or the heating system (when TOUT was
less than 111 ◦C), and the process was completed at 2012 h.
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Figure 12. Temperature profiles and flow rates of LHST for water at 0.25 m3 and 20 m2.

Figures 13 and 14 show the behavior of the solar fraction when varying the solar
collector area from 20 to 40 m2 at different sizes and with different heating fluids, using an
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SHST and LHST, respectively. The solar fraction increased when the storage tank size and
solar collector area were increased in all cases. Figure 13 shows that the solar fraction (SF)
increased from 0.65 to 0.79 for SO and from 0.66 to 0.80 for water at a storage tank volume of
0.25 m3, and it increased from 0.69 to 0.83 for SO and from 0.71 to 0.86 for water at 0.75 m3.
The SF of the water yielded slightly better results (between 1.1 and 2.5%) than SO, because
the heat capacity of the water was larger than that of SO (see Table 4) and the storage tank
stored more energy. As is known, SHST is the conventional medium used to store thermal
energy for absorption cooling systems. The energy used by the heating system was 5680 MJ
for SO and 5120 MJ for water at 0.75 m3 with 40 m2, while the dissipation energy (waste
energy) in the system amounted 1420 MJ for SO and 1640 MJ for water.
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Figure 13. Solar fraction as a function of parabolic trough collector (PTC) collector area for sensible heat storage tank (SHST)
(configuration 1) using (a) SO and (b) water.
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Figure 14. Solar fraction as a function of PTC collector area for LHST (configuration 2) using (a) SO and (b) water.

Figure 14a shows that the SF increased almost linearly from 0.77 to 0.91 for SO at
0.25 m3 from 20 to 40 m2. However, the SF increased rapidly from 0.74 to 0.93 and 0.77 to
0.93 for SO from 20 to 30 m2 at 0.50 and 0.75 m3, respectively. After this, similar values
(from 0.93 to 0.95) were obtained at 0.50 and 0.75 m3 from 30 to 40 m2 due to the high
thermal resistance in both the PCM and the HF. When water was used, the SF increased
quickly from 0.77 to 0.89 from 20 to 30 m2 at 0.25 m3, and reached a maximum value of
0.93 at 40 m2 (slightly higher than SO under similar conditions) because the capacity to
store energy was not sufficient to maintain the minimum working temperature of the ACS.
However, when the LHST volume was 0.50 and 0.75 m3, the SF was 1.0 at 30 and 23 m2 of
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solar collector area, respectively. This is because the thermal resistance in HF was reduced
from 11.11 to 1.92 m2 ◦C/kW (see Table 5). This improved the heat transfer of the LHST
and the output temperature was higher than the minimum temperature required in the
generator of the ACS (111 ◦C) and the heating system was not necessary. Moreover, water
yielded better values of solar energy than SO because the input temperature in the PTC
was lower than that when using SO.

Figure 15 shows the SF as a function of the solar collector area using the TV (configu-
ration 3). The SF increased from 0.85 to 0.94 for SO at 0.25 m3 from 20 to 40 m2. Similar
values of SF (0.90 to 0.96) were obtained for both 0.50 and 0.75 m3. However, when water
was used, the SF increased from 0.88 to 0.99 at 0.25 m3, while the SF was 1.0 for 0.50 and
0.75 m3 when the collector area was greater than 20 m2.
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The SF yielded higher values with configuration 3 than configuration 2, mainly with
a lower solar collector area, because it utilized the waste energy generated by the DS.
The increment in the SF was slightly higher with configuration 3 than configuration 2
using SO above 30 m2; however, when water was used, the SF was very significant. This
is because water extracted more energy than SO, and more energy remained stored in
the storage tank with SO and it was not used when the absorption cooling system was
activated. However, configuration 3 obtained a lower amount of solar energy from the solar
collector than configuration 2 (see Figure 16) because the storage tank from configuration 3
reached a higher temperature than that in configuration 2 and reduced the efficiency of the
solar collectors.
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5. Discussion

Solar absorption cooling systems usually use sensible heat to store thermal energy
in tanks because they are easy to build and the heat transfer is high because hot and cold
streams are mixed directly, while LHST can store a large amount of energy due to the latent
heat, but it is limited in terms of the thermal diffusion because the thermal conductivity in
both PCM and HF is very low; however, the heat transfer can be improved by reducing
the PCM thickness and increasing the convection transfer coefficient in HF, reducing the
height of the channel.

The results of our study showed that the use of latent heat is more suitable than
sensible heat. The use of water obtained better heat transfer of the LHST than SO, mainly
due to the thermal conductivity; however, vapor pressure started to increase at temper-
atures above 100 ◦C, and the construction material in this case is more expensive. The
advantages of the SO are the lower density compared to water and the very low vapor
pressure (0.17 bar at 200 ◦C), which means that the thickness of the material can be reduced;
however, the viscosity is almost three times higher than that of water and the convection
resistance is high, which means that the solar collectors cannot satisfy the energy demand.
The use of a corrugated plate heat exchanger could be used to improve the efficiency of the
heat exchanger.

The ACS still cannot compete with compression vapor systems because the coefficient
of operation is lower. This means that the ACS requires a greater energy supply; moreover,
the necessity of cooling in the building is greater after roughly 3 pm due to the thermal
inertial (depending on the building structure), when the solar radiation starts to decrease.
Solar energy storage is crucial for absorption cooling systems. Sensible heat storage tanks
commonly used in ACS cannot fulfill the energy requirements, necessitating external
energy input from the auxiliary system; in addition, they are larger and heavy. However,
our results showed that the energy supply to the ACS can rely only on the solar collector
for the use of the LHST, which can store sufficient energy in small spaces as reported by
Fan et al. [5]. This is a very important aspect to consider in order to increase the interest in
this kind of sustainable technology.

6. Conclusions

This paper presented a thermal analysis of an absorption cooling system using three
configurations: (1) an SHST, (2) an LHST, and (3) using LHST and TV; moreover, water and
SO were tested as types of heating fluid. The following conclusions were made:

• The use of SHST (configuration 1) yielded a solar fraction ranging from 0.65 to 0.79
and 0.69 to 0.83 for SO at 0.25 and 0.75 m3 storage tank volume, respectively, from 20
to 40 m2 of solar collector area, while a solar fraction from 0.66 to 0.80 and 0.71 to 0.86
was obtained for water under similar conditions.

• The use of LHST (configuration 2) yielded better SF values than the use of SHST. When
SO was used the SF increased almost linearly from 0.77 to 0.91 at 0.25 m3 from 20
to 40 m2, while the SF increased quickly at around 0.74 to 0.93 at 0.50 and 0.75 m3,
respectively, from 20 to 30 m2. After this, similar values (from 0.93 to 0.95) were
obtained, due to the high thermal resistance in both the PCM and the HF. When water
was used, we obtained a maximum value of SF = 0.93 at 0.25 m3. However, the SF
was 1.0 at 0.50 and 0. 75 m3 at 30 and 23 m2, respectively. This is because the thermal
resistance in HF was reduced and improves the heat transfer of the LHST.

• Configuration 3 (LHST and TV) yielded better results than configuration 2 because
it used the waste energy generated by the DS (configuration 2). When SO was used,
the SF increased from 0.85 to 0.94 at 0.25 m3. The SF obtained similar values (0.90 to
0.96) at 0.50 and 0.75 m3. When water was used, the SF increased from 0.88 to 0.99 at
0.25 m3; however, the SF was 1.0 at 0.5 and 0.75 m3, when the collector area was more
than 20 m2.
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Abbreviations

A area: m2

DS dissipation system
D diameter
F´(τα) collector (F´) (transmittance) (absorptance) product
h convective heat transfer coefficient, kW/m2 ◦C
HF heating fluid
HS heating system
Ht height
k thermal conductivity, kW/m ◦C
LHST latent heat storage tank
lt length
m mass flow rate, kg/s
Nu Nusselt number
PCM phase change material
Pr Prantl number
PTC parabolic trough collector
Ra Rayleigh number
Re Reynolds number
SHST sensible heat storage tank
T temperature, ◦C
t time, s
th thickness
Q energy
U overall heat transfer coefficient, kW/m2 ◦C
V volume, m3

wt width
Subscript
CEN center
ENV environment
INS insulating
INT interphase between PCM container and HF
SC solar collector
H hydraulic
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