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Abstract: Recently, micro-grids (MGs) have had a great impact on power system issues due to their
clear environmental and economic advantages. This paper proposes an equilibrium optimizer (EO)
technique for solving the energy management problem of MGs incorporating energy storage devices
concerning the emissions from renewable energy sources (RES) of MGs. Because of the imprecision
and uncertainties related to the RESs, market prices, and forecast load demand, the optimization
problem is described in a probabilistic manner using a 2m + 1 point estimation approach. Then, the
EO approach is utilized for solving the probabilistic energy management (EM) problem. The EM
problem is described according to the market policy on the basis of minimizing the total operating
cost and emission from RESs through optimal settings of the power generated from distributed
generators (DGs) and grids connected under the condition of satisfying the operational constraints
of the system. The proposed EO is evaluated based on a grid-connected MG that includes energy
storage devices. Moreover, to prove the effectiveness of the EO, it is compared with other recently
meta-heuristic techniques. The simulation results show acceptable robustness of the EO for solving
the EM problem as compared to other techniques.

Keywords: micro-grids; equilibrium optimizer technique; renewable energy sources; probabilistic
energy management; 2m + 1 point estimate approach

1. Introduction

The exponential increase in universal power demand has had a major impact on the
rapid depletion of fossil fuels, which has resulted in increasing gas emissions from con-
ventional generators. To solve this problem, the world has tended to encourage obtaining
energy from renewable energy resources (RESs) such as wind turbines (WT), photovoltaics
(PV), biomass, fuel cell (FC), micro-turbines (MT), hydropower, tides, and energy storage
(ES) devices [1,2]. It is worth noting that micro-grids (MGs) systems have an important
vital role in solving different energy-related problems such as reducing the minimization of
the operating costs, transmission losses, environmental pollution, and peak load as well as
improving voltage regulation and participating in frequency regulation. The MGs systems
consist of different technologies of non-dispatchable and dispatchable renewable energy
sources (RES), ES devices, and dispatchable loads. Further, MGs enable the active sharing
of customers by giving them real-time control and access to the information [3–5].

Considering all mentioned benefits, more and more extra small MGs have been
deployed over all the world such as facilities, military bases, hospitals, and industries in
recent ten years [6]. With the high penetration of energy from RESs in the existing power
systems, it also has the important impact of reducing energy losses, pollutant emissions,
and enhancing power system performance. However, the improper utilization of RESs
leads to problems in the operation of the system [7,8].
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Generally, MGs may operate in islanding mode or interconnected to the main grid, in
which the energy can be bought from or sold to the grid or be isolated from the grid as a
controlled entity [1,9]. The energy management (EM) problem has a complex and nonlinear
nature problem. However, managing MG sources for minimizing the total operating cost
depends on a precise model with the consideration of multiple objectives and achieving
different operational constraints such as power limit of the various DGs sources, power
balance equations, and spinning reserve. Due to pollutant emissions from the generating
units, the minimization of emissions can be furthermore included in the EM problem as
an objective function. Obtaining efficient EM is the main task in the optimization process.
Therefore, an intelligent technique is required to obtain the optimal operation of the MGs
for achieving the concerned objectives.

There are two general methods of representing the EM problem, namely, the determin-
istic and probabilistic methods. These methods are objectively applied for solving the EM
problems [7,10]. In the deterministic methods, the demand load, output power of RES, and
market prices are fixed at their expected value without considering the factors of change
and uncertainty. However, the uncertainties may be associated with those input variables.

The traditional EM problem is described as a deterministic EM based on the concept
that the network parameters and input variables are precisely known. In other words, it is
assumed that the network parameters, the output power produced from DG units, and
load demands are known deterministic. Therefore, the deterministic EM techniques are
extremely dependent on the accuracy of input variables. However, numerous random
disturbances have occurred in the distribution network operations such as the change in
power network configuration, the market price, the variation of load, and the stochastic
nature of the produced power of the DG units as the PV and WT units. Accordingly, these
randomly occurring factors are the main source of the uncertainty. Therefore, it is necessary
to integrate these uncertainties inherent in describing the load, output from RES, and
market prices in a probabilistic manner during EM modeling to overcome the inaccuracy
in the results of the EM.

Recently, many researchers have been interested in solving both deterministic and
probabilistic EM problems by proposing efficient techniques for obtaining the optimal
solution. The multi-objective particle swarm optimization (MOPSO) algorithm was pro-
posed in [11] to find the optimal scheduling of generation units within MG’s through
analyzing the exchange power between MGs and the main grid, also considering the
demand-side management (DSM). Based on a novel parallel hybrid genetic algorithm (GA)
with particle swarm optimization (PSO), the developed efficient algorithm was proposed
in [12] for solving both sizing and EM optimization problems. The authors suggested
in [13] a two-stage robust optimization model incorporating the resiliency of the microgrid
through supporting islanding events without curtailment of load, along with ensuring
the robustness versus the uncertainties of RESs. Output powers of PV panels, fuel cell,
and the ES device are integrated based on a multi-winding magnetic coupled link for
supplying a residential load as implemented in [14] to solve EM concerning grid-connected
and islanding operation modes of MG.

Due to the uncertainty of RESs and demand load, the authors in [15] proposed an
economic model of MG connected to the main grid with the consideration of ES lifetime for
achieving the reliability and safety of the proposed system. Considering the uncertainties
of solar irradiance, wind speed, and demand load, the nondominated sorting genetic
algorithm (NSGAII) was utilized for optimal operation of the MG for an islanding mode [16]
and for a grid-connected mode [17]. For minimizing the total generating cost of the EM
problem based on the energy scheduling of MG, the authors in [18] utilized a multi-layer
ant colony optimization (MACRO) approach. In [19], a multi-period artificial bee colony
(MABC) optimization was proposed for solving the economic dispatch (ED) problem,
considering the ES devices and responsive load bids. In [20], an imperialist competitive
algorithm (ICA) was applied on the MG in interconnected mode to minimize the operating
cost, considering output power and load uncertainties, where the obtained results were
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compared with Monte Carlo simulation techniques. The work presented in [21] showed
the energy investments in MG including different technologies of RES at the distribution
system, where the joint investment and operation were modeled as a two-period of the
developed stochastic program.

The probabilistic technique based on the two-point-estimate method for solving the
EM problem using GA was proposed in [22] for minimizing the operating cost of a system
that includes ES devices and controllable loads. An efficient optimization algorithm of
PSO for computing the optimal EM solution with different DG units and ES devices
was developed in [23], where the EM problem was solved in a probabilistic manner.
To solve the EM problem, a gravitational search algorithm (GSA) with the 2m point
estimate technique was employed in [24], considering the uncertainties of MG sources.
Additionally, the 2m + 1 point estimation technique with a self-adaptive charged system
search (SACS) algorithm [25] and a modified firefly optimization algorithm (MFA) [26] have
been employed for solving the probabilistic EM problem, considering the uncertainties of
load demand, sources of MG, and load demand. The efficient salp swarm algorithm (ESSA)
along with the 2m + 1 point estimation technique has been developed in [8] to solve the
EM probabilistic problem by considering the pollutant emission from the RES.

Equilibrium Optimizer (EO) is a novel physics-based optimization algorithm recently
published in 2020 [27]. However, EO can solve the various optimization problems success-
fully. As proposed in [28], the economic dispatch (ED) problem was solved by minimizing
the total fuel cost, considering the active power constraint, effect of valve point, loss of
transmission line, and the limits of ramp rate. In addition, the EO was employed in [29] for
extracting the best values of undefined parameters for the developed mathematical model
of the proton exchange membrane fuel cell (PEMFC).

In this paper, the EO is proposed for solving both deterministic and probabilistic EM
problems by considering the pollutant emission of MG sources and including ES devices.
Moreover, the 2m + 1 point estimation technique is used to represent the sources that have
uncertainties in the MGs. Where, the random variation of input variables is expressed
in terms of Weibull probability density function. After that, EO is applied for each case
resulting from 2m + 1 technique. Finally, the Gram-Charlier expansion method is utilized
for obtaining the probability distribution of random variables output results based on
the EO algorithm. Here, the optimization of EM problem is formulated including two
various objective functions for minimizing both the total operating cost of MG sources
with ES devices and emission from RESs. However, the objective function is modeled as a
single objective function by using a price penalty function and weighting factors instead of
modeled as a multi-objective function. Then, the proposed EO is tested and compared with
other recent algorithms using a standard model of grid-connected MG through different
scenarios. The contributions of this paper are to:

• Formulate the optimization problem of EM incorporating ES devices with considera-
tion of the emissions from RESs via converting the multi-objective function problem
into a coefficient single objective function using a price penalty factor and weighting
factors by handling the operational constraints.

• Model the uncertainties of RESs with ES devices, demand load, and market prices,
then apply (2m + 1) point estimate method.

• Propose EO for solving the optimal problem of EM as an efficient technique and com-
pare with other new techniques that are newly employed here for solving EM problem.

• Implement the proposed technique for solving the EM problem based on deterministic
and probabilistic EM problems with emission.

• Investigate the effectiveness and applicability of the EO when compared with other
recent optimization techniques through different scenarios.

2. The Mathematical Modeling of the EM Problem

A model of low-voltage (LV) MG connected to grid consists of different types of RESs,
storage device, and loads as shown in Figure 1. The MG is connected to the utility (MV
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distribution network) by the MV/LV transformer. The MG central controller (MGCC) acts
as an interface between the power system and the MG. The MGCC is existing downstream
of utility. The functions of MGCC are designed to monitor the real and reactive power
produced from DG units, maximize the MG’s value, and optimize the MG operations
through sending control signal to MGs to evaluate the level of DG’s production. The
local controllers (LCs) are located close to the DGs. The functions of LCs are assigned
to control the MG’s components through adapting each type of DG units, controllable
loads, and storage devices. Additionally, the LCs are used to control both the voltage
and frequency in an islanding operating mode of MG. The optimization proceedings
applied in the MGCC are based on the implemented market policy in MG operation. Most
policies of operating MGs are the MGCC goal to serve the demand load of the MG through
maximizing utilization of its local production. From the consumers’ point of view, the
MGCC aims to minimize the total operational cost of the MG with considering DG bids,
market price, and demand load through optimal adjustment of the generated power from
DG units while satisfying the operational constraints [10].
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Figure 1. One-line diagram of a standard micro-grid (MG) test system. Figure 1. One-line diagram of a standard micro-grid (MG) test system.

2.1. The Operating Cost Function

The total operating cost of the MG system contains several DG units bids and the
power exchange cost between the main grid and MG. The control variables of the opti-
mization problem consist of the real power from the DG units including the storage units,
whilst the dependent variable is the real power that is sold to or bought from the main grid.
Thus, the mathematical formulation of the EM problem may be described as follows [7]:

min F1(R) =
T
∑

t=1

NG
∑

i=1
ui,tPGi,tBGi,t+SU

Gi,t×max(0, ui,t − ui,t−1)+SD
Gi,t×max(0, ui,t−1 − ui,t)

+
T
∑

t=1

NS
∑

k=1

[
uk,tPSk,tBSk,t+SU

SK,t×max(0, uk,t − uk,t−1)+SD
SK,t×max(0, uk,t−1 − uk,t)

]
+

T
∑

t=1
MPgrid,tPgrid,t

(1)

R =[R1, R2, . . . , Rt, . . . , RT] (2)
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where R indicates the optimal output power of different DG units, main grid, and their
binary status. It is defined by:

Rt =
[
PG1,t, PG2,t, . . . , PGNG,t, PS1,t, PS2,t, . . . , PSNS,t, Pgrid,t, u1,t, u2,t, . . . , uNG+NS,t

]
(3)

From (1), it is seen that the objective function includes the total operating cost of the
DG units along with their costs of startup/shutdown in the first term. The second term
represents the operating cost of the ES devices with their costs of startup/shut-down. The
third term is the exchange power cost between the main grid and MG.

2.2. The Pollutant Emission

The minimization of the pollutant emission includes the amount of emissions from
the main grid, DG units, and ES devices in MG. There are different pollutant emissions;
however, the considered important pollutants which are used to evaluate the total emission
are CO2, SO2, and NOx. Minimizing these emissions is considered as the second objective
function that can be formulated as follows [30]:

minF2(R) =
T

∑
t=1

{
NG

∑
i=1

[ui,tPGi,tEGi,t] +
NS

∑
k=1

[uk,tPSk,tESk,t]+Egrid,tPgrid,t

}
(4)

Not only does the objective function include the amount of emission from the main
grid, but it also considers the emissions produced from the DG units as well as the ES
devices as stated in (4). The total amount of pollutants emissions are Egrid,t, EGi,t, and ESk,t,
that can be described as follows [30]:

Egrid,t= COgrid
2,t +SOgrid

2,t + NOgrid
x,t (5)

EGi,t= COGi
2,t + SOGi

2,t + NOGi
x,t (6)

ESk,t= COSk
2,t + SOSk

2,t + NOSk
x,t+ (7)

2.3. Constraints of Power Sources
2.3.1. The Constraint of Power Balance

The total generated power from DG units, ES devices, and the main grid must supply
the total load demand of the MG at each period t. However, the active power losses are
neglected in the MG. Accordingly, the constraints of the power balance equation can be
expressed as follows [31]:

Pgrid,t +
NG

∑
i=1

PGi,t +
NS

∑
k=1

PSk,t −
ND

∑
j=1

PDj,t= 0 (8)

2.3.2. Constraints of Power Generation

The energy generated from each DG unit, ES devices, and the main grid should be
limited in the range of its defined capacity.

Pmin
Gi,t ≤ PGi,t ≤ Pmax

Gi,t (9)

Pmin
Sk,t ≤ PSk,t ≤ Pmax

Sk,t (10)

Pmin
grid,t ≤ Pgrid,t ≤ Pmax

grid,t (11)
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2.3.3. Spinning Reserve

It is necessary to maintain the power system reliability due to the continuous fluc-
tuations in RESs. However, for achieving the spinning reserve, the following expression
should be employed [10].

Pmax
grid,t +

NG

∑
i=1

ui,tPmax
Gi,t +

NS

∑
k=1

uk,tP
max
Sk,t ≥

ND

∑
j=1

PDj,t + Re,t (12)

2.3.4. Constraints of Energy Storage Devices

Concerning ES devices, the amount of stored energy and the limits on the charge
and discharge rate of these ES devices during each time t interval with the constraints are
defined as [10]:

Ees,t= Ees,t−1+ηchrPchr∆t− (1/ηdischr)Pdischr ∆t (13)

Emin
es ≤ Ees,t ≤ Emax

es (14)

Pchr,t ≤ Pmax
chr (15)

Pdischr,t ≤ Pmax
dischr (16)

2.4. The Optimization Problem

The total demand load is supplied from the sources of MG by the local production,
as available. Therefore, the output power from the main grid Pgrid,t is set as a dependent
variable for enforcing the power balance equation constraint. However, the power from
the main grid is determined from (8) as follows:

Pgrid,t =
ND

∑
j=1

PDj,t −
NG

∑
i=1

PGi,t −
NS

∑
k=1

PSk,t (17)

The constraints can be handled by converting it into unconstrained one using the
penalty function technique. However, the penalty factors with the constraints are involved
into the objective function as quadratic penalty terms. Further, the goal of the penalty
factors that are chosen as positive large values is to reduce the impractical solutions [32].
Therefore, Pgrid,t is added as a quadratic penalty term to the objective function in (1).
Consequently, the new extended objective function by the penalty factor becomes:

minF1(R) =
T
∑

t=1

NG
∑

i=1

[
ui,tPGi,tBGi,t+SU

Gi,t×max(0, ui,t − ui,t−1)+SD
Gi,t×max(0, ui,t−1 − ui,t)

]
+

T
∑

t=1

NS
∑

k=1

[
uk,tPSk,tBSk,t+SU

SK,t×max(0, uk,t − uk,t−1)+SD
SK,t×max(0, uk,t−1 − uk,t)

]
+

T
∑

t=1
MPgrid,tPgrid,t+γ

(
Pgrid,t − Plim

grid,t

)2

(18)

In this paper, the above two objective functions: the minimization of both cost and
pollution emission of MGs, are integrated. The multi-objective function is converted into a
single objective function using the coefficients and price penalty terms. Moreover, the price
penalty function for each generating unit is defined as the ratio between the operating
cost and the pollution emission. There are various types of price penalty techniques as
discussed in [33]. Here, the max/max price penalty factor is utilized. Consequently, the
developed objective function can be described as follows:

minFt(R) =
T
∑

t=1

NG
∑

i=1

[
ui,tPGi,tBGi,t+SU

Gi,t×max(0, ui,t − ui,t−1) + SD
Gi,t×max(0, ui,t−1 − ui,t)

]
+

T
∑

t=1

NS
∑

k=1

[
uk,tPSk,tBSk,t+SU

SK,t×max(0, uk,t − uk,t−1)+SD
SK,t×max(0, uk,t−1 − uk,t)

]
+

T
∑

t=1
MPgrid,tPgrid,t

+
T
∑

t=1
Ψ
[

NG
∑

i=1
ui,tPGi,tEGi,t +

NS
∑

k=1
uk,tPSk,tESk,t+Egrid,tPgrid,t

]
+γ
(

Pgrid,t − Plim
grid,t

)2

(19)
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3. Probabilistic EM of the MG

The probabilistic formulation problem requires representation of the input random
variables, statistically. Solving the EM problem based on the probabilistic approach has
two key steps. In the first step, the input random variables are characterized statistically.
The source of the uncertainty for the dependent variables in the system arise from the
uncertainty of the independent input random variables. Furthermore, due to the random
nature of input variables such as the variations of demand load, output power from
DG units, and market prices, the obtained EM results such as the total operating cost
of the system should be considered as a random variable. Evaluation of the statistical
characteristics for the EM result is the second step in the probabilistic EM approach.
However, in the case of one or more uncertain input variables, the EM problem turns into a
probabilistic problem.

3.1. The Statistical Characterization of Input Random Variables

Evaluating the output power of WT mainly depends on two factors: the power curve
of WT and the wind speed at a specific location, as described in [34] as follows:

PWT =


0 ν ≤ νci ν > νco
ν2−ν2

ci
ν2

nom−ν2
ci
·Pnom νci< ν ≤ νnom

Pnom νnom< ν ≤ νco

(20)

Likewise, the output power of the PV depends on both the solar irradiance and the
ambient air temperature of the PV. The output power of PV can be computed as described
in [35] as follows:

PPV =
PSTCIS

1000
[1 + β(T C − 25)] (21)

where, the temperature of PV module can be determined as follows:

TC= TA +
IS

800
(T NOCT − 20) (22)

3.1.1. Modeling of Wind Speed

At a specific location, the probability density function (PDF) of the wind speed, as well
as the output power of WT, can be described by a Weibull distribution as in [34] as follows:

fν(ν) =
K
C
·( ν

C

)K−1
·e−(

ν
C )K

(23)

For the Weibull distribution, the cumulative density function (CDF) is:

Fν(ν) = 1− e−(
ν
C )K

(24)

For calculating the wind speed, the CDF as well as its inverse has been used as follows:

ν = C·(− ln(r))
1
K (25)

The parameters of the Weibull distribution can be calculated as follows:

K = (
σ

νm

)−1.086
(26)

C =
νm

Γ(1+ 1
K

) (27)
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where the gamma function Γx is described as:

Γx =
∫ ∞

0
tx−1e−t dt, x > 0 (28)

3.1.2. Modeling of Solar Irradiance, Market-Price, and Load Demand

In this paper, it was suggested that the solar irradiance, market price, and demand of
load have a normal distribution function. Therefore, the corresponding PDF of any variable
zi can be formulated as follows [10,35]:

fzi(z i) =
1

σ
√

2π
·e−(

(zi−µ)
2

σ2 ) (29)

Additionally, the CDF for the normal distribution can be computed by:

Fzi(zi) =
1
2

[
1 + erf

(
zi − µ

σ
√

2

)]
(30)

For determining the variable zi, the CDF and its inverse has been used as follows:

zi = µ+
√

2 · σ · erf1(2r− 1) (31)

where, the error function and its inverse are defined as follows:

erf(z) =
2√
π

∫ z

0
e−t2

dt (32)

erf−1(Z) = 1− erf(z) (33)

3.2. Statistical Evaluation of the Output

In order to formulate the probabilistic problem, it is necessary to characterize the input
random variables in a statistical nature as well as the method for evaluating the output
variables statistically. The probabilistic EM can be formulated mathematically as follows:

V = f(I) (34)

There are several statistical approaches for handling the output variables as introduced
in some literature, in which they are classified into three categories: analytical methods,
approximation approaches, and the Monte Carlo simulation (MCS). The MCS randomly
generates many uncertain input variables, then uses these values to solve a deterministic
problem. The simulation process is repeated many times (hundreds to thousands) to attain
an acceptable accuracy for the statistical characteristics of the output results. The major
problem of using MCS is the large number of simulations that are required to achieve
convergence.

The point estimation approach is considered one of the approximation approaches that
present a convergent description of the statistical output random variables. This method,
like MCS, employs a deterministic approach for solving a probabilistic problem but over a
much lower number of the simulations that is implemented in MCS. Moreover, this method
guarantees a considerable reduction in the calculation’s efforts compared to the MCS.

The basic idea of the point estimation approach is to focus on the information collected
from few forecasted values of the m input variables on K = 2 points for each interest input
variable that are called central moments. Using these two central moments for each input,
the output variables are calculated in the form of statistical moments 2m + 1 times for
selected uncertain input variables [10]. Depending on the statistical moments, the PDF
of output random variables of interest can be approximated based on the Gram–Charlier
series approach [36].
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The following steps of the 2m + 1 point estimation method can be summarized
as follows:

Step 1: Define the number of selected uncertain inputs.
Step 2: Set the output variable vector of the jth moment E(Vj)= 0.
Step 3: Set r = 1 (r = 1, 2, . . . , m).
Step 4: Set the uncertain parameter zr.
Step 5: Calculate the two standard locations of the variable zr:

ζr,l =
λr,3

2
+ (−1)3−l ×

√
λr,4 −

3λ2
r,3

4
l = 1, 2 (35)

Step 6: Define the two locations of zr:

zr,l= µzr+ζr,l×σzr l = 1, 2 (36)

Step 7: Run the deterministic EM based on the optimization algorithm for both
locations zr.

Vr,l= f
(
µz1

,µz2
, . . . , zr,l, . . . ,µzm

)
l = 1, 2 (37)

Step 8: Determine two weight factors of zr :

wr,l =
(−1)3−l

ζr,l(ζr,1 − ζr,2)
= 1, 2 (38)

Step 9: Update E(V k).

E
(

Vj
)
= E

(
Vj
)
+

2

∑
l=1

wr,l(Vr,l)
j (39)

Step 10: Repeat Steps 5–9 for r = r + 1 until the selected random inputs are taken.
Step 11: Compute the deterministic EM based on the following vector:

zµ =
[
µz1

,µz2
, . . . ,µz,r, . . . ,µzm

]
l = 1, 2 (40)

Step 12: Determine the weight factor for the EM problem obtained in step 11:

w0= 1−
m

∑
r=1

1
λr,4−λ2

r,3
(41)

Step 13: Update E(V j)

E
(

Vj
)
=

m

∑
r=1

2

∑
l=1

wr,l
[(
µz1

,µz2
, . . . , zr,l, . . . ,µzm

)]j
+w0[V(zµ)]

j (42)

Step 14: After obtaining the output statistical moments, the µ and σ can be computed:

µV= E(V); σV =

√
E
(

V2
)
− µ2

V (43)

Depending on the values of µ and σ along with the method of Gram–Charlier as
in [36], PDF and CDF are calculated for the output random variable.

4. The Equilibrium Optimizer Algorithm Overview

The EO algorithm is inspired by the analytical solution of a well-mixed dynamic
equilibrium in a control volume. The balance equation of mass is utilized to describe the
nonreactive constituent concentration on a control volume. It is known that the balance
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equation plays an important role in providing principles of physics to maintain the mass
produced entering and leaving a control volume. Like other several recent optimization
algorithms, at the beginning of the optimization procedure of EO, a random population
is generated in the dimensional of search space for the optimization problem, where the
particle acts as a solution and the concentration acts as the position of the particle [28].

According to the number of particles, the population and the dimensions of search
space and the uniform random initialization of the initial concentrations are described
as follows:

Ck
d= Cmin

d +
(

Cmax
d −Cmin

d

)
×randk

d k = 1, 2, . . . , m (44)

At the beginning of the search process, the concentration degree along with the equi-
librium state is unknown. For providing a search style of particles, only the equilibrium
candidate is calculated. However, for estimating the equilibrium candidate solutions, the fit-
ness function of all particles is evaluated, then the best scores are saved and sorted. The end
convergence state is called the equilibrium state which is called the global optimal solution.

Based on various experiments of optimization problems, the EO algorithm allocates
the four best particle solutions in the generated population at equilibrium candidate
solutions during the implementation of the whole optimization procedure in addition to
another particle having a concentration equal to the mean value of the previous proper
four best solutions. However, these five candidate solutions are stored in a vector, which is
called an equilibrium pool.

It worth noting that the four particle candidates make the EO algorithm capable of
improving the exploration, while others support the exploitation process [27].

Ce,pool= {Ce,1, Ce,2, Ce,3, Ce,4, Ce,mean} (45)

For each iteration, the particle concentration is updated using a random style between
the selected candidates that are selected with the same probability. However, in the first
iteration, the first selected particle will update all concentrations based on C. Then, in
the second iteration, the concentrations of the same selected particle are updated based
on Ce,mean. The updating process is repeated for each particle until reaching the process
end. The exponential parameter term U contributes to the concentration updating rule
for achieving the appropriate balance between exploitation and exploration, where it is
computed as follows:

U = exp(− ν(t− t0)) (46)

The value of t is reduced while the iteration number increased.

t =(1− itr/maxitr)(h2×itr/maxitr) (47)

t0= t + 1/ν× ln(−h1sign(r1 − 0.5)[1− exp(− νt)]) (48)

However, the component sign(r1 − 0.5) has an impact on the directions of both explo-
ration and exploitation. The following formula should be implemented for improving the
capability of both the exploration and exploitation of the EO algorithm to guarantee con-
vergence. To improve the exploitation phase, the generation rate is developed as the most
important step in the procedure of the EO algorithm for providing the optimal solution.

G = GRC×(Ce − νC)× exp(− δ(t− t0)) (49)

GRC =

{
0.5r2 if r3 ≥ GP
0 if r3 ≤ GP

(50)

where the updating rule of the EO algorithm is as follows:

C = Ce + (C−Ce)U + G× 1/ν×(1−U) (51)
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The second term will be set to find an optimal position through globally searching
the space upon its discovering a position. The third term will contribute to making the
solution more accurate. The added memory is utilized to store the procedures and assist
the individual particle to follow the path of its coordinates in the dimension of search space
and notify it about its better score. The fittest value of every particle in the current iteration
is compared to an identical value in the previous iteration and will be stored if it results
in an improved value. This procedure assists the ability of exploitation but may raise the
chance of falling in local minima if the technique does not achieve benefit from the ability
of global exploration. More details of the EO algorithm are reported in [27]. Figure 2 shows
the flowchart of the EO.
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5. The Simulation Results

To prove the effectiveness of the EO algorithm for solving both deterministic and
probabilistic EM problems with the consideration of the emission from RESs as well
as ES devices in the MG system, the EO is investigated through the MG test system
shown in Figure 1. The system is considered in the grid-connected mode at a low-voltage
level. The MG consists of different technologies of DG sources. These sources are the PV,
WT, microturbine (MT), proton-exchange membrane fuel cell (PEM-FC), and a storage
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device such as a NiMH-battery [30,31]. The MG is connected to the main grid via a
power transformer.

The power is exchanged between the main grid and MG according to the decisions
from the control center of MG for trading energy. Further, all MG sources only produce
active power at unity power factor. Moreover, the demand loads inside MG during the
day consist of one feeder for supplying light commercial loads, a second feeder for serving
the residential region, and the third feeder for supplying a small industrial load. However,
approximately the total demand load is equivalent to 1695 kWh per day. The study is
carried out for the next day (24 h) at different loads. The data of the MG system are detailed
and taken from [7,10,24]. Table 1 displays the minimum and maximum generation, the bid
coefficients, and the emissions of MGs [8,30]. The forecasted demand load bid coefficients
of the main grid and the expected output power of PV and WT over one day are shown in
Figure 3 [10].

Table 1. The power limitations, bid coefficients, and emissions of the MG sources.

ID Type Min. Power
(kW)

Max. Power
(kW)

BGi
(EUR/kW h)

CO2
(kg/MWh)

SO2
(kg/MWh)

NOx
(kg/MWh)

1 MT 6 30 0.457 720 0.0036 0.1
2 FC 3 30 0.294 460 0.003 0.0075
3 PV 0 25 2.584 0 0 0
4 WT 0 15 1.073 0 0 0
5 Battery −30 30 0.38 10 0.0002 0.001
6 Utility −30 30 - 922 3.583 2.295
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In this study, the important parameters of the EO algorithm are chosen before its
applications for solving the EM optimization problem. These parameters are computed
using experimental tests. In addition, all simulation evaluations have been executed using
MATLAB 2016b on a 2.9-GHz i7 PC with 16-GB of RAM. The EO is applied to compute EM
in both deterministic and probabilistic manners according to three considered scenarios:

• Scenario 1: It is supposed that all MG sources operate over the examined interval. The
PV and WT are represented to deliver the forecasted maximum output power during
each hour. In contrast, the main grid, PEMFC, MT, and battery operate according to
their output power limits for achieving the constraints.
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• Scenario 2: All MG sources are operated at their output power limits while satisfying
operational constraints.

• Scenario 3: All MG sources except the main grid act as in Scenario 2, while the
main grid is represented as an unconstrained source. Therefore, the energy will be
exchanged without any limitations.

These scenarios are employed in the following cases studies.

5.1. Case 1: The Optimization of EM without Emission

In this case, the EO algorithm is implemented based on the first scenario for solving
the EM deterministic optimization problem to minimize the total operating cost without
considering the pullout emissions. The obtained results of the EO algorithm are compared
with those results obtained from reported algorithms in [30,31]. All MG sources operate at
each hour during the day, which means that the operator should buy at least the minimum
output power generated from these sources. The initial charging of the battery is infinitive.

The simulation results obtained using the EO algorithm for Scenario 1 are tabulated in
Table 2. It is seen that because the PEM-FC unit has a lower bid compared to the other units,
the PEM-FC operates at each hour of the day and delivers its maximum output power. In
contrast, MT units which have a higher value of bid deliver their minimum value of output
power for 13 h per day.

Table 2. The best results obtained using EO for the energy management (EM) problem (Case 1).

Time (h) Power (kW) Cost

PME-FC MT PV WT Battery Utility EUR/h

1 30.00 6.00 0.00 1.79 −15.79 30.00 14.38
2 30.00 6.00 0.00 1.79 −17.79 30.00 12.42
3 30.00 5.99 0.00 1.79 −17.61 29.91 10.94
4 30.00 6.00 0.00 1.79 −16.79 30.00 10.70
5 30.00 6.00 0.00 1.79 −11.79 30.00 12.60
6 30.00 6.00 0.00 0.92 −3.92 30.00 17.06
7 30.00 6.00 0.00 1.79 2.21 30.00 21.22
8 30.00 6.00 0.20 1.31 11.18 26.32 27.73
9 30.00 30.00 3.75 1.79 30.00 −19.54 16.23

10 30.00 30.00 7.53 3.09 30.00 −20.56 −25.96
11 30.00 28.78 10.45 8.78 30.00 −30.00 −50.21
12 30.00 21.96 11.95 10.41 30.00 −30.28 −48.87
13 30.00 14.19 23.90 3.92 30.00 −30.00 47.66
14 30.00 18.55 21.05 2.37 29.93 −29.86 −33.86
15 30.00 30.00 7.88 1.79 30.00 −23.66 8.87
16 30.00 30.00 4.23 1.31 30.00 −15.53 15.96
17 29.94 29.95 0.55 1.79 30.00 −7.23 32.89
18 30.00 6.00 0.00 1.79 30.00 20.22 33.17
19 30.00 6.00 0.00 1.30 22.64 30.10 32.08
20 30.00 6.00 0.00 1.79 30.00 19.21 33.14
21 30.00 30.00 0.00 1.30 30.00 −13.30 19.76
22 30.00 29.94 0.00 1.30 30.00 −20.21 24.36
23 30.00 5.97 0.00 0.92 −1.81 29.91 20.81
24 29.93 5.97 0.00 0.62 −10.65 30.14 15.98

Total operating cost (EUR) 269.07

The results also show that, during the light load periods, a large part of the load is
supplied by the main grid and PEM-FC because their bids are low. In addition, the battery
was charged during this period. In contrast, in the periods of large load, the bid of the
main grid is expensive, which required increasing the output power of MG. Additionally,
the battery operates in discharge mode, and the excess energy from MG is exported to the
main grid.
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Further, 20 trial runs were performed for each algorithm for the purpose of comparing
results and the simulation results as shown in Table 3. The results validate the effectiveness
of the EO algorithm with the best value of the objective function when compared with the
other techniques. Moreover, the convergence characteristic curve of the EO is shown in
Figure 4, which demonstrates the robustness and fast convergence characteristic of the EO
technique.

Table 3. Comparison of the EM problem based on Case 1.

Technique Total Cost Function (EUR)

Best Worst Mean SD

EO 269.07025 269.303 269.1677 0.0937
ESSA (8) 269.7359 269.7359 269.7359 0

SGSA (25) 269.76 269.76 269.76 0
SSA (8) 270.9038 274.9021 272.4245 1.361

AMPSO-T (30) 274.4317 274.7318 274.5643 0.0921
AMPSO-L (30) 274.5507 275.0905 274.9821 0.321

CPSO-L (30) 274.7438 281.1187 276.3327 5.9697
CPSO-T (30) 275.0455 286.5409 277.4045 6.2341

GSA (25) 275.5369 282.1743 277.8021 2.9283
FSAPSO (30) 276.7867 291.7562 280.6844 8.3301

PSO (30) 277.3237 303.3791 288.8761 10.1821
GA (30) 277.7444 304.5889 290.4321 13.4421
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5.2. Case 2: The Optimization of EM with Emission Consideration

In this case, the deterministic EM problem is solved for minimizing the total objec-
tive function that includes minimizing emissions. The optimization problem is solved
according to the mentioned previous three scenarios, and the results for each scenario
are tabulated in Tables 4–6, respectively. The best results are achieved based on the EO
algorithm; all operational constraints are also satisfied. In addition, Figure 5 shows the
convergence characteristic of the EO algorithm for all scenarios in this case that validate
the fast convergence characteristic of the EO method for all scenarios.
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Table 4. The best results obtained using the EO for the EM problem for Scenario 1 (Case 2).

Time (h)
Power (kW) Cost

EUR/h
Emission

Kg/h
Total

ObjectivePME-FC MT PV WT Battery Utility

1 3.00 6.00 0.00 1.79 30.00 11.22 23.42 23.65 40.75
2 3.00 6.00 0.00 1.79 30.00 9.22 22.43 23.24 41.57
3 3.00 6.00 0.00 1.79 29.93 9.30 21.85 22.97 40.27
4 3.00 6.00 0.00 1.79 30.00 10.22 21.82 23.07 41.30
5 3.00 6.00 0.00 1.79 30.00 15.22 22.52 23.27 38.76
6 3.00 6.00 0.00 0.92 30.00 23.09 24.75 24.67 67.08
7 3.00 6.00 0.00 1.79 30.00 29.26 28.40 25.76 44.74
8 7.54 6.00 0.20 1.31 30.00 30.00 35.60 36.12 77.05
9 29.94 29.97 3.75 1.79 30.00 −19.36 19.73 123.76 115.07
10 30.00 30.00 7.53 3.09 30.00 −20.62 −30.92 97.40 129.02
11 30.00 29.26 10.45 8.78 29.84 −30.33 −61.76 75.33 85.92
12 30.00 21.91 11.95 10.41 30.00 −30.27 −58.61 54.58 49.41
13 30.00 14.46 23.90 3.92 29.74 −30.02 57.14 71.92 110.05
14 29.97 18.60 21.05 2.37 29.97 −29.96 −41.04 46.44 34.36
15 30.00 30.00 7.88 1.79 29.79 −23.43 11.02 114.88 121.30
16 30.00 30.00 4.23 1.31 30.00 −15.53 19.16 123.49 143.79
17 16.66 6.00 0.55 1.79 30.00 30.00 48.45 55.88 138.00
18 20.21 6.00 0.00 1.79 30.00 30.00 41.16 59.39 107.73
19 22.97 6.00 0.00 1.30 30.00 29.82 39.26 62.98 117.39
20 19.24 6.00 0.00 1.79 30.00 30.00 41.53 57.81 127.01
21 30.00 6.19 0.00 1.30 30.00 10.59 44.14 76.90 146.46
22 3.00 6.71 0.00 1.30 30.00 30.00 39.39 31.72 50.12
23 3.00 6.00 0.00 0.92 30.00 25.09 28.24 26.12 34.76
24 3.00 6.00 0.00 0.62 30.00 16.39 23.93 24.49 35.43

Total cost (EUR) 421.60 - -
Total emission (Kg) - 1305.85 -

The total objective function (EUR) - - 1937.35

Table 5. The Best results obtained using EO for the EM problem for Scenario 2 (Case 2).

Time (h)
Power (kW) Cost

EUR/h
Emission

Kg/h
Total

ObjectivePME-FC MT PV WT Battery Utility

1 3.00 6.00 0.00 1.78 30.00 11.22 21.47 20.84 42.33
2 3.00 6.00 0.00 0.00 30.00 11.01 18.83 20.56 46.90
3 3.00 6.00 0.00 0.00 30.00 11.00 18.22 20.39 45.53
4 3.00 6.00 0.00 0.00 30.00 12.00 18.11 20.34 45.28
5 3.00 6.00 0.00 0.00 30.00 17.00 18.77 20.61 46.82
6 3.00 6.00 0.00 0.00 30.00 24.00 21.81 21.82 33.95
7 3.00 6.00 0.00 1.78 30.00 29.22 26.02 22.66 43.02
8 7.90 6.00 0.10 1.30 30.00 29.70 32.62 31.98 85.01
9 29.98 29.94 2.75 1.79 30.00 −18.46 17.94 109.29 121.87
10 29.89 29.85 7.35 3.09 29.91 −20.03 −26.92 86.16 135.03
11 29.68 29.12 10.47 8.74 29.93 −29.93 −54.90 66.91 125.03
12 29.74 21.83 11.94 10.42 29.83 −29.76 −51.66 49.19 124.69
13 30.00 19.37 20.02 3.90 30.00 −31.22 51.16 63.50 162.06
14 30.00 18.59 21.04 2.37 30.00 −30.00 −37.80 41.11 33.71
15 30.00 30.00 7.79 1.79 30.00 −23.52 9.69 101.44 118.07
16 29.65 30.00 4.22 1.30 30.00 −15.12 16.63 109.03 139.06
17 16.71 6.00 0.55 1.79 30.00 30.00 44.42 49.34 31.59
18 20.22 6.00 0.00 1.78 30.00 30.00 37.73 52.47 41.91
19 22.70 6.00 0.00 1.30 30.00 30.00 35.98 55.63 52.90
20 19.27 6.00 0.00 1.78 29.95 30.00 38.09 50.91 104.20
21 29.89 6.00 0.00 1.31 29.80 10.99 40.84 68.28 70.55
22 3.00 6.70 0.00 1.30 30.00 30.00 36.11 27.95 97.71
23 3.00 6.00 0.00 0.91 30.00 25.09 25.88 23.02 73.09
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Table 5. Cont.

Time (h)
Power (kW) Cost

EUR/h
Emission

Kg/h
Total

ObjectivePME-FC MT PV WT Battery Utility

24 3.00 6.00 0.00 0.00 30.00 17.00 21.96 21.51 63.95

Total cost (EUR) 381.02 - -
Total emission (Kg) - 1154.94 -

The total objective function (EUR) - - 1884.26

Table 6. The best results obtained using the EO for the EM problem for Scenario 3 (Case 2).

Time (h)
Power (kW) Cost

EUR/h
Emission

Kg/h
Total

ObjectivePME-FC MT PV WT Battery Utility

1 3.00 6.00 0.00 1.78 30.00 11.22 19.52 20.37 38.68
2 3.00 6.00 0.00 0.00 30.00 11.01 17.15 20.24 38.09
3 3.00 6.00 0.00 0.00 30.00 11.00 16.60 19.96 38.53
4 3.00 6.00 0.00 0.00 30.00 12.00 16.52 20.00 39.39
5 3.00 6.00 0.00 0.00 30.00 17.00 17.08 20.13 42.83
6 3.00 6.00 0.00 0.00 30.00 24.02 19.84 21.33 48.44
7 3.00 6.00 0.00 0.00 30.00 31.00 23.66 22.15 58.11
8 3.00 6.00 0.00 1.30 30.00 34.70 29.61 24.93 65.77
9 30.00 30.00 3.75 1.79 30.00 −19.54 16.23 106.92 151.72
10 30.00 30.00 7.51 3.09 29.92 −20.52 −25.44 84.21 131.58
11 30.00 30.00 10.39 8.67 30.00 −31.06 −57.07 65.61 61.08
12 30.00 29.95 11.92 10.44 30.00 −38.30 −77.71 53.47 111.53
13 30.00 30.00 23.90 3.91 30.00 −45.82 31.17 89.97 107.93
14 30.08 29.95 21.04 2.36 29.97 −41.41 −74.80 48.30 120.36
15 29.99 29.81 7.83 1.79 30.00 −23.41 8.77 98.75 125.80
16 30.00 30.00 4.23 1.31 30.00 −15.53 15.96 106.50 150.65
17 3.00 6.00 0.55 1.78 30.00 43.67 44.56 30.53 55.14
18 3.00 6.00 0.00 1.79 30.00 47.22 36.30 27.58 55.99
19 3.00 6.00 0.00 1.30 30.00 49.70 33.82 26.74 50.38
20 3.00 6.00 0.00 1.78 30.00 46.22 36.80 27.77 60.35
21 30.00 6.00 0.00 1.30 30.00 10.72 36.88 66.66 60.94
22 3.00 6.00 0.00 1.30 30.00 30.70 33.00 26.39 54.12
23 3.00 6.00 0.00 0.91 30.00 25.09 23.53 22.50 48.19
24 3.00 6.00 0.00 0.61 30.00 16.40 19.94 21.07 38.41

Total cost (EUR) 261.90 - -
Total emission (Kg) - 1072.09 -

The total objective function (EUR) - - 1754.02

By inspecting the numerical results, during the period of light load, a large amount of
load is supplied from the main grid and battery because these units offer both low bids
and low emission as compared with other sources over these intervals. In the interval
of heavy load, the output power from MTs and FCs is increased due to increasing bids
through these intervals. Therefore, the main grid buys the energy from MG that assists
in decreasing the cost of MG. From the results of the second scenario, the WT and PV are
modeled for operating within their output power limits. The objective function is reduced
by 2.74% when compared to the first scenario. Furthermore, when the main grid acts as
an unconstrained source in the third scenario, the objective function is reduced by 9.46%
and 6.91% as compared to the first and second scenarios, respectively. Due to the WT and
PV having higher bids when compared with other MG sources, these sources have low
contributions for supplying the demand load in the third scenario.

To prove the search capability and examine the superiority of the EO algorithm
for solving the optimization problem in this case, the analysis is implemented for other
recently published techniques to compare with the EO method. The compared methods
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are the artificial electric field algorithm (AEFA) [37], the bonobo optimizer (BO) [38], the
modified moth flame optimization technique (MMFO) [39], and ESSA [8]. The results after
30 independent runs of EO are compared with AEFA, BO, MMFO, and ESSA. The statistical
results are shown in Tables 7–9 for all considered scenarios, which reflect the satisfying
performance of EO over other techniques that have the best value of the optimized objective
function. It is seen that the EO has the best values of SD when compared with other
techniques, which confirm the premium robustness of the EO technique.

Finally, due to the importance time for calculating this type of EM problem related to
the computation of operating costs, Table 10 displays the elapsed time of implementing
all compared algorithms. It is seen that the EO takes a shorter time as compared to other
algorithms for all three suggested scenarios.
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Table 7. Comparison of the statistical results of the objective function in Scenario 1.

The Total Objective Function (EUR)

Technique Best Worst Mean (SD)

BO 1957.4649 1966.1141 1958.7819 2.3670
MMFO 1954.1966 1954.3167 1954.2005 0.0215
AEFA 1952.2123 1953.2124 1952.2447 0.1795
ESSA 1950.1667 1950.7642 1950.4 0.182

EO 1937.3514 1937.0698 1937.1736 0.0711

Table 8. Comparison of the statistical results of the objective function in Scenario 2.

The Total Objective Function (EUR)

Technique Best Worst Mean (SD)

BO 1909.8416 1920.4749 1916.2545 2.6406
MMFO 1906.0516 1906.0516 1906.0516 0
AEFA 1899.8711 1907.9912 1904.9846 1.1588
ESSA 1896.416 1898.6641 1897.0065 0.3909

EO 1884.2562 1884.5921 1884.2969 0.0652
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Table 9. Comparison of the statistical results of the objective function in Scenario 3.

The Total Objective Function (EUR)

Technique Best Worst Mean (SD)

BO 1777.8915 1790.7626 1781.4435 3.5702
MMFO 1775.7734 1775.7734 1775.7734 0
AEFA 1770.261 1770.261 1770.261 0
ESSA 1769.2977 1769.2977 1769.2977 0

EO 1754.0217 1754.4085 1754.396 0.0694

Table 10. The elapsed time (seconds) of Case 2 for all scenarios.

Technique Scenarios

Scenario1 Scenario 2 Scenario 3

BO 5.2416 6.1269 6.3516
MMFO 5.1465 5.3096 5.7125
AEFA 7.3665 7.7508 8.3447
ESSA 6.8463 7.3665 7.8508

EO 4.8704 5.2642 5.7147

5.3. Case 3: The Probabilistic EM Problem

In this case, for obtaining the optimal solution of the EM problem in the probabilistic
frame, the point estimation method (2m + 1) is evaluated along with the EO algorithm
and other compared techniques. Moreover, the output power generated from PV and
WT, market price, and demand load level are adopted as uncorrelated random input
variables. Utilizing proper PDF modeling for hourly data of solar irradiance and wind
speed as described in Sections 3.1.1 and 3.1.2, the output power of PV and WT units are
computed. Additionally, the market price and demand load follow the same PDFs as given
in Section 3.1.2. It is supposed that the output power of the PV and WT units, market price,
and demand load have a normal distribution at an STD of 5% [10]. After that, the 2m + 1
method is employed, and the concentrations (locations) of the input random variables are
calculated during the implementation of 2m + 1 for solving the probabilistic EM problem
as displayed in Table 11. The EO algorithm and other compared techniques are applied for
each case data results obtained from (2m + 1) as presented in Table 11. Finally, the statistical
moments, mean values, and STD of the EM output random variables (the operating cost of
MG) are determined.

Only the second scenario is considered in this case, where all MG sources are rep-
resented within their power limits. The predictable output power generated from MG
sources and the corresponding cost based on EO algorithm are obtained using the mean
values of the random input variables as displayed in Table 11 (the last four columns). The
best simulation results of the EO algorithm are shown in Table 12, which shows that all
operational constraints are met. However, the convergence curve of EO for this case is
shown in Figure 6, in which the results indicate to the fast convergence characteristic of EO.
It is seen that, during light load periods, the produced energy is supplied from the main
grid and battery, causing these sources to have lower market prices and lower emissions
when compared with other sources over these periods. Additionally, the contributions of
PV and WT are lower than other sources because these units have a higher market price.

Using the Gram–Charlier expression for series expansion of the obtained results based
on solving EM using the EO along with the two locations of each input random variables,
the PDFs and CDFs are obtained for the optimal solutions of the probabilistic EM as shown
in Figure 7. It is clear that there is no difference between the continuous random variables
and the normal distributions as seen in Figure 7, which also shows that the EO algorithm
gives the best results in the case of solving the EM in a probabilistic manner.
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Table 11. The concentrations of the input variables used for EM problem in Case 3.

T (h) PV1 PV2 WT1 WT2 Load1 Load2 MP1 MP2 PVµ WTµ Loadµ MPµ

1 0.00 0.00 1.91 1.60 56.45 47.23 0.25 0.21 0.00 1.79 51.92 0.23
2 0.00 0.00 1.90 1.61 54.48 45.32 0.21 0.17 0.00 1.78 50.00 0.19
3 0.00 0.00 1.91 1.55 54.07 45.74 0.15 0.13 0.00 1.78 49.93 0.14
4 0.00 0.00 1.92 1.55 55.37 46.73 0.13 0.11 0.00 1.79 51.04 0.12
5 0.00 0.00 1.91 1.59 60.98 51.06 0.13 0.11 0.00 1.79 55.97 0.12
6 0.00 0.00 0.98 0.81 68.60 57.69 0.22 0.18 0.00 0.92 63.07 0.20
7 0.00 0.00 1.91 1.58 75.82 63.95 0.25 0.21 0.00 1.78 70.01 0.23
8 0.22 0.18 1.40 1.17 81.66 68.81 0.41 0.35 0.20 1.31 75.12 0.38
9 4.06 3.43 1.91 1.57 82.32 69.07 1.63 1.37 3.74 1.78 76.17 1.49
10 8.12 6.94 3.30 2.75 86.75 73.91 4.33 3.64 7.53 3.09 80.24 4.00
11 11.32 9.54 9.41 7.80 84.81 71.61 4.34 3.64 10.45 8.78 78.02 4.00
12 13.03 10.83 11.10 9.38 80.44 67.03 4.36 3.63 12.93 10.40 73.82 4.00
13 26.03 21.80 4.19 3.49 78.11 65.89 1.64 1.38 24.91 3.92 72.09 1.50
14 22.97 19.14 2.52 2.13 78.56 66.05 4.36 3.66 21.14 2.37 72.19 4.01
15 8.58 7.16 1.91 1.56 82.33 69.00 2.17 1.84 7.89 1.82 75.97 2.00
16 4.65 3.85 1.40 1.15 86.58 73.12 2.11 1.78 4.6 1.30 79.70 1.95
17 0.60 0.50 1.91 1.56 92.26 78.31 0.65 0.55 0.55 1.78 85.21 0.60
18 0.00 0.00 1.92 1.56 94.85 80.46 0.44 0.38 0.00 1.79 87.73 0.41
19 0.00 0.00 1.38 1.19 97.68 82.03 0.38 0.32 0.00 1.30 89.94 0.35
20 0.00 0.00 1.91 1.58 94.68 79.89 0.47 0.39 0.00 1.79 87.09 0.43
21 0.00 0.00 1.39 1.16 84.51 71.34 1.28 1.07 0.00 1.30 77.84 1.17
22 0.00 0.00 1.39 1.15 77.34 64.64 0.59 0.49 0.00 1.30 71.00 0.54
23 0.00 0.00 0.98 0.81 70.47 59.67 0.33 0.27 0.00 0.92 64.95 0.30
24 0.00 0.00 0.66 0.55 60.60 51.27 0.28 0.24 0.00 0.61 56.04 0.26

Table 12. The best results obtained using the EO for the EM problem in Case 3.

Time (h)
Power (kW) Cost

EUR/h
Emission

Kg/h
Total

ObjectivePME-FC MT PV WT Battery Utility

1 3.00 6.00 0.00 1.00 30.00 12.00 19.50 20.36 32.84
2 3.00 6.00 0.00 0.00 30.00 11.00 17.12 20.16 35.64
3 3.00 6.00 0.00 0.00 30.00 11.00 16.55 19.93 34.23
4 3.00 6.00 0.00 0.00 29.87 12.13 16.44 19.92 33.98
5 3.00 6.00 0.00 0.00 29.90 17.10 17.05 20.14 35.48
6 3.00 6.00 0.00 0.00 30.00 24.00 20.03 21.45 33.01
7 3.00 6.00 0.00 1.78 30.00 29.22 23.65 22.15 71.31
8 7.50 6.00 0.20 1.31 30.00 30.00 29.68 31.33 62.94
9 30.00 30.00 3.57 1.78 30.00 −19.35 16.60 107.04 129.41
10 30.00 30.00 7.29 3.09 30.00 −20.38 −24.80 84.47 30.43
11 30.00 28.80 10.42 8.78 30.00 −30.00 −50.34 65.00 42.24
12 30.00 21.53 12.22 10.40 29.91 −30.06 −47.99 47.35 54.54
13 30.00 14.28 23.89 3.83 30.00 −30.00 47.57 61.95 130.41
14 30.00 18.69 21.11 2.37 30.12 −30.28 −35.34 40.39 35.76
15 30.00 30.00 7.88 1.80 29.72 −23.40 8.86 99.69 115.97
16 30.00 30.00 4.52 1.30 30.00 −15.82 15.39 106.26 126.11
17 17.03 6.00 0.55 1.77 30.00 29.65 40.38 48.77 122.44
18 20.21 6.00 0.00 1.79 30.00 30.00 34.19 50.86 90.48
19 22.70 6.00 0.00 1.30 30.00 30.00 32.67 54.27 80.61
20 19.13 6.00 0.00 1.77 30.00 30.09 32.23 49.88 116.40
21 30.00 6.00 0.00 1.30 30.00 10.70 36.69 66.49 141.98
22 3.70 6.00 0.00 1.30 30.00 30.00 51.71 27.31 135.18
23 3.00 6.00 0.00 0.92 30.00 25.03 45.28 22.49 117.05
24 3.00 6.00 0.00 0.61 30.00 16.31 19.97 20.91 82.37

Total cost (EUR) 383.09 - -
Total emission (Kg) - 1128.55 -

The total objective function (EUR) - - 1890.79
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objective function based on the EO for Case 3.

The superiority of the EO is inspected here over the stated previous techniques in the
previous subsection. Table 13 shows the statistical results of 30 independent runs of the EO
algorithm compared with AFEA, BO, MMFO, and ESSA. The results of the proposed EO
for solving probabilistic EM show that the EO has better effectiveness and performance in
comparison with other techniques. Additionally, the EO has premium robustness due to
having a lower value of SD compared with other techniques. Moreover, the superiority of
the EO is inspected here over the stated previous techniques in the previous subsection.

By analyzing the results for Cases 2 and 3 based on Scenario 2, the total objective
function is increased in Case 3 due to considering the impact of uncertainty when solving
the optimization problem. This proves the impact of considering the uncertainty of input
variables of the EM problem and the decision making of operators because the probabilistic
analysis of EM gives more accurate and trustworthy results.



Energies 2021, 14, 1373 21 of 24

Table 13. Comparison of the statistical results of the objective function in Case 3.

The Total Objective Function (EUR)

Technique Best Worst Mean (SD)

BO 1916.9103 1925.9192 1922.802 1.8102
MMFO 1918.2695 1918.8269 1918.3043 0.1350
AEFA 1909.8144 1912.3462 1910.3477 0.4595
ESSA 1901.6784 1901.6784 1902.1042 0.1263

EO 1890.7867 1890.9909 1890.8905 0.0439

6. Conclusions

An efficient EO algorithm was suggested in this paper with successful implementation
to solve the EM optimization problem for a typical MG system. Furthermore, the probabilis-
tic framework using the 2m + 1 method was proposed to model the uncertainties of input
random variables. The proposed EO was utilized for finding the optimal solution of EM
incorporating ES devices, considering the emissions of MG sources based on converting
the multi-objective function using the penalty factor price to the single objective function
to minimize the total operating costs (fuel cost, startup and shutdown cost, as well as
emission cost). The efficiency and advantages of the EO have been proven using a standard
MG test system operating in grid-connected mode with different operating scenarios of
the deterministic and probabilistic EM problem. Solving EM based on a probabilistic
approach provided useful realistic decision making for operators of the MG system and
assisted in finding the impact of the uncertainties for the input random variables on the
statistical indicators which describe the state of the MG system. It was confirmed that
the total operating cost for Scenario 2 based on probabilistic EM had higher value than
deterministic EM by 6.53 EUR (0.346%) per day. The results confirm smooth and reliable
EO convergence without any oscillation in the response. This confirmed the superiority of
the EO over other compared optimization algorithms. In this context, the EO could be a
useful decision-making tool for operators in the MG control center.
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Abbreviations
F1(R) The objective function of operating cost
F2(R) The objective function of pollutant emissions
R Vector of the control variables
T Total number of time periods in hours
NG, NS Total number of DG units and energy storage devices, respectively

PGi,t, PSk,t
Active power produced from both DG unit i and energy storage device k
at specified time t, respectively
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BGi,t, BSk,t
Bid coefficients from the DG unit i and the energy storage device k at
specified time t, respectively

SU
Gi,t, SD

Gi,t
start-up and shut-down cost of the DG unit i during period t,
respectively

SU
SK,t, SD

SK,t
Start-up and shut-down cost of energy storage device k over period t,
respectively

Pgrid,t
Exchanged active power that is sold or bought to/from the utility during
period time t

MPgrid,t
Market Price of exchanged power that is sold or bought to/from the
utility over period t

ui,t, uk,t
Status of the DG unit i and the energy storage device k, respectively.
where one value is scheduled on status during time t and 0 otherwise

ND Total number of demand load
PDj,t Scheduled demand load during period time t

Pmax
grid,t, Pmin

grid,t
Maximum and minimum active power sold/bought to/from the utility
over period time t, respectively

Pmax
Gi,t , Pmin

Gi,t Maximum and minimum output of DG unit i at time t, respectively

Pmax
Sk,t , Pmin

Sk,t
Maximum and minimum output of energy storage devices k at time t,
respectively

Re,t Allowed spinning reserve at time t
Ees,t Quantity of energy storage inside battery at specified time t
Pchr, Pdischr Available rate of charging and discharge over a period ∆t , respectively
ηchr,ηdischr The efficiency of the battery through charging or discharging
Emax

es , Emin
es upper and lower limits stored energy inside battery, respectively

Pmax
chr , Pmax

dischr
Amount of maximum charging or discharging rate or during a certain
period ∆t, respectively

Ft(R) Total objective function
γ Penalty factor
Ψ The emission price penalty factor

CO2, SO2,, NOx
Emission products of main grid, DG units, and ES devices that called
carbon dioxide, Sulphur dioxide and nitrogen oxides

Egrid,t, EGi,t , ESk,t
Pollutants emission released from main grid, DG unit i, ES devices k at
time t, respectively

COgrid
2,t , SOgrid

2,t , NOgrid
x,t CO2, SO2 and NOx emission of main grid during time t

COGi
2,t, SOGi

2,t, NOGi
x,t CO2, SO2 and NOx emissions of DG unit i during time t

COSk
2,t, SOSk

2,t, NOSk
x,t CO2, SO2 and NOx of energy storage device k during time t

I, V Random variables of input and output, respectively

E
(

Vk
)

The kth moment vector of the output variable

λr,3, λr,4 The skewness and kurtosis of input random variable zr, respectively
µzr

,σzr Mean and standard deviation of zr, respectively
Wr,l Weight factors of zr
Ck

d The initial concentration vector of kth particles in dth dimension

Cmin
d , Cmax

d
The minimum and maximum values for search space dimension dth,
respectively

randk
d,ν, r1, r2, r3 Random vector numbers between 0 and 1

m The number of population particles
itr The current iteration number
maxitr The maximum iterations number

h1, h2
Constant values that used to control both exploitation and exploration
capabilities, were set to 1 and 2 respectively

δ Denotes a decay constant
GP Represents generation rate probability
PWT The output power of WT
Pnom The nominal output power
νci Cut-in wind speed of WT
νnom Nominal wind speed of WT
νco Cut-out wind speed of WT
ν The wind speed
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PPV The output power of PV
PSTC The maximum power of PV module at standard test conditions (STC)
IS The solar irradiance on the surface of PV module
B Temperature coefficient of the PV module
Tc Temperature of the PV module
Ta The ambient air temperature
TNOCT The nominal operating cell temperature (C) of the PV module
K shape parameter of the Weibull distribution
C Scale parameter of the Weibull distribution
R uniformly distributed random numbers on [0, 1]
νm The mean wind speed
µ ,σ The Mean and standard deviation, respectively
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