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Abstract: The integration and control of energy systems for power generation consists of multiple
heterogeneous subsystems, such as chemical, electrochemical, and thermal, and contains challenges
that arise from the multi-way interactions due to complex dynamic responses among the involved
subsystems. The main motivation of this work is to design the control system for an autonomous
automated and sustainable system that meets a certain power demand profile. A systematic method-
ology for the integration and control of a hybrid system that converts liquefied petroleum gas (LPG)
to hydrogen, which is subsequently used to generate electrical power in a high-temperature fuel cell
that charges a Li-Ion battery unit, is presented. An advanced nonlinear model predictive control
(NMPC) framework is implemented to achieve this goal. The operational objective is the satisfaction
of power demand while maintaining operation within a safe region and ensuring thermal and chemi-
cal balance. The proposed NMPC framework based on experimentally validated models is evaluated
through simulation for realistic operation scenarios that involve static and dynamic variations of the
power load.

Keywords: high temperature polymer electrolyte membrane fuel cell; power system; LPG reforming;
nonlinear model predictive control

1. Introduction

Carbon dioxide (CO2) emission reduction is a major goal on a global scale. Au-
tonomous mobile power generation systems mainly rely on diesel generators that are both
polluting and fossil fuel dependent [1]. On the other hand, power generation via hydrogen
from renewable sources is a competitive alternative. Fuel cells are electrochemical devices
that convert the chemical energy of a fuel directly into electricity and their technological
nature has reached a level that makes them suitable for widespread industrial use. Their
connectivity with renewable energy sources and energy carriers, such as hydrogen, renders
them as the energy conversion devices of the future that can contribute to the sustainable
development of the energy and transport sectors, especially for autonomous and mobile
applications. Common examples of such applications are autonomous portable charg-
ing stations (for electric scooters, bikes, or electric boats and forklifts, etc.), and off-grid
power generation small scale systems (campers and applications that could replace tradi-
tional diesel generators, such as food carts). Moreover, applications that require low-noise
portable power generation find a very fitting solution in these systems. Autonomous
power systems involve the integration of hydrogen production from an easy to store and
transport source with a fuel cell (FC) for electricity power generation. A thermal balance
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between the chemical conversion to H2 and the fuel cell is important for efficient operation.
High-temperature proton exchange membrane fuel cells (HT-PEMFC) that use phospho-
ric acid doped polybenzimidazole (PBI) membranes can operate at temperatures up to
200 ◦C [2]. The benefits of operation at these elevated temperatures are mainly the tolerance
to carbon monoxide (CO) concentrations in the hydrogen feed stream, commonly present
when operating with reformate streams that can be increased by many orders of magnitude
compared to that of a low-temperature proton exchange membrane fuel cell (LT-PEMFC).
Furthermore, water management is better handled, since the water is in a vapor state and
since PBI membranes are conductive at very low relative humidity, no moisture control
is needed. Moreover, the high working temperature eliminates the possibility of water
condensation in pores or channels of the fuel cell. Due to the higher temperature difference
compared to the surroundings, thermal management can be satisfactorily performed by a
smaller cooling system [3].

Several research studies have been carried out regarding the development of fuel
cell-based hybrid power systems that utilize reformed hydrogen. Such power systems are
designated to work as charging stations, auxiliary power units (APU), or uninterruptible
power supply units (UPS). In general, integrated fuel cell systems exhibit slow dynamics
related to the feed stock reform to hydrogen, and fast dynamics associated with the fuel cell
and battery. Uncertainties associated with catalyst deactivation and membrane malfunction
commonly affect system performance.

Most of the recent research efforts regarding model-based predictive control have
been focused on systems whose main power generating unit is a LT-PEMFC. Within this
scope, a nonlinear dynamic model and a model predictive control (MPC) framework for
an LT-PEMFC is presented in [4]. A linearized model is used in MPC in order to track
the desired output fuel cell voltage trajectory. To improve the efficiency and durability of
LT-PEMFC based power systems simultaneously, an nonlinear model predictive control
(NMPC) strategy is proposed [5] in order to deliver the specified load, while ensuring
maximum efficiency and avoiding local starvation and inappropriate water accumulation
in the compartments. This strategy showed improved results in comparison with a fixed
stoichiometry control strategy for the fuel cell. An NMPC strategy that ensures maximum
efficiency of an LT-PEMFC power system by maximizing the electrochemically active
surface area is proposed in [6]. To guarantee lifetime enhancement of the LT-PEMFC,
the designed controller imposes operational constraints to avoid hydrogen and oxygen
starvation at the anode and cathode compartments, respectively. The research team in [7]
addresses the real-time application of NMPC for the efficiency improvement of an LT-
PEMFC power system. They consider the fuel cell stack current, the anode hydrogen flow,
and the cathode oxygen flow as decision variables for their controller. The control of the
exhaust gas of an LT-PEMFC with NMPC is presented in [8]. The goal was to achieve the
production of dehumidified and oxygen-depleted air in the exhaust so that the system can
serve as an APU for the electrical power supply on an aircraft. Another study [9] involved
the design of a multi-input-multi-output nonlinear state feedback controller in order to
maintain adequate hydrogen supply and suitable anode hydrogen concentration under
variable load demands. The design of an NMPC controller for an LT-PEMFC power system
that also utilizes a small lithium-ion battery as a buffer power supply was presented in [10].
The proposed power management strategy managed the power demand for the fuel cell
and the battery to improve the response to dynamic load changes and ensure the safe
operation of the battery.

A limited number of control strategies have been proposed in the literature that
deal with hybrid HT-PEMFC or LT-PEMFC systems that utilize hydrogen production
via reforming. The research team in [11] developed energy management strategies for
a combined heat and power plant using HT-PEMFCs and methane reforming. Three
different strategies were proposed and implemented. Fuel supply variations alone were
considered in the first strategy, fuel cell current density variations in the second, and
both fuel supply and current density variations in the third strategy. They resulted in
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a power generation map showing the trade-off between thermal and electrical power
generation, while operating at different load levels. The same research group [12] employed
a multi-objective optimization using a genetic algorithm in order to optimize the design
and operating variables of an HT-PEMFC. They considered the net electrical efficiency
and capital cost as optimization objectives and selected the current density, steam to
carbon ratio, burner outlet temperature, and the auxiliary to process fuel ratio as design
parameters. In an extension of this work [13], a multi-objective optimization approach
was employed to determine the optimal operating parameters for a range of 15,000 h
of operation of an HT-PEMFC-based combined heat and power plant. Two different
objective functions were utilized, one accounting for the net electrical efficiency and thermal
generation and the other for the net electrical efficiency and electrical power generation.
The results demonstrated a superior performance compared to previous works. In a similar
study [14], the net electrical and thermal efficiencies were considered as objectives to
provide multiple optimal operating conditions at various electrical and thermal generation
levels using models developed in [15]. Finally, there have been studies dealing with the
mathematical description and control analysis of a methanol autothermal reformer/LT-
PEMFC autonomous system [16,17]. Analytical models of the components have been
developed and used in the formulation of alternative flowsheets in order to evaluate
their response to multiple simultaneous disturbances. Dynamic models for a similar
autonomous power system that consists of a liquefied petroleum gas (LPG) steam reformer,
an HT-PEMFC, and a Li-ion accumulator have been proposed.

In general, integrated HT-PEMFC with hydrogen production via reforming is a com-
plex system with various and complex phenomena evolving during operation, which poses
challenging control issues. Characteristics such as the large range of dynamic responses
among the various multi-way subsystem interactions and potentially conflicting oper-
ating objectives, are to be confronted through the development of an advanced control
framework. The incentive for efficient control of an integrated hydrogen production fuel
cell system is the improvement of its overall performance, the increase in durability for
process equipment, and safety for use in stationary and mobile applications. Additionally,
it is important to ensure safe and economical operation by avoiding oxidant starvation,
while minimizing hydrogen consumption. Such control issues cannot be addressed by
conventional single-loop control structures, and therefore, advanced control techniques,
such as NMPC can achieve the optimal satisfaction of multiple objectives. NMPC pos-
sesses the ability to handle state and input constraints, nonlinearities, the process dynamic
behavior explicitly, and to balance the thermal and material resources in the entire system
in a holistic way.

Most of the research studies implement or propose control strategies for hybrid
systems that are based on LT-PEMFC and rely on single feedback loops that do not take
into account the system interactions efficiently. In addition, the current work considers
systems that combine fuel reforming and fuel cell systems in an integrated way. A model-
based predictive control framework is, therefore, necessary to handle multiple time scales in
system response and strong interactions that may be built among the associated subsystems.
To this end, a nonlinear semi-empirical model that takes into consideration the operating
constraints imposed by each subsystem is employed for the fuel cell and is experimentally
validated on an existing unit operating in the Chemical Process Engineering and Energy
Resources Institute (CPERI) at the Centre for Research and Technology Hellas (CERTH).
An efficient control struct is determined along with a reasonable optimization framework
that reflects on the system objectives.

The paper is organized as follows: Section 2 provides a detailed description of the
flow diagram of the plant setup and Section 3 presents the mathematical models for each
subsystem and their validation. Section 4 outlines the NMPC control framework along
with the optimization methodology. Finally, Section 5 discusses the simulation results of
the proposed NMPC framework and the achieved performance of the system.
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2. System Description and Mathematical Modeling

This section presents an overview of the integrated unit under consideration. Figure 1
depicts a basic flow diagram of the hybrid system and its subsystems which are the LPG
reformer, the HT-PEMFC, the Li-ion battery stack, and the load. The actual unit that
operates in CPERI/CERTH is illustrated in Figure 2 alongside the supervisory control and
data acquisition (SCADA) system that is installed for the operation needs.
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The load requirements are mainly covered by the battery, which is charged by the HT-
PEMFC integrated with the LPG reformer. However, the HT-PEMFC can directly provide
the necessary power if the battery charge level is low. The necessary hydrogen for the
fuel cell is produced by the fuel reformer but can alternatively originate from pressurized
hydrogen tanks. For the scope of this study, the hydrogen is considered to originate only
from the reformer. Specifications for the system components are depicted in Table 1.

Table 1. System specifications.

Fuel Cell Battery Reformer Converter Charger

High-
temperature

proton-
exchange

membrane
(160–200 ◦C)

Anode: Lithium
iron phosphate

Cathode:
Graphite

Heat integrated
wall reactor [19]

DC-DC step-up
converter

Switch Mode
Power Supply
DC Charger

Power output:
1000 W

Nominal capac-
ity/voltage:

120 Ah/48 V

Nominal
capacity (H2
produced):
1.3 Nm3/h

Output voltage:
48 V

Input/Output
current range:

0–40 A/0–30 A
Input/Output
voltage range:

16–40 V/37–54 A

Efficiency: 35% Charge/discharge
efficiency: 95%

LPG
consumption at

nominal
capacity:

0.2 Nm3/h

Efficiency: 95% Efficiency: 90%
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Figure 3 shows a detailed overview of the subsystems of the LPG reformer and its
connection to the HT-PEMFC. The main flow streams are represented by different lines in
the diagram which are: single dot-dash for the flow of H2 or hydrogen-rich gas, double
dot-dash for the flow of LPG, grey for the flow of water (liquid, steam, or both), and black
for air or flue gas.

Initially, the LPG stream from the storage tank is split into two streams, one feeding
the burner with the necessary fuel and one going to the reformer to be processed. The first
stream enters the burner alongside air and the remaining hydrogen from the anode outlet.
This mixture combusts to provide the heat required to start the endothermic reactions in the
reformer. The flue gas leaves the combustion chamber at high temperatures and provides
the thermal energy which is utilized in the superheater to separate superheated steam for
the reforming reactions. The steam stream is then mixed with the LPG stream from the
tank. This mixture is heated by a heat exchanger that utilizes the high temperature of the
reformer outlet stream. After the reforming reactor, the resulting product is a hydrogen-
rich reformate gas that also includes CO, CO2 and a fraction of the feed that did not react.
Although the HT-PEMFC has a high CO tolerance, the CO concentration as the gas leaves
the reformer is still too high to be fed directly to the fuel cell. As a result, the reformer outlet
stream is introduced to the water–gas shift reactors to reduce the CO concentration at the
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desired level, through its conversion to H2. The temperature of the stream entering the
first high-temperature shift (HTS) reactor is brought down primarily by the feed-effluent
heat exchanger E2 and then by the air-cooled E3. The HTS downstream heat exchanger
E4 regulates the temperature of the feed stream to the low-temperature shift (LTS) reactor
which further reduces the CO concentration to an acceptable level. Prior to the fuel cell’s
anode inlet, there is a water management system that reduces the water content in the
reformate gas. The condenser uses water to cool down the gas stream and remove water
from it. The hydrogen-rich reformate gas enters the anode inlet at the desired temperature
and CO concentration. The hydrogen stream enters the cathode where it releases its
electrons for the generation of electric power. Hydrogen ions are transferred through the
proton-exchange membrane and they react with oxygen in the anode to produce H2O. A
DC-DC converter regulates the voltage of the electric current of the fuel cell. The Li-ion
battery and the load are connected to the DC bus.
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2.1. Model for the LPG Reformer

In the present study, to provide the required hydrogen for the electrochemical reac-
tion in the fuel cell, a heat integrated wall reactor LPG reformer was incorporated. The
characteristics and dynamics of the above reformer originate from operational data of an
experimental unit at CPERI/CERTH that result from conducted experiments. The proposed
model aims to simulate the response of the reformer to a change in the hydrogen demand.
The reformer’s equation is approximated by a fourth-order linear system as below:

d4manch,in

dt4 + a3
d3manch,in

dt3 + a2
d2manch,in

dt2 + a1
dmanch,in

dt
+ a0 = KDm (1)

where
.

manch,in is the system’s output variable that represents the reformer output flow
of hydrogen entering the anode channel of the fuel cell, Dm is the system’s command
variable and represents the demanded flow of hydrogen in the fuel cell, K is the gain and
a0 . . . a3 are parameters in the differential equation of the reformer. Figure 4 illustrates the
experimental output response of the reformer system to a step change from 0 to 1 l/min in
comparison with the hydrogen flow calculated by the reformer’s equation.
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2.2. Model for the HT-PEMFC

A semi-empirical nonlinear mathematical model was developed that considers its
main variables to be the partial pressures of all gases, the fuel cell current, and the operating
temperature. This model is an extension of the detailed mathematical model presented
in [20]. The main difference is that the original model was for an LT-PEMFC, whereas this
work deals with the operation of an HT-PEMFC. To adapt the original model to the HT-
PEMFC model, two important modifications were implemented. First, water management
is not considered in this model’s mass balances. Because of the fuel cell’s high temperature,
water does not exist in a liquid form but a vapor form. The second modification refers
to the electrochemical parameters of the I–V curve that were adapted to fit the desired
trajectory of the curve. An experimental study was performed to validate the behavior of
the model when applied to an HT-PEMFC.

The model accounts for mass balance dynamics in the gas flow channels (anode,
cathode), the gas diffusion layers (GDL), and the membrane as follows:

dmO2,cach

dt
=

.
mO2,cach,in −

.
mO2,cach,out −MO2

I
4F

(2)

dmN2,cach

dt
=

.
mN2,cach,in −

.
mN2,cach,out (3)

dmv,cach

dt
=

.
mv,cach,in −

.
mv,cach,out + AFC MvNv,ca +

.
mevap,cach (4)

where mk,cach, k = [O2, N2, v] are the species masses (oxygen, nitrogen, water vapor) in the
cathode channel,

.
mk,cach,in, are the input mass flows of the species in the channel, while

.
mk,cach,out are the output mass flows of the species in the channel, MO2 , Mv are the oxygen
and vapor molar masses, AFC is the membrane active area, I is the fuel cell’s current and F
is the Faraday number.

The rate of evaporation inside the cathode channel is expressed by:

.
mevap,cach = (psat(TFC)− pv,cach)

Vcachkevap Mv

RTFC
(5)

where psat is the saturation pressure of water defined at the operation temperature of the
fuel, pv,cach is the vapor pressure inside the cathode channel, Vcach is the cathode channel
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volume, kevap is the evaporation rate, R is the gas constant and TFC is the operational
temperature of the fuel cell.

The partial pressure of water vapor in each side of the gas diffusion layers (anode,
cathode) satisfies the respective mass balance Equation:

dpv,anGDL

dt
=

RTFC Nv,an

δGDL
− RTFC Nv,mem

δGDL
(6)

dpv,caGDL

dt
=

RTFC I
2FAFCδGDL

− RTFC Nv,ca

δGDL
+

RTFC Nv,mem

δGDL
(7)

where Nv,an is the vapor molar flux that diffuses from the anode channel to the GDL, Nv,ca
is the vapor molar flux that diffuses from the cathode channel to the GDL, Nv,mem is the
overall vapor molar flow across the membrane, and δGDL is the diffusion channel thickness.
The overall mass flow rate of the vapor that passes through the membrane is calculated by:

.
mv,mem = Mv AFC Nv,mem (8)

The performance of a fuel cell is shown by a graph of its output voltage (Ecell) versus
the drawn current density. This graph, which is also referred to as the polarization curve,
contains some of the most important characteristics of a fuel cell. To determine this
relationship, the cell voltage is defined as the difference between the ideal Nernst voltage
(ENernst) and several voltage losses. These losses increase as the current drawn from the
fuel cell increases. At low current densities, the activation losses appear (Eact) due to
the slowness of the reactions taking place on the surface of the electrodes. As the current
density increases, ohmic losses (Eohm) appear across the proton exchange membrane caused
by the resistance of the membrane to the hydrogen ions transporting through it. Finally,
at high current densities the concentration losses (Econc) are significantly affected due to
the consumption of the reactants at greater rates than they can be supplied, while the
product accumulates at a greater rate than it can be removed. The equation that takes into
consideration the above losses is:

Ecell = ENernst − Eact − Eohm − Econc (9)

ENernst = E0 +
RT
2F

ln
(

pH2,GDL p
1
2
O2,GDL p−1

H2O,GDL

)
(10)

Eact = ξ1 + ξ2TFC + ξ3TFC ln(I) + ξ4TFC ln
(
cO2

)
(11)

Eohm = (ξ5 + ξ6TFC + ξ7 I)I (12)

Econc = ξ8 exp(ξ9 I) (13)

cO2 =
pO2,caGDL

5.08·106exp(−
498
Tst

)
(14)

The values of the empirical parameters ξk [k = 1 . . . 9] are shown in Table 2.

Table 2. Electrochemical Parameters.

Parameter Value

ξ1, ξ2, ξ3, ξ4 1.51, −3.12·10−3, 1.5·10−4, −7·105

ξ5, ξ6, ξ7, 0.5·10−3, −7.55·10−6, 7.85·10−4

ξ8, ξ9, 3·10−5, 6·10−2

2.3. Model for the Li-Ion Battery

In this work, the kinetic battery model (KiBaM) is used [21] which was originally
developed for lead-acid batteries but can also be used for lithium-ion batteries with suffi-
cient accuracy.
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In this model, the battery charge is distributed over two wells: the available-charge
well q1, and the bound-charge well, q2, as seen in Figure 5. The available-charge well
supplies electrons directly to the load, whereas the bound-charge well supplies electrons
only to the available-charge well. The rate at which charge flows between the wells depends
on the difference in height (h1, h2) of the two wells, and on a parameter k. The parameter c
gives the fraction of the total charge in the battery that is part of the available-charge well.
The equations that describe the model are given as follows:

dq1

dt
= −IBAT − k′(h1 − h2) (15)

dq2

dt
= k′(h1 − h2) (16)

h1 =
q1

c
(17)

h2 =
q2

1− c
(18)

k =
k′

c(1− c)
(19)
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The algebraic equations that determine the operating voltage, the available power,
and the state of charge (SOC) are described below:
Charge case

VC = EC − IBAT R0 (20)

PC = IBATVC (21)

where EC is the internal voltage, R0 is the internal resistance, IBAT and VC are the operating
current and voltage, respectively, and PC is the charging power. The value of the internal
voltage is given by Equation (22):

EC = EOC + (Emax − EOC)

(
q1

qmax

)
(22)

where Emax is the maximum allowed internal charging voltage and EOC is the minimum
allowed internal charging voltage.
Discharge case

VD = ED − IBAT R0 (23)

PD = IBATVD (24)
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where ED is the internal voltage, VD is the operating voltage and PD is the discharging
power. The value of the internal voltage is given by Equation (25):

ED = Emin + (EOD − Emin)

(
q1

qmax

)
(25)

where Emin is the minimum allowed internal discharging voltage and EOD is the maximum
allowed internal discharging voltage.

Finally, the state of charge of the accumulator is defined as the available fraction of
power at each time instance:

SOC(t+1) = SOC(t) − 100
(

1
qmax

)
IBATt (26)

2.3.1. Experimental Validation of the HT-PEMFC Model

In this section, to validate the accuracy of the derived model, a comparison against
experimental is performed. Both steady-state validation and dynamic validation of the
model were conducted. The polarization curve of the fuel cell derives from two indicative
sets of experiments at 105 Pa pressure and 180 ◦C temperature. All experiments were
conducted at the test unit in CPERI/CERTH.

Figure 6 illustrates a comparison between the model predictions of the cell stack
against experimental data from the unit. The dashed lines depict the 95% confidence
intervals of the conducted experiments. A good agreement is achieved throughout the
range of the current density values since the model predictions are within the confidence
region. Figures 7 and 8 depict the dynamic response of voltage and power, respectively. In
both figures, the step changes in the current are imposed on the fuel cell model and the
result is the model’s voltage or power. The comparison of the experimental data and the
model’s predictions shows good agreement for both variables (voltage, power). Looking at
both the static and dynamic validation, the conclusion is a clear indication that the model
has the required accuracy to describe the behavior of the system.
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Energies 2021, 14, 1371 11 of 23

Energies 2021, 14, x FOR PEER REVIEW 11 of 24 
 

 

of the current density values since the model predictions are within the confidence region. 
Figures 7 and 8 depict the dynamic response of voltage and power, respectively. In both 
figures, the step changes in the current are imposed on the fuel cell model and the result 
is the model’s voltage or power. The comparison of the experimental data and the model’s 
predictions shows good agreement for both variables (voltage, power). Looking at both 
the static and dynamic validation, the conclusion is a clear indication that the model has 
the required accuracy to describe the behavior of the system. 

 
Figure 6. Steady-state response of HT-PEMFC model. 

 
Figure 7. Dynamic voltage response of the HT-PEMFC model to current step changes. 

0 0.05 0.1 0.15 0.2 0.25 0.3

Current Density (A/cm2)

10

15

20

25

30

35

40

45

0

100

200

300

400

500

600

700

800

900

1000
Model Voltage
Mean of Experiments
CI95%
Model Power
Mean of Experiments
CI95%

0 250 500 750 1000 1250
Time (s)

17

18

19

20

21

22

23

24

25

26

27

20

25

30

35

40

45

Voltage (Experimental)
Voltage (Model)
Current (Experimental)

Figure 7. Dynamic voltage response of the HT-PEMFC model to current step changes.

Energies 2021, 14, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 8. Dynamic power response of the HT-PEMFC model to current step changes. 

2.3.2. Experimental Validation of Li-Ion Battery Model 
In this section, to validate the accuracy of the model, a comparison between experi-

mental data and the model predictions is conducted. Two indicative sets of experiments 
are presented to demonstrate the accuracy of the model, one regarding a charging cycle 
with a constant current at 10 A and one regarding a discharging cycle with a constant 
current at 40 A. 

Figures 9 and 10 illustrate a comparison between the model prediction for the voltage 
of the Li-ion battery and experimental data regarding charging and discharging, respec-
tively. A full cycle (0–100% and 100–0% SOC) is shown in both figures. The dashed lines 
depict the 95% confidence intervals of the conducted experiments. A good agreement is 
achieved throughout the linear part of the experimental data since the model predictions 
are within the confidence region. The beginning and the end of this linear part mark the 
capacity limits under nominal operation, ranging from 20% minimum capacity (24 Ah) to 
80% maximum capacity (96 Ah). The error which is observed outside the minimum and 
maximum capacity range does not affect the model’s accuracy since it is beyond the oper-
ating limits of the system. Throughout the rest of the capacity range, a negligible error 
exists between the model prediction and the real operation of the battery. The root-mean-
square error (RMSE) was 0.344 V in the charging cycle and 0.213 V in the discharging 
cycle. The above metric was calculated using 7200 samples over a period of 10 h with a 5 
s interval and 1800 samples over a period of 2.5 h with a 5 s interval for the charging and 
discharging case, respectively. This measure is a clear indication that the model has the 
required accuracy to describe the behavior of the system. 

Figure 8. Dynamic power response of the HT-PEMFC model to current step changes.

2.3.2. Experimental Validation of Li-Ion Battery Model

In this section, to validate the accuracy of the model, a comparison between experi-
mental data and the model predictions is conducted. Two indicative sets of experiments are
presented to demonstrate the accuracy of the model, one regarding a charging cycle with a
constant current at 10 A and one regarding a discharging cycle with a constant current at
40 A.

Figures 9 and 10 illustrate a comparison between the model prediction for the voltage
of the Li-ion battery and experimental data regarding charging and discharging, respec-
tively. A full cycle (0–100% and 100–0% SOC) is shown in both figures. The dashed lines
depict the 95% confidence intervals of the conducted experiments. A good agreement is
achieved throughout the linear part of the experimental data since the model predictions
are within the confidence region. The beginning and the end of this linear part mark the
capacity limits under nominal operation, ranging from 20% minimum capacity (24 Ah)
to 80% maximum capacity (96 Ah). The error which is observed outside the minimum
and maximum capacity range does not affect the model’s accuracy since it is beyond the
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operating limits of the system. Throughout the rest of the capacity range, a negligible
error exists between the model prediction and the real operation of the battery. The root-
mean-square error (RMSE) was 0.344 V in the charging cycle and 0.213 V in the discharging
cycle. The above metric was calculated using 7200 samples over a period of 10 h with a 5 s
interval and 1800 samples over a period of 2.5 h with a 5 s interval for the charging and
discharging case, respectively. This measure is a clear indication that the model has the
required accuracy to describe the behavior of the system.
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Figure 10. Dynamic response in a full discharge cycle.

The beginning and the end of this linear part mark the capacity limits under nominal
operation, ranging from 20% minimum capacity (24 Ah) to 80% maximum capacity (96 Ah).
In the exponential areas (outside of the min–max capacity range) an increasing error is
observed due to the linear behavior of the model. This error does not affect the model’s
accuracy since it is present only outside of the operational limits of the battery.

3. Control System Design

In this section, the model-based control framework of the integrated system is pre-
sented. This includes a presentation of the control objectives, as well as a mathematical
representation of the NMPC framework and the optimization procedure.
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3.1. Control Objectives and Input–Output Structure

The control objectives for the system are to generate the required power while main-
taining the operation in a safe region. The variable power demand (PSP) is achieved by
manipulating the current (IFC) which is applied to the fuel cell by the converter connected
to the system. The safe operation is maintained by controlling the reactants at a certain ex-
cess ratio level to avoid starvation by manipulating the air and hydrogen flows

( .
mair,

.
mH2

)
.

The safe operating region is defined by the oxygen and hydrogen excess ratios
(
λO2 , λH2

)
,

expressed as the ratios of the input flow of each gas to the consumed quantities per unit
time due to the reaction [22–24].

λO2 =

.
mO2,cach,in
.

mO2,caGDL
(27)

λH2 =

.
mH2,anch,in
.

mH2,anGDL
(28)

where,
.

mO2,cach,in,
.

mH2,anch,in are the oxygen and hydrogen input flows at the channels,
whereas

.
mO2,caGDL,

.
mH2,anGDL are the respective reacted quantities. The input flow of

hydrogen to the anode channel of the fuel cell originates from the reformer. When the
NMPC controller assigns a new target value for

.
mH2 , this manipulated variable cannot

acquire this value instantly because of the reformer’s time delay. Therefore, the reformer
imposes its delay to the hydrogen entering the anode resulting in the dynamic behavior
of

.
mH2 . Additionally, the controller aims to maintain the battery cells’ SOC at a certain

level, which is achieved by manipulating the battery current (IBAT). These objectives are
accomplished by the control configuration which is depicted in Figure 11.

Energies 2021, 14, x FOR PEER REVIEW 14 of 24 
 

 

൫𝑚ሶ ௔௜௥,  𝑚ሶ ுమ൯. The safe operating region is defined by the oxygen and hydrogen excess ra-
tios ൫𝜆௼మ, 𝜆௴మ൯, expressed as the ratios of the input flow of each gas to the consumed quan-
tities per unit time due to the reaction [22–24]. 𝜆ைమ = ௠ሶ ೀమ,೎ೌ೎೓,೔೙௠ሶ ೀమ,೎ೌಸವಽ   (27) 

𝜆௴మ = ௠ሶ ಹమ,ೌ೙೎೓,೔೙௠ሶ ಹమ,ೌ೙ಸವಽ   (28) 

where, 𝑚ሶ ைమ,௖௔௖௛,௜௡, 𝑚ሶ ுమ,௔௡௖௛,௜௡ are the oxygen and hydrogen input flows at the channels, 
whereas 𝑚ሶ ைమ,௖௔ீ஽௅, 𝑚ሶ ுమ,௔௡ீ஽௅ are the respective reacted quantities. The input flow of hy-
drogen to the anode channel of the fuel cell originates from the reformer. When the NMPC 
controller assigns a new target value for 𝑚ሶ ுమ, this manipulated variable cannot acquire 
this value instantly because of the reformer’s time delay. Therefore, the reformer imposes 
its delay to the hydrogen entering the anode resulting in the dynamic behavior of 𝑚ሶ ுమ. 
Additionally, the controller aims to maintain the battery cells’ SOC at a certain level, 
which is achieved by manipulating the battery current (𝐼஻஺்). These objectives are accom-
plished by the control configuration which is depicted in Figure 11. 

 
Figure 11. Control configuration and information/signal flow between the nonlinear model predic-
tive control (NMPC) and the integrated unit including the error calculation. 

As 𝜆௼మ, 𝜆௴మ and SOC are unmeasured variables, they are estimated by the nonlinear 
models for the fuel cell and the battery. Based on the control configuration shown in Fig-
ure 11, a constant set-point regarding the excess ratios of hydrogen, oxygen, and the bat-
tery state of charge is used. 

3.2. Nonlinear Model Predictive Control Framework 
Nonlinear model predictive control is part of a family of optimization-based control 

methods which calculate the optimal values of the future control moves using model pre-
diction over a future time horizon 𝑇௉ [25]. The control actions minimize a cost function 
related to control objectives of the system subject to a nonlinear dynamic model. The op-
timization yields an optimal control sequence (𝑢଴ … 𝑢ே௖ିଵ) over a control horizon (𝑇௖) 
and only the first control action (𝑢௞) for the current time interval (𝑇௞) is applied to the 
system. At the next time interval, the horizon is shifted by one sampling interval and the 
optimization problem is resolved using the information of the new measurements ac-
quired from the system [25]. The mathematical representation of the NMPC algorithm is 
[26,27]: minJ௨ = ∑ ൫𝑦ො௞ା௝ − 𝑦௦௣,௞ା௝൯்𝑄൫𝑦ො௞ା௝ − 𝑦௦௣,௞ା௝൯ + ∑ 𝛥𝑢௞ା௟் 𝑅𝛥𝑢௞ା௟ே೎ିଵ௟ୀ଴ே೛௝ୀ1   (29) 

subject to: 𝑥ሶ = 𝑓ௗ(𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑦 = 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)  (30) 

Load
Profile NMPC

Li-Ion
Battery

Fuel Cell 
Stack

Fuel
Reformer

ṁair

ṁH2

IFC

IBAT

+ -

PSP

λH2,SP

λO2,SP

SOCSP

PBAT , PFC , λO2 , λH2 , SOC

Figure 11. Control configuration and information/signal flow between the nonlinear model predic-
tive control (NMPC) and the integrated unit including the error calculation.

As λO2 , λH2 and SOC are unmeasured variables, they are estimated by the nonlinear
models for the fuel cell and the battery. Based on the control configuration shown in
Figure 11, a constant set-point regarding the excess ratios of hydrogen, oxygen, and the
battery state of charge is used.

3.2. Nonlinear Model Predictive Control Framework

Nonlinear model predictive control is part of a family of optimization-based control
methods which calculate the optimal values of the future control moves using model
prediction over a future time horizon TP [25]. The control actions minimize a cost function
related to control objectives of the system subject to a nonlinear dynamic model. The
optimization yields an optimal control sequence (u0 . . . uNc−1) over a control horizon (Tc)
and only the first control action (uk) for the current time interval (Tk) is applied to the
system. At the next time interval, the horizon is shifted by one sampling interval and the
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optimization problem is resolved using the information of the new measurements acquired
from the system [25]. The mathematical representation of the NMPC algorithm is [26,27]:

minJ
u

= ∑Np
j=1

(
ŷk+j − ysp,k+j

)T
Q
(

ŷk+j − ysp,k+j

)
+ ∑Nc−1

l=0 ∆uT
k+l R∆uk+l (29)

subject to:
.
x = fd(x(t), u(t), t), y = g(x(t), u(t), t) (30)

ek =
(

ymeas − ypred
)

k
(31)

ŷk+j = ypred
k+j + ek (32)

j = 1 . . . Np (33)

Nc =
(Tc − Tk)

∆tc
, Np =

(
Tp − Tk

)
∆tp

(34)

uL ≤ u(t)k+j ≤ uU , yL ≤ y(t)k+j ≤ yU (35)

The minimization of functional J (Equation (29)) is subject to constraints on the ma-
nipulated (u) and controlled (y) variables (Equation (35)). The variable ysp,k denotes the
desired reference trajectory, fd represents the differential equations and g represents the
algebraic equations of the output variables. In this application, ysp is the desired power
profile where we assume that this system is used as a portable small-scale power genera-
tion station. The difference ek between the measured variable ymeas and the corresponding
predicted value ypred at time instance k is assumed to be constant for the entire length of the
prediction horizon Tp, Tc denotes the control horizon reached through Nc time intervals.
Tuning parameters of the algorithm are the weight factors in the objective function (Q, R)
and the length of the prediction and control horizon that reflect on the relative importance
of the control objectives.

In the last decade, considerable progress has been achieved towards the solution of
challenging dilemmas [28] that has enabled the wider application of the NMPC framework.
The computational progress of the optimization algorithms allows for both decreases in
computational delays and minimization of the approximation errors. Recently, NMPC
controllers have been based on nonlinear programming (NLP) sensitivity with reduced
computational costs and can lead to significantly improved performance [29]. Overall,
the application of dynamic optimization in conjunction with fast optimization solvers
allows the use of first-principles models for NMPC [30]. In general, a differential-algebraic
equation constrained optimization problem is considered, which includes the continuous-
time counterpart of the NMPC problem. Since the implemented NMPC algorithm involves
inequality constraints, direct optimization methods are used for the optimization problem
which is transformed into an NLP problem.

3.3. Prediction Horizon

One of the main characteristics of NMPC is that it can anticipate future events and
can adjust the control actions accordingly in a feed-forward fashion in order to obtain a
prediction horizon length that can provide effective control and reasonable computational
effort. In Table 3, a metric is shown in an analysis of different prediction horizon intervals.
It represents the root-mean-square error (RMSE), which is presented for the power profile
set point and the two excess ratios set points (hydrogen and air). The RMSE for the power
profile is calculated between the power profile set point

(
Ppro f ile

)
and the summation of

power from the fuel cell and battery (PSUM).
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Table 3. Prediction horizon analysis.

Prediction Horizon (Intervals) 1 2 3 5

RMSE
P: 8.137

λO2: 0.036
λH2: 0.125

P: 7.340
λO2: 0.029
λH2: 0.038

P: 7.356
λO2: 0.051
λH2: 0.101

P: 7.181
λO2: 0.061
λH2: 0.142

An important aspect of the NMPC control algorithm—as implemented in this study—
is the resulting behavior of the subsystems. In this case, this is mainly the fuel cell and
the battery. Rapid fluctuations in the power demand are preferably met by the battery
component due to its faster response to prevent the fuel cell from degrading. The fuel cell
exhibits much slower dynamics and the maintenance of a specific operating level is crucial
for the health of the component. Improved efficiency is also the reason why the battery
should be deployed to satisfy high peaks in the load demand.

Figure 12 shows a comparison between four different prediction horizon lengths (one,
two, three, and five intervals) and their resulting power distribution among the fuel cell and
battery. Each interval represents 1 min of real-time operation. For the specific application
where the reformer integrated into the system exhibits a time delay of approximately 2 min
to reach a steady-state, and considering that the reformer is the major dynamic component
of the system, we decided that a 1 min time interval offers a sufficient accuracy and decent
computational burden in order to capture this dynamic. In all four cases, the battery
delivers power when it is instantly needed. However, the fuel cell shows an oscillatory
behavior in Figure 12a. The smoothest curve regarding fuel cell power is the one that
corresponds to a prediction horizon of two intervals. Although Figure 12c,d shows good
results, these are accompanied by an increase in computational time. Since computational
time is heavily hardware-dependent, it can be neglected if a high-end computer is used,
that is why it is not considered as a metric in this study.
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Generally, larger prediction horizons result in worse behavior because then the model’s
predictions are increasingly susceptible to future disturbances. On the other hand, the
smaller the horizon is the higher the oscillations that the model prediction will introduce.
A highly oscillatory behavior is not desired for a fuel cell, which means that a tradeoff
between prediction accuracy and smoothness of the curve is necessary. After exploring both
aspects (metric and behavior) for the selection of an appropriate value the conclusion is
that the smallest possible prediction horizon with acceptable accuracy is desired. Therefore,
the prediction horizon for this study is set to two intervals.

4. Operation Scenarios and Results

This section presents selected operation scenarios and their results obtained from the
application of the NMPC controller using the nonlinear models developed in Section 2.
The behavior of the integrated system is exemplified here by two case studies. In the
first one, the fuel cell and battery operate as two individual power sources, satisfying the
power demand, and no charging of the battery is considered. In the second case study, the
demand is satisfied the same way as in the first case and the battery is also charged by the
fuel cell.

The objective function of each case is formulated in such a way that the power set-
point is reached, and the operating restrictions are satisfied. Both cases have some common
points referring to the implementation of the NMPC. The scenarios into consideration show
the operation and response of each subsystem for a period of 1 h. The control horizon
Tc is 1 interval for both cases. The amount of time chosen for Tc is enough time for the
battery and the fuel cell to reach a steady state. Additionally, the constraints were chosen
so that throughout the operation, the integrated system is always within the limits of
safe operation.

4.1. Power Demand Satisfaction by the Battery and the Fuel Cell

In this case study, the fuel cell and the battery satisfy the power demand as two
individual power sources. Battery charging is not considered.

4.1.1. Objective Function

The purpose of the objective function is, on one hand, the power demand satisfaction
and on the other hand the operation of the fuel cell at specific hydrogen and oxygen excess
ratios

(
λO2,sp = 1.8, λH2,sp = 1.8

)
that were set as set-points.

min
u=[IBAT ,IFC ,

.
mair ,

.
mH2 ]

J(u) =
Np

∑
j=1

{[(
PFC,k+j + PBAT,k+j − ek

)
− PSP,k+j

]2
+
(

λ(∆u)O2,k+j − λO2,sp

)2
+
(

λ(∆u)H2,k+j − λH2,sp

)2
}

(36)

subject to:
.
x = fd(x(t), u(t), t)
y = g(x(t), u(t), t)

}
→ Equations (1)–(28)

ek =
(

Pmeas
FC − Ppred

FC

)
k

uL ≤ u(t)k+j ≤ uU →


0 ≤ IFC ≤ 11 (A)

0 ≤ IBAT ≤ 30 (A)
20 ≤ .

mair ≤ 60 (l/min)
12 ≤ .

mH2 ≤ 22 (l/min)



yL ≤ y(t)k+j ≤ yU →

 1.6 ≤ λO2 ≤ 2.1
1.1 ≤ λH2 ≤ 2.3

30 ≤ SOC ≤ 90 (%)


The variable PBAT represents the power provided by the battery to the load demand.

PBAT adds up with PFC to result in the total dedicated power to reach the setpoint PSP.
Variables IBAT and IFC are the manipulated variables that govern the power output of the
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battery and the fuel cell accordingly. Furthermore, in order to balance the excess ratios of
hydrogen and air and maintain them within the specified limits, the other two manipulated
variables

.
mair and

.
mH2 are employed to control the mass flows of the two species. The

operation of the battery is supervised by its state of charge that has an upper limit to avoid
overcharging and a lower limit to avoid depletion. The first quadratic term of the objective
function represents the tracking of the power profile with the error estimation between
the process and the model incorporated as well. The other two terms represent the effort
to maintain the fuel cell operation at the desired levels to avoid hydrogen and oxygen
starvation at the anode and cathode, respectively.

4.1.2. Simulation Scenario and Discussion of Results

To evaluate the operation of the integrated unit and the response of the NMPC frame-
work, the behavior of each subsystem, the manipulated variables, and the controlled
variables are presented, along with the analysis of main variables representing the oper-
ational state, such as the battery voltage. The following figures show the results of the
simulation for the optimal control of the fuel cell with the reformer and the battery.

In Figure 13, the fuel cell provides an almost constant power as a result of its slower
dynamics (because of the slow dynamic of the reformer). On the other hand, the battery,
with its faster response time, supplies the demanded power during rapid changes. The
provided power by the battery and the fuel cell (PSUM) shows that the reference power
trajectory is followed regardless of the changes. Therefore, the system accomplishes its
main target.
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Figure 13. Fuel cell and battery power in reference to the power profile.

The behavior of the manipulated variables in Figure 14 is shown. The battery current
IBAT follows the trajectory of the power profile whereas the fuel cell current IFC and the air
flow from the compressor

.
mcach,in maintains almost a constant value. The hydrogen flow

.
manch,in coming from the reformer increases gradually by 1 l/min starting at the 10 min
mark due to the time delay forced by the reformer. Figure 15 verifies that the operation
of the fuel cell remains within the predefined operation constraints for the hydrogen and
oxygen ratios throughout the scenario.
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Figure 15. Fuel cell operating set-points in reference to the power profile: (a) oxygen excess ratio, (b) hydrogen excess ratio.

To evaluate the behavior of the battery, two important variables are shown, the voltage
and the state of charge. Figure 16 (left) shows that when the battery supplies more power,
the voltage drop is increased. The slope of the state of charge is proportional to the rate of
discharge Figure 16 (right), which is steeper when the power increases.
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4.2. Fuel Cell Satisfies Power Demand and Charges the Battery

In this case study, the two devices operate to satisfy the power demand and also
maintain the battery state of charge at a certain desired level by charging it. To achieve this,
the fuel cell must provide the demanded power by the load and the power needed to charge
the battery. An important feature of this formulation is that the battery can only operate in
one mode, charging or discharging. This leads to the addition of two Boolean variables
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(m, n) that transform the problem from NLP to mixed-integer nonlinear programming
(MINLP).

4.2.1. Objective Function

The charging power of the battery comes from the fuel cell. Therefore, the term
PBAT,char is added to PSP so that the charging power increases the fuel cell’s set point. The
charging power was chosen arbitrarily at 100 W. The term PBAT,disch represents the same
thing as PBAT in the previous case study; that is, the power the battery provides to the load.
The last term of the objective function establishes a goal for the system; that is, to reach the
desired state of charge set point SOCSP = 90%. The additional constraint containing the
two Boolean variables m, n ensures that their value is either zero or one and that they can
never have the same value. This translates to the ability of the battery to either be charged
or discharged and never execute both.

min
u=[IBAT ,IFC ,

.
mair ,

.
mH2 ,m,n]

J(u) =
Np

∑
j=1
{
[(

PBAT,char,k+j·m + PBAT,disch,k+j·n + PFC,k+j − ek

)
− PSP,k+j

]2

+
(

λO2,k+j − λO2,sp

)2
+
(

λH2,k+j − λH2,sp

)2
+
(

SOCk+j − SOCSP

)2
}

(37)

subject to:
.
x = fd(x(t), u(t), t)
y = g(x(t), u(t), t)

}
→ Equations (1)–(28)

ek =
(

Pmeas
FC − Ppred

FC

)
k

m, n ∈ {0, 1}
m + n = 1

uL ≤ u(t)k+j ≤ uU →


0 ≤ IFC ≤ 11 (A)

0 ≤ IBAT ≤ 30 (A)
20 ≤ .

mair ≤ 60 (l/min)
12 ≤ .

mH2 ≤ 22 (l/min)
m + n = 1



yL ≤ y(t)k+j ≤ yU →

 1.6 ≤ λO2 ≤ 2.1
1.1 ≤ λH2 ≤ 2.3

30 ≤ SOC ≤ 90 (%)


4.2.2. Simulation Scenario and Discussion of Results

A different power profile is implemented with constant power demand areas and
fewer fluctuations. The prediction and control horizon were set at one interval each, which
was the smallest possible value with acceptable accuracy.

Figure 17 illustrates the integrated system’s response. At the beginning of the simula-
tion, the fuel cell starts operating at a level way lower than what is required from the load
profile. The battery takes on to cover this difference until the slow response of the reformer
allows enough hydrogen to flow to the fuel cell in order to produce the required power.
Charging is achieved between 15 to 33 min into the process (negative battery power values).
This area of the power profile allows charging to occur because the fuel cell’s power is
already at a high level and can cover the power demand and also supply the rest of its
power to the battery. When the demand increases again, the fuel cell can no longer sustain
the charging of the battery and dedicates its whole capacity to satisfy the power demand.
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Figure 17. Fuel cell and battery power in reference to the power profile.

In Figure 18, the manipulated variables and, in particular, the fuel cell current and
the air flow from the compressor, follow a trajectory similar to that of the PFC. The battery
current follows the battery’s power curve, except for the part where it is charging. During
that part, the current is dictated by the battery voltage and is calculated to account for
a charging power of PBAT,char = 100 W. The hydrogen flow depicts the response of the
reformer. The reformer determines how fast the fuel cell delivers the required power.
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Figure 18. Manipulated variables in reference to the power profile: (a) input air flow entering the anode channel, fuel cell
current, and battery current; (b) output hydrogen flow of the reformer entering the anode channel.

Figure 19 determines whether the fuel cell operates in the safe region or not. The
excess ratio of air is almost constant and equal to the set-point

(
λO2,SP = 1.8

)
throughout

the simulation. The excess ratio of hydrogen changes rapidly when the power demand
changes at the next time interval. This occurs due to the reformer’s inability to transfer
less hydrogen instantly to the fuel cell when the demand is lower and therefore, the ratio

in f low H2
consumption H2

increases. The exact opposite occurs when the demand is higher. In Figure 20,
the battery state of charge decreases during discharging with different rates according to
the battery current. When the battery is charging, between 15 to 33 min, SOC increases,
again, with different rates depending on the current of the battery.
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Figure 19. Fuel cell operating set-points in reference to the power profile: (a) oxygen excess ratio; (b) hydrogen excess ratio.
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5. Conclusions

In this work, an advanced multivariable NMPC control framework was developed
for an integrated LPG reforming-HT-PEM fuel cell and Li-ion accumulator system. The
nonlinear continuous dynamic models used for this work were tested and experimentally
validated to best fit the existing power unit. A set of case studies, in which the performance
and reliability of the controller were simulated, were proposed and implemented. In
each case, the safe operation of the fuel cell and the accumulator was ensured through
a constrained optimization methodology. Furthermore, the case studies indicate that
the illustrated system can adjust to set-point changes of the load demand. Overall, the
proposed approach guarantees that the HT-PEMFC performs within its operating limits and
illustrates an excellent potential for on-line applications in order to manage the produced
energy in an optimum manner.
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