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Abstract: Lithium-ion (Li-I) batteries have recently become pervasive and are used in many physical
assets. For the effective management of the batteries, reliable predictions of the end-of-discharge
(EOD) and end-of-life (EOL) are essential. Many detailed electrochemical models have been devel-
oped for the batteries. Their parameters are calibrated before they are taken into operation and are
typically not re-calibrated during operation. However, the degradation of batteries increases the
reality gap between the computational models and the physical systems and leads to inaccurate
predictions of EOD/EOL. The current calibration approaches are either computationally expensive
(model-based calibration) or require large amounts of ground truth data for degradation parameters
(supervised data-driven calibration). This is often infeasible for many practical applications. In this
paper, we introduce a reinforcement learning-based framework for reliably inferring calibration
parameters of battery models in real time. Most importantly, the proposed methodology does not
need any labeled data samples of observations and the ground truth parameters. The experimental
results demonstrate that our framework is capable of inferring the model parameters in real time with
better accuracy compared to approaches based on unscented Kalman filters. Furthermore, our results
show better generalizability than supervised learning approaches even though our methodology
does not rely on ground truth information during training.

Keywords: model calibration; reinforcement learning; intelligent maintenance; lithium-ion batteries

1. Introduction

Recent advancements in lithium-ion (Li-I) battery technology have increased their
usage in various applications ranging from electric vehicles to drones [1], smart grids [2],
and space exploration [3]. Particularly for autonomous systems, it is essential to plan the
missions reliably, which requires an accurate prediction of the end-of-discharge (EOD)
time for the batteries. Several battery models have been introduced to model the discharge
process of the batteries for accurate prediction of EOD [4–6]. However, most of these
models suffer from an increasing uncertainty in their EOD predictions over time [7]. This
is because the batteries degrade with aging and computational models suffer from a
reality gap between the physical process and the simulated one. The relationship between
battery age and degradation parameters is complex and requires sophisticated modeling
techniques to estimate battery degradation parameters that are part of the EOD time
prediction [8]. Estimating degradation parameters of the battery model is also known as
“model calibration” [9]. Hence, we use these terms interchangeably in this manuscript.

Previous research studies on battery model calibration have mainly focused on under-
standing and modeling the electrochemical aging processes [8,10,11]. Such methods are
known as prognostics and health management (PHM) models, which assume an underly-
ing model for the aging process. However, the calibration problem can also be modeled as
a parameter tracking and inference problem. The model parameters are then inferred from
the empirical observations. Previous works have focused on traditional variants of Kalman
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filters, such as the extended Kalman filter (EKF) and unscented Kalman filter (UKF) [12,13],
or Bayesian filters such as particle filters, [14] for tracking degradation parameters of
the batteries. Parameter tracking approaches do not require an underlying degradation
model. However, they suffer from a high computational burden and parameter divergence
problems. Several data-driven methods based on empirical learning models have also
been proposed for battery end-of-life (EOL) or state of health (SOH) prediction [12,15].
These supervised data-driven methods suffer from a strong dependence on labeled data,
also requiring for each training sample the ground truth calibration parameters. However,
measuring the ground truth values of the degradation parameters during operation is not
practical in many scenarios. These shortcomings limit the applicability of the supervised
data-driven approaches in real-world problems.

Reinforcement learning (RL) provides an alternative to parameter tracking approaches
by formulating real-time calibration as a Markov decision process (MDP). Combined
with powerful function approximators, such as deep neural networks, RL methods can
work with complex large-state spaces. RL methods have been applied to various control
problems in robotics [16–18], water systems management [19], computational biology [20],
and AutoML [21]. RL methods have multiple advantages over traditional methods: (1)
RL agents can learn to solve tasks without any knowledge of the underlying model. Such
methods are known as model-free methods that directly learn by sampling interactions from
the environment [22]. (2) The policies learned via RL are robust to model uncertainty [23].
(3) RL methods provide almost real-time performance since they only require evaluating
the learned policies. These characteristics make reinforcement learning a compelling
alternative to other data-driven methods for battery model calibration.

In this paper, we adopt a reinforcement learning framework [24] to solve the battery
model calibration process, which can work in real time and does not require an underlying
degradation model. Specifically, we define the battery model calibration problem as a
tracking problem using MDP and solve it with the Lyapunov-based maximum entropy
reinforcement learning algorithm [24]. We use the battery model from the NASA prognostic
model library [25,26] to simulate the RL environment. It is important to emphasize that
the applied simulation method models the physical process of the discharge but does not
explicitly model the battery aging process, which is the main focus of this paper. To the best
of our knowledge, the framework proposed here is the first method applying reinforcement
learning to battery model calibration.

The remainder of this paper is structured as follows. In Section 2, we discuss related
work. In Section 3, we present the battery discharge model and our reinforcement learning-
based calibration framework. In Section 4, we present the datasets, model design, and
comparison methods. We discuss our findings in Section 5.

2. Related Work

In this section, we provide a brief overview of three primary methods for battery
model calibration: (1) methods based on Bayesian tracking principle; (2) model-based
prognostics based on an explicit aging model; (3) direct estimation from observations.

Firstly, methods based on filtering approaches model the parameters of the battery as
an internal state and try to track these parameters by external observations. Variants of
Kalman filters, such as the unscented Kalman filter (UKF) [13] and extended Kalman filter
(EKF) [12] have been used to calibrate battery models. Particle filtering (PF) approaches
are similar to UKF. PF-based approaches try to approximate the probability density func-
tion of the battery parameters using particles [14]. However, particle filters suffer from
particle degeneracy, which results in large estimation errors. The authors of [27] proposed
inheritance-based particle filtering to tackle this problem. Such tracking algorithms pro-
vide model-agnostic parameter estimations. However, these methods are computationally
expensive at the application time and suffer from a drift in parameter tracking.

Secondly, model-based prognostic methods assume an underlying degradation model
for the aging parameters as a function of its usage. The authors of [8] used system identifi-
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cation techniques to estimate the parameters of the degradation model. Furthermore, the
authors of [10,11] used electrochemical process knowledge to model battery degradation.
These techniques provide accurate estimates as long as the physical degradation process
follows the assumed model.

Thirdly, in the direct estimation methods, observations are used to learn the mapping
from the battery outputs to the degradation parameters. For example, the authors of [15]
used support vector machines (SVM) to learn this mapping. In another study, structured
neural networks (SNN) were used to exploit knowledge of the degradation process [12].
Such approaches show promising results in certain scenarios where it is possible to obtain a
representative set of labeled samples comprising observations and degradation parameters
covering all relevant operating conditions.

Reinforcement learning provides an alternative solution to these three types of ap-
proaches while overcoming some of their limitations. Especially, in the scenarios where
labeled data are not available, RL can learn from the observations and infer the model
parameters. Furthermore, RL is typically computationally very efficient in real-time ap-
plications compared to the model-based Kalman filter and its variants. Previous works
have highlighted the importance of reinforcement learning in SOH estimation and battery
scheduling operations. The authors of [28] used reinforcement learning to estimate the
parameters of EKF, which in turn was used to estimate SOH for the batteries. Our method
goes one step beyond this—we try to estimate the parameters directly from the observa-
tions. Hence, we remove the dependence on the model-based EKF approach. The authors
of [29] also highlighted the effectiveness of reinforcement learning in designing an optimal
control policy to reduce transmission losses.

With deep function approximators and sophisticated exploration techniques, RL
methods have recently made some significant progress. In our work, we focus on model-
free RL methods based on the actor–critic (AC) approach [22,30]. Model-free methods can
learn the policy without knowing the underlying model. Actor–critic methods provide a
framework for generalized policy iteration algorithms in which two networks (actor and
critic) are updated continuously. Especially, maximum entropy-based RL formulation such
as soft actor–critic (SAC) [31,32] algorithms have shown good performance in different
applications [33,34]. Tian et al. [24] proposed a variant of the maximum entropy-based
RL algorithms for the model calibration of turbofan engines. In that work, the authors
proposed to use the Lyapunov-based critic (LAC) approach, which has been proven to
provide guaranteed stable control [23]. We adapt the proposed approach to the battery
calibration problem.

3. Materials and Methods

As discussed earlier, to solve calibration using reinforcement learning, we need to
define the environment for our RL agent. We integrate the battery discharge model
described below in OpenAI gym [35] to build the RL environment. We also discuss our
RL framework and propose to use a Lyapunov actor–critic [23] algorithm for battery
model calibration.

3.1. Battery Discharge Model

In this research, we apply the Li-I battery model from NASA the prognostic model
library [25,26]. It captures significant electrochemical processes of the discharge. The effect
of aging is included in the model by the corresponding degradation parameters. How-
ever, the degradation is not modeled explicitly. The model assumes that the degradation
parameters are provided. Those are essential for an accurate estimation of the EOD time.

The battery state is modeled by seven parameters as described below. The state
changes over time as a function of input load and degradation parameters. In the following,
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we just denote the state mathematically and refer the readers to the original paper for more
details on the battery model [25].

xt = [qs,p qb,p qb,n qs,n V
′
o V

′
η,p V

′
η,n], (1)

In the first four parameters in Equation (1), q represents the amount of charge, subscript
p (or n) represents positive (or negative) electrodes, respectively, and subscript s (or b)
represents the surface (or bulk) volume of a particular electrode, respectively. For example,
qs,p is the amount of surface charge in the positive electrode. V

′
η,n and V

′
η,p are the voltage

drops due to surface over potential on negative and positive electrodes, respectively. V
′
o is

the total voltage drop.
There are two main degradation parameters: (a) Qmax captures the decrease in avail-

able lithium ions, and (b) Ro captures the increase in the internal resistance. These parame-
ters are essential for the model dynamics that is defined as follows:

xt+1 = f (xt, ut, Qmax, Ro),

yt+1 = g(xt+1, Qmax, Ro),
(2)

where ut represents the input load at time t, and the model predicts the battery voltage
yt = V. f and g are the functions for the system dynamics and output measurements,
respectively.

Without any knowledge of the battery age, degradation parameters are initialized to
the “perfect battery” condition values, which are Qmax = 7600 C and Ro = 0.117215 Ω [25].
Using these parameters, the model can estimate the initial state x0. As the battery ages,
Qmax decreases while Ro increases. We learn to infer these parameters by solving the
state-tracking problem using RL. In this research, we used the NASA prognostic battery
model [25] as our reinforcement learning simulation environment. However, in cases
where such a model is difficult to obtain, it can be replaced by surrogate models.

3.2. Markov Decision Process and Reinforcement Learning

In this paper, we focus on the battery state tracking task, which we propose to model
as a Markov decision process (MDP). An MDP can be described as a tuple,

〈
S ,A, C, T , ρ

〉
,

where S is the set of states, A is the set of actions, C(s, a, s’) ∈ [0, ∞) is the cost function,
T (s, a, s’) = p(s’|s, a) is the transition probability function, and ρ(s) is the initial probablity
distribution over the states. The policy πθ(a|s) denotes the probability of selecting action
a in state s, and it is parameterized by the parameters θ. The state of the MDP at time t
is defined as st ∈ S ⊆ Rn, where S denotes the state space. For the proposed tracking
strategy, we define the state at time t as st = [x̂t, xt+1, ut+1], where x̂t is the battery’s
internal state produced by the battery discharge model at time t, xt+1 is the real (or
simulated) battery state we want to achieve at time t+1, and ut+1 is the input load condition
at time t+1. The agent (calibrator) then controls the system’s degradation parameters as an
action at ∈ A ⊆ Rm (e.g., at = Qmax or Ro or [Qmax, Ro]) according to the policy π(at|st).
Based on the internal state x̂t and predicted action at, we simulate the next internal state
x̂t+1 = f

(
x̂t, at, ut+1

)
, where f is the battery discharge dynamics described in Equation (2).

Hence, the cost function c(st, at) = ||x̂t+1 − xt+1|| denotes the quality of action at to go
from x̂t to xt+1 at load condition ut+1. During the entire learning process, the agent
never observes true degradation parameters. The agent learns to control the degradation
parameters by minimizing the cost formulated using the observations. After one complete
transition, the next state of the MDP is st+1 = [x̂t+1, xt+2, ut+2]. This complete process is
demonstrated in part (1) of Figure 1. Once the policy network is trained, it can work as a
calibrator, where it observes the state from the real system and outputs its parameters for
the computer model (part (2) of Figure 1).
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Figure 1. Model calibration: Part (1): the policy network is trained by interacting with the system
model. Part (2): the policy network acts as a calibrator at the test time.

3.3. Lyapunov-Based Actor–Critic

Since we target the state tracking task, we adopted the Lyapunov-based actor–critic
(LAC) approach as proposed in [23]. LAC was designed to improve the stability of the
reference trajectory tracking problems by incorporating a Lyapunov energy decreasing
constraint as defined in Equation (3) in the policy objective:

Es∼τ

(
Es′∼Tπ

L(s’)− L(s)
)
≤ −α3Es∼τCπ(s), (3)

where L(.) is the Lyapunov value function, α3 is a positive constant, and the other notations
are the same as described before.

Hence, our policy network is trained to minimize the energy decreasing Lyapunov
objective Jc(π)

.
= Eτ∼π∑N

t=0 L
(
st+1

)
− L(st) + α3Cπ(st), where N is the number of steps

for a single state tracking iteration.
Based on the actor–critic framework, LAC uses the Lyapunov function Lφ

c as a critic in
the policy gradient formulation. Similar to value function learning, the Lyapunov function
is also parameterized by a neural network φ. This network is trained to minimize the
following objective:

J(Lc) = E(s,a)∼D

[
1
2
(Lφ

c (s, a)− Ltarget
c (s, a))2

]
(4)

where Ltarget is the approximation target related to the chosen Lyapunov candidate and D
is the set of collected transition pairs. The approximation target is given by:

Ltarget
c = c + max

a’
γLφ

c (s’, a’) (5)

LAC is based on the maximum entropy-based actor–critic framework [31], which
can enhance the exploration of the policy and has been shown to substantially improve
the robustness of the learned policy. Hence, our actor network ensures stable and robust
control of the degradation parameters. The full objective for the policy network is defined
as follows:

J(π) =ED [β[log(πθ( fθ(ε, s)|s))] + λ(Lc((s’, fθ(ε, s’))− Lc(s, a) + α3c)] (6)

where πθ is the policy parameterized by a neural network fθ and ε is an input vector
consisting of Gaussian noise. D .

= {(s, a, s’, c)} is the replay buffer for storage of the MDP



Energies 2021, 14, 1361 6 of 12

tuples. In the above objective, β and γ are positive Lagrange multipliers that control the
relative importance of policy entropy versus the stability guarantee, and α3 is a constant
for a Lyapunov energy decreasing objective. Similarly to the approach applied in the [31],
the entropy of the policy is expected to remain above the target entropy Ht. The values
of β and λ are learned through the gradient method, thereby maximizing the following
objectives:

J(β) = βE(s,a)∼D [log(πθ(a|s)) +Ht] (7)

J(λ) = λ(Lc((s’, fθ(ε, s’))− Lc(s, a) + α3c). (8)

4. Experiment Datasets and Models

In this section, we discuss simulated data generation using battery discharge model
described in Section 3.1. We also discuss the Unscented Kalman Filter (UKF) and the direct
mapping methods to compare them with our approach.

4.1. Dataset Generation

As mentioned above, we used the battery model from the NASA prognostic model
library [26] to generate simulated data for the training process. As discussed earlier, we
have two degradation parameters to calibrate in a battery model. We propose two different
experiments for the tracking: (1) Only varying a single parameter at a time. Hence, while
varying Qmax, Ro was kept constant (at 0.117215 Ω) and while varying Ro, we kept Qmax
constant (at 7600 C, C = Coulomb). (2) Varying both parameters simultaneously. For the
first experiment, we generated trajectories by varying Qmax between 4000 and 7000 C with
501 grid values of constant length in between and keeping Ro constant at 0.117215 Ω. We
also generated discharge trajectories by varying Ro between 0.1 and 0.2 Ω with 501 grid
values while keeping Qmax constant at 7600 C. For the second experiment, we varied
both the parameters, i.e., Qmax between 4000 and 7000 C and Ro between 0.1 and 0.2 Ω
simultaneously. Following the approach of [8], we kept degradation parameters constant
for a given discharge cycle. Furthermore, we generated each discharge trajectory for
11 different input load (u) conditions between 8 and 16 W. For each trajectory, the battery
state defined in Equation (1) was initialized based on the degradation parameter values for
that particular trajectory; namely, the voltage drops (V

′
o , V

′
η,p, V

′
η,n) were initialized with

0 and the charges (qs,p, qb,p, qb,n, qs,n) were initialized proportional to Qmax following [25].
Hence, the trajectories with different degradation parameter values went through different
discharge cycles. Each trajectory was simulated until the output voltage reached the
EOD threshold (3 V). The simulated datasets’ generation is explained in more detail in
Appendix A.

4.2. Hyperparameters of the RL Framework

We adopted the same neural network architecture as applied in [24]. We used a fully
connected neural network as a function approximator for our actor, fθ , and Lyapunov
critic, Lc. Both networks had three fully connected layers with 256 neurons each and
LeakyReLU [36] activation functions. For the policy network, we predicted two values,
namely the mean and the standard deviation for each action. After this step, we used
the squashed Gaussian policy [31] to sample from the distribution. To ensure that the
Lyapunov values are positive, we used the sum-of-squares of the final layer activations
of the Lyapunov network as Lyapunov values. We used α3 = 1 for the energy decreasing
condition described in Equation (3). The parameters β and λ were also updated using the
loss defined in Equations (7) and (8). We used an Adam optimizer with the learning rate
5 × 10−4.
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4.3. Compared Methods

We compared the proposed model calibration methodology to the two alternative
methods that are comparable to the proposed framework: on the one hand to methods
based on Bayesian tracking principles, in particular to the unscented Kalman filter, and on
the other hand to a supervised data-driven direct estimation.

4.3.1. Unscented Kalman Filter (UKF)

We compared our RL approach to the traditional unscented Kalman filter (UKF). Here,
we used the UKF approach proposed in [37]. A UKF models the degradation parameters
as a hidden state and the battery model state as an observation. In particular, the hidden
state for the UKF was z ⊂ {Qmax, Ro} (z ⊂ R2) and the observation was the battery state
defined in Equation (1) (x ∈ R7). The UKF starts with a distribution over the initial state
and this state distribution is continuously modified through unscented transformations
to generate the distribution over the hidden state at each time step. Since we kept the
degradation parameters constant throughout one discharge cycle, the UKF state update
equation and observation equation were defined as follows:

ẑt+1 = ẑt

x̂t+1 = f (x̂t, ut+1, x̂t+1),
(9)

where f is the observation function for the UKF, which was obtained from the battery
model introduced in [25], and u is the input load. The initial state ẑ0 was initialized as a
multi-variate standard normal distribution. At the start of each new trajectory, UKF restarts
its tracking (i.e., the state is reinitialized with ẑ0). Without a restart, the UKF might diverge
since there is no connection between two different discharge cycles. Furthermore, the UKF
parameters were fine-tuned for the battery discharge datasets described in Section 4.1.

4.3.2. Direct Mapping

We also considered a fully connected neural network to learn a direct mapping
from state st to the degradation parameters (corresponding to at in the RL setting). It
is important to emphasize that direct mapping is a much simpler problem compared to
inferring the calibration parameters via the tracking problem without any access to the
ground-truth calibration parameters. In direct mapping, the algorithm learns from the
labeled pairs of “states” and “degradation parameters”. This set of representative labeled
samples might not be easy to obtain in real-world scenarios. For each state of the asset, the
underlying degradation parameters need to be measured manually, which is considerably
time-consuming. Furthermore, the training datasets are required to be representative and
cover all the different combinations in all relevant operating conditions to enable a reliable
machine learning (ML) model. Hence, the results obtained with this supervised learning
setup can be considered as an upper bound for the proposed RL framework performance
for the cases where the training and the testing datasets come from the same distribution.

For the direct mapping experiment, we used the same architecture as the policy
network described in Section 4.2, with the difference being that only one output per action
was learned since the standard deviation was not required. We used the same optimizer
and hyperparameters as described in Section 4.2.

5. Results

We divided the generated discharge trajectories into 70% training and 30% testing
datasets. The input load conditions represented in the training and testing datasets did
not overlap. Hence, the results presented here are suitable to assess the generalization
capability of our method. We trained our RL model for one million steps, which resulted in
reward convergence. For direct mapping, we trained the model until the L2-loss between
predicted parameters and ground truth values converged.
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We compared the inference accuracy of our RL-based approach to the UKF method
and the direct mapping approach. Furthermore, as described in Section 4.1, we conducted
single- and multi-parameter evaluation experiments. We report the normalized root mean
squared error (RMSE) between the ground truth parameters and predicted parameters in
Table 1. Parameters were scaled between 0 and 1 for the RMSE calculation. Furthermore,
the numbers represent % RMSE (i.e., normalized RMSE x 100)

Table 1. Parameter inference (normalized root mean squared error (normalized RMSE) in % for
different methods). Single parameter = vary only one parameter (either Qmax or Ro) at a time. Multi
parameter = vary both parameters simultaneously. RL-LAC = reinforcement learning Lyapunov-
based actor–critic; UKF = unscented Kalman filter.

Method
Single Parameter Multi Parameter

Qmax Ro Qmax Ro

RL-LAC (ours) 5.16 2.07 8.39 1.51
UKF 19.91 4.08 19.75 7.54

Direct Mapping 0.01 10.2 1.86 2.5

The proposed RL-LAC reduced the % RMSE by more than 50% compared to the
traditional UKF tracking approach. Even in multi-parameter tracking, we can see that
RL-LAC consistently outperformed UKF. As discussed earlier, the direct mapping method
can work better than RL when the test data come from the same distribution as the training
data. In our case, the testing trajectories had different load conditions than the training
trajectories. Hence, for a single parameter Ro tracking, we observed the training error
of 0.3% while the test error increased to 10.2%. This shows the limitation of the direct
mapping approach and highlights the fact that it can suffer from a generalization gap if
not trained on data that are representative of the application. The direct mapping method
had a negligible error for parameter Qmax in both the experiments, since Qmax can be
derived exactly from our state formulation. This has also been highlighted in the battery
discharge model [25]. However, as discussed earlier, direct mapping requires ground truth
degradation parameters, which are difficult to obtain in real-world applications.

To further investigate the performance of the proposed framework, we show infer-
ence results of the degradation parameters for single parameter tracking experiments (in
Figure 2), and for a multi-parameter tracking experiment (in Figure 3). In Figure 2, each
trajectory represents a different load condition. It is important to point out here that our
RL-based method works independently on each discharge cycle, and hence, the order of
the parameters does not matter. Additionally, this implies that the calibration errors across
discharge cycles are not self-correlated. For both experiments, even though there was some
variance in the inference of the parameter Qmax, we can see that most of the points were
close to the true parameters, whereas in the case of Ro, tracking accuracy was better than
that of Qmax. Interestingly, our tracking never diverged too much from the ground truth
parameters, which shows the effectiveness of using the Lyapunov-based stability guarantee
in our RL framework.

In Table 2, we present the inference times for all three methods. The time has been
calculated by averaging five different runs of 2000 random transitions on a single-core CPU.
As discussed earlier, model-based methods (such as UKF) require multiple battery model
evaluations at each step, and hence they have the highest inference times. On the other
hand, inference time for our RL method depends on the complexity of the policy network,
and it was more than twice as fast as the applied UKF. Furthermore, with increasingly
complex battery models, inference time for the UKF will increase proportionally, whereas
for the RL, it will remain similar. Direct mapping methods were found to run much faster
at deployment time than any other methods as expected.
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Table 2. Inference times of a single calibration step for different methods.

Method

RL-LAC UKF Direct Mapping

Time (ms) 1.99 4.55 0.29

5.1. Discussion

In summary, the performance of the RL method was consistently better than traditional
tracking methods such as UKF, while being able to perform stable, real-time tracking of
the parameters. In addition, the reinforcement learning agent can generalize on out-of-
distribution load conditions and is able to accurately track parameters for the test load
conditions, whereas the direct mapping method suffers from a lack of generalization. This
competitive performance is achieved while purely learning from the interactions and
without any access to the ground truth.
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Figure 2. Single parameter inference for Qmax and Ro using RL. Degradation trajectories from left to
right represent increasing input load conditions.

0 1000 2000 3000 4000 5000 6000
timestep (s)

3000

4000

5000

6000

7000

8000

9000

Q
m

ax
 (C

)

predicted
true

(a) Qmax prediction

0 1000 2000 3000 4000 5000 6000
timestep (s)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

R
o 

(
)

predicted
true

(b) Ro prediction

Figure 3. Two-parameter inference for Qmax and Ro using RL. For each Qmax trajectory on the left we
tryed multiple degradation values for Ro on the right.

5.2. Limitations

Our RL-based method enables accurate calibration of the battery model. However,
our method has only been tested on simulated data. Sim-to-real transfer of the RL agent is
an active research topic [38], and our proposed algorithm needs to be further tested on the
real degradation process data. Furthermore, along with the point estimate of the degra-
dation parameters, the confidence interval of the predictions can help in the maintenance
scheduling of the batteries. Incorporating uncertainty into RL agents’ decisions is also
an actively studied topic [39], and the research in this field can be incorporated with our
method to enhance the reliability of the proposed algorithm.
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6. Conclusions

In this paper, we presented a new approach for battery model calibration formulated
as a tracking problem. We solved this tracking problem using a Lyapunov-based maxi-
mum entropy reinforcement learning framework and showed that the inference of this
model provides accurate estimates of the model parameters. The performance of the RL
framework presents an improvement over UKF, shows a better generalization than the
supervised learning approach, and works in real time. The performance of the proposed
framework is comparable or better than that of the supervised learning algorithm, which
requires labeled pairs of state observations and degradation parameters. The indirect
inference as performed by the RL algorithm is a much harder learning problem compared
to direct mapping. Hence, we proposed a valid alternative for the scenarios where labeled
training data are either limited or the representativeness of the training data cannot be
assured.

In future research, this method can be extended to scenarios where the internal state
of the model is not easy to obtain. For such cases, we can formulate the problem as a
problem of tracking the output voltage. This is a much harder problem compared to the
one analyzed here, since RL has to learn the internal discharge model along with the
degradation process purely from the observed rewards.
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Appendix A. Dataset Generation

As explained in previous sections, we had two degradation parameters to calibrate,
Qmax and Ro. We performed three different experiments:

(1) We varied Qmax from 4000 to 7000 C and kept Ro constant at 0.117215 Ω. We divided
the range of 4000 to 7000 C (both inclusive) into 501 equally separated grid values (i.e.,
4000, 4006, 4012, . . . ., 7000). Furthermore, for each Qmax value, we varied load conditions
between 8 and 16 (both inclusive) with 11 grid values (i.e., 8, 8.8, 9.2, . . . , 16). This gave us
a total of 501 × 11 = 5511 discharge trajectories. (Results for this experiment are displayed
in Figure 2a). Each trajectory of Qmax represents a different load condition. As explained in
Section 4, we had 30% test data. Hence, we demonstrated the results of test load conditions
(i.e., load = 13.6, 14.4, 15.2, and 16 W).

(2) The second experiment was very similar to (1). The main difference was that here,
we kept Qmax constant at 7600 C and varied Ro between 0.1 and 0.2 Ω. We divided this
range, similarly as before, into 501 equally spaced grid values (i.e., 8.000, 8.016, 8.032, . . . ,
16.000) and used 11 different load values (8.0, 8.8, . . . , 16.0) for each Ro. This also gave us
5511 trajectories. Results for this experiment are displayed in Figure 2b. Each trajectory is a
different load condition as explained above.

The first two experiments showed the effectiveness of the method when tracking
a single parameter at a time. However, in a realistic scenario both parameters degrade
together. Hence, we performed a third experiment.

https://github.com/aunagar/RL-Battery-Calibration
https://github.com/aunagar/RL-Battery-Calibration
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(3) In the third experiment, we varied both Qmax and Ro (Qmax between 4000 and
7000 C and Ro between 0.1 and 0.2 Ω) at the same time. The trajectories were generated as
follows: We took 101 grid values of Qmax (i.e., 4000, 4030, . . . , 7000). For each Qmax, and we
varied Ro between 0.1 and 0.2 Ω in five equally spaced grid values. For each (Qmax, Ro)
combination, we applied nine different load conditions (i.e., 8, 9, 10, . . . , 16 W). The results
are displayed in Figure 2. The figure can be interpreted in the following way: Take the first
point of the first trajectory in Qmax (Figure 2a at t = 0), which corresponds to five different
values of Ro (Figure 2b at t = 0), and each of the (Qmax, Ro) pairs is a single discharge cycle.
Here as well, each trajectory of Qmax represents a different load condition.
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