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Abstract: Maximum-power point tracking of wind turbines is a challenging issue considering fast
changing wind conditions of urban areas. For this purpose, an adaptive control approach that is fast
and robust is required. Conventional approaches based on simple step perturbations and subsequent
observation, however, are difficult to design and too slow for the demanding wind conditions of
urban areas including gusts and turbulence. In this paper, an extremum seeking control scheme to the
recently developed wind turbine MOWEA (Modulare Windenergieanlagen GmbH) is proposed and
successfully applied. To this end, a comprehensive aero-electromechanical model of the wind turbine
under study including basic control is formulated. Next, the extremum seeking control scheme is
adapted to the system. Several aspects to increase adaptation speed are highlighted, including a
novel phase compensation. Finally, a validation of the proposed approach is performed considering
real wind data, thus demonstrating its fast and robust adaptability. The proposed control scheme is
computationally efficient and can be easily implemented on the existing onboard electronics.

Keywords: adaptive control; control of renewable energy resources; extremum seeking control

1. Introduction

With a rising number of countries committing to ambitious zero carbon emission goals
within the next decades, increasing the share and output of renewable energy sources is
key to attaining these goals.

Small wind turbines complement large-scale wind turbines as being flexible, economic,
and relocalizable power modules. They are beneficially deployed where wind is available
though space is limited. For wind turbines in general, the engineering challenge is to
harvest the maximum power given a wide range of uncertain environmental parameters
and disturbances [1], particularly continuously changing wind speed, wind direction,
and local turbulence streams.

The power extracted by a wind turbine not only depends on these environmental
factors but also is influenced by certain control actions. Particularly, the turbine speed as a
function of generator torque constitutes an important controllable input. Environment and
control together define the specific power map [2], which has a unique maximum power
point with respect to turbine speed at each level of wind speed.

The goal of harvesting maximum power is referred to as maximum power point
tracking. The key approach here is to optimize the power output given the current envi-
ronmental conditions using optimization or, more generally, adaptive control approaches.
Conventional adaptive control approaches perform a perturbation and observe techniques
by repeated simple step perturbations and by subsequently monitoring the gradient of
the power output, see e.g., [3,4]. Most of these techniques derived are based on discrete
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analysis and require carefully balancing amplitude, direction, and frequency of the pertur-
bation with respect to the changes in environmental parameters and the response time of
the system [5]. Alternatively, wind speed can be observed using dedicated sensors, such as
LIDAR (Light Detection and Ranging) systems [6] or introducing model-based observers,
see e.g., [7] to control the system using a static look-up power map. This approach is
either expensive or computationally demanding and, hence, is not applicable to small-scale
wind turbines.

Extremum seeking provides a promising alternative approach for solving the maxi-
mum power point tracking problem in small wind turbines. It is a model-free, real-time
optimization approach and is particularly well suited for the case when the maximum
power point shifts continuously. Extremum seeking employs a continuous harmonic per-
turbation and uses the measured response to estimate the sign and amplitude of a gradient
of the power map to adapt the control input optimally. Extremum seeking is well suited
for dynamical systems, providing that harmonic perturbation does not excite the transient
behavior of the system. This can be easily achieved by time-scale separation taking the time
constants of the dynamic subsystem into account and choosing the harmonics frequency
accordingly. Extremum seeking also benefits from rigorous convergence results and is thus
provably stability, as shown in [8].

Extremum Seeking Control (ESC) is a dynamic research field in both method develop-
ment and adoption to specific wind energy conversion systems. In [9], a logarithmic power
feedback was proposed as input for the extremum seeking algorithm to cover a wider
range of wind velocities. The approach is tested and validated on a large wind turbine
in [10], where the average settling time is approximately 30 min. In [11], a sliding mode
extremum seeking method was proposed using invasive weed optimization for determin-
ing optimal control parameters. The approach reduces steady-state oscillations; however,
the approach requires fine-tuning. In [12], the sliding mode extremum seeking approach
was generalized to nonlinear systems. In [13], issues of undesirable convergence under fluc-
tuating wind of extremum seeking were addressed by using an estimated power coefficient
obtained by an additional wind speed nacelle anemometer measurement in combination
with extremum seeking. In [14], a model-based recursive Gaussian process approach was
developed for a lighter-than-air wind energy conversion systems and was compared with
extremum seeking.

More specific applications were considered in [15]; optimal adaptation for general
wind energy conversion systems was achieved via estimating the optimum value of the cp
coefficient using extremum seeking. In [16], the ESC was equipped in a prototype, the Delft
Offshore Turbine (DOT) with a retrofitted 500 kW hydraulic drive train. In [17], a wind
turbine composed of a two-mass drive train was considered. Here, indirect field orientation
control in combination with ESC was applied.

Recently, the extremum seeking scheme has also been applied to arrays of wind
turbines in [18,19]. By comparing individual and nested ESCs, where the latter coordinates
single controllers to seek a farm-level optimum, individual control was shown to be more
appropriate for sites with wind conditions changing on a short time scale while nested
control is preferred when the wind conditions are quite stable. In both cases, extremum
seeking increases the power production of the array.

In this paper, the extremum seeking algorithm is demonstrated to be very well suited
for small wind turbines in urban areas. This is the first real-world adaptation of ESCs to a
small wind energy conversion system and tested on real wind data. We particularly focus
on balancing fast and robust adaption. To increase the adaptation speed while maintaining
robustness, we introduce a novel phase shift compensation for the perturbation-induced
system response.

In this contribution, in Section 2, the technical scheme of the small wind turbine, its
mathematical model, and internal control design are formulated. In Section 3, the tailored
extremum seeking algorithm, which compensates for undesired phase shift, is proposed,
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and Section 4 provides the results given ideal and real wind data. Section 5 closes the paper
with discussion and an outlook.

2. Control Objectives and Process Description
2.1. Control Objectives

The operation of wind turbines is broadly divided into two regions. Below the so-
called design wind speed v;, the rotor speed w; is less than the rated rotor speed w; .
This region is called the partial load region because the turbine power is less than the
rated power P, r. Therefore, in the partial load region, the main control objective is power
optimization. If the wind speed exceeds the design wind speed, the power is actively
limited to P, r of the rotor. Therefore, this region is called the full load region. How
this is done for real wind turbines will be explained in the following. Normally, for the
wind turbine power class considered in this paper (P, g < 2 kW), the objectives power
optimization/power limitation are achieved by just controlling the generator torque T.

2.2. Aerodynamics of the Wind Turbine Rotor

The power characteristics of an uncontrolled wind turbine results from the aerody-
namics of the rotor in free air flow. According to the stream tube theory, the wind power
Py, of a free air flow along the stream tube of radius R with wind speed v is given by

Pw:%pzﬁnRz, 1

where p denotes the air density and R denotes the rotor radius. Placing the rotor inside the
stream tube, the power P, generated with the rotor from the wind power P, depends on
the aerodynamic efficiency of the rotor, the so-called power coefficient cp:

1
P, =Pycep(A) = Epvg’nRz cp(A), ()

where v is the wind speed far in front of the rotor and A is denoted as the tip speed ratio,

which is defined by

_ wrR
A= el 3)

From rotor power P, = T; w;, the rotor torque T, can also be deduced:

L o 3 cp(A)

T,—Epv T R - 4)

The cp coefficient curve, also called the cp-A curve of the example wind turbine to be

investigated, is shown in Figure 1. This curve illustrates a typical non-monotonic shape

with a maximum in the middle and cp values decreasing to zero for small and large A.

Negative cp values result according to (3) because the power flow must be reversed for

a further increase of the rotor speed and/or the reduction of wind speed. According to

Betz [20], the theoretically maximum value that can be achieved is cp ,x = %. Note

that this cp .y value is only achieved for an ideal wind turbine rotor without losses
resulting from

e profile losses at the rotor blade sections caused by drag forces;
U flow around the blade tip, the so-called tip losses; and
e wake losses due to down stream wake rotation.
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Figure 1. cp-A curve of the MOWEA (Modulare Windenergieanlagen GmbH) wind turbine.

These effects are much stronger for small turbines than for large ones. For this reason,
the practically achieved value of the MOWEA wind turbine according to Figure 1 is

CPmax = CP(/\opt) =04 for /\gpt =75. (5)

2.3. Drive Train Dynamics

To achieve optimal performance, w, must be set by the generator torque T, in such a
way that A corresponds to the value at which the maximum cp value is reached:

w
max Cp()\) = CP(Aopt) = CPmax r )\opt =R - . (6)
Mwy) 0

This means that the optimum must be set dynamically by varying the rotor speed due
to the generator torque without knowing the wind speed. For a more detailed study;, let
us consider the equation for motion of the drive train. For small wind turbines, the rotor
speed is sufficiently high such that a gearbox is usually not required.

) 1

Wy = T(Tr(wr, v) —Tg), 7)
where v denotes the unknown wind speed far in front of the rotor, and | denotes the
total inertia of the drive train. The inertia | summarizes the mass inertia of the shaft, hub,
generator, and the mass inertia of the rotor blades around the rotor axis. Based on the
reasonable assumption of a stiff shaft, the rotor speed is equal to the generator speed:

Wy = a)g 12 (8)
where the considered drive train is shown in Figure 2.

2.4. Generator Model and Current Control

The used generator in the considered small wind turbine was based on a brushless
DC (BLDC) motor. The BLDC motor operated as a generator, whereby the power flow
was reversed. The alternating current caused by the induced voltage in the three stator
windings was rectified by a controllable inverter. The converter also contained a boost
circuit to increase the DC voltage and to continuously adjust the current in the stator on the
DC side, denoted as ipc. Due to the high dynamics of the power electronics, it is sufficient
to use a simplified mean value model, where the delay due to the capacitor is also neglected
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compared to the dominant inertia of the drive train. Simplified, the following generator
model

1 )
Te = 5-km¥inc O
with an current control loop can be used:
dipc 1. 1.
S - 1
i 7 c + T IDCref (10)

where kj; denotes the motor parameter, i denotes the constant flux caused by the perma-
nent magnets of the rotor, and 7; is the time constant of the current control loop based on a
classic digital PI controller.

2.5. Cascaded Control Scheme with Extremum Seeking

The proposed cascaded control scheme for small wind turbines in the partial load
with power flow is illustrated in Figure 2. Shown is the flow from the harvested wind
power of the rotor P, in (2) via the generator with P4c and converter into the DC circuit
and finally into the load denoted as Ppc.

PAC PDC
—> —>
AC DC 17T
= Ipc | Upc Load
DC DC
Uy
F>®
PDC
CCI' iDC,ref

CES

Figure 2. Drive train, power electronics, and control scheme with extremum seeking for small wind turbines in the

partial load.

The control system structure is cascaded with an inner current controller C., and the
outer circuit with the Extremum Seeking (ES) method that is included in Crg. For maximum
power tracking with the ES controller, the instantaneous power with Ppc = upcipc is
measured at the load. Based on the method described in Section 3, a reference current
ipc,ref 1 given for the inner current control loop. The output variable of the controller is a
duty cycle signal 14, which is used to set the DC/DC voltage ratio and, thus, the current
ratio in reverse. The dynamics of the inner control loop can be described in a suitable
form with (10). The change in ipc is used to adjust the generator torque according to (9),
and thus, the decrease/increase in the rotor speed described by the motion Equation (7) is
modified in such a way that the maximum power is tracked for variable wind speed below
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the design wind speed v;. The considered MOWEA wind turbine has a design wind speed
of vy =12m/s.

3. Methods
3.1. Extremum Seeking Control

Extremum seeking is a model-free, continuous domain adaptive control approach
with provable stability [8]. Examining the electrical power output map Ppc as function of
the control input ipc e, a unique extremum for a given wind speed comparable to the ¢;-A
curve as depicted in Figure 1 is observed. The extremum is however not known a priori,
and in normal operation mode, the extremum shifts permanently due to the ever-changing
wind speed. Our overall objective is to seek the extremum by adapting the control input
ipc,ref to generate maximum power Ppc.

To this end, an Extremum Seeking (ES) scheme as depicted in Figure 3 is applied. First,
a persistent harmonic disturbance signal i(t) = isin wpt is introduced and superimposes
this signal onto ipc s, the control input set point controlling the rotational speed. This
allows us to probe the gradient of the system output Ppc. Secondly, the system response
with respect to the added perturbation is extracted using a high-pass filter and the gradient
is evaluated by multiplication and by considering phase compensation. Third, the gradient
thus obtained is amplified and controlled to zero using the integral controller.

2 Plant > .
DC IDC,ref
s s - |
] >
> stwn o |
High-Pass Filteré ' Saturationg k E
""""""""""""""""""""""""""""""""""""""""" » e
N
S I D R A I-Controller!
i - sin(wpt) Py wr
___________________ Perturbation| | | Phase Compensation

Figure 3. Extremum seeking control scheme. The generated power Pp is probed by the introduced harmonic perturbation.

The response’s gradient is retrieved using a high-pass filter, evaluated considering a phase shift, and controlled to zero.

3.2. Control Parameters

Fortunately, the proposed ES control scheme contains only a few parameters, though they
have to be chosen mindfully. To ensure fast adaptation, as required for optimally harvesting
energy as well as overall robustness, the dynamics of the underlying electromechanical sys-
tem as well as the characteristics of the disturbances (wind changes) have to be taken into
account. The maximum time constant of our electromechanical system can be estimated
to approximately 7; &~ 2 s; thus, the frequency of perturbation w, = 1/4 s~ is chosen
sufficiently slow so that no dynamic mode of the turbine is excited. The amplitude of
perturbation is chosen as small as possible (i = 0.1 A) considering noisy data and demand-
ing a clear systems response in the operational space. Note that it is possible to schedule
the amplitude over the operational space (e.g., log-wise as proposed in [9]) to account for
nonlinear input—output characteristics though this is, for simplicity, omitted here.

Next, the gradient of the system output is extracted using a high-pass filter. Its cutoff
frequency is chosen to enable passing the perturbation frequency and to cut off lower
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frequencies, i.e., wy < wy. A saturation block is introduced to account for disruptive
changes of wind conditions as observed in urban areas to a maximum level of £2 W.

Lastly, the gain in integral controller k (see Figure 3) is fitted to ensure fast and robust
adaptive control for all available urban wind scenarios.

In summary, the parameters for the ESC have been chosen to trade-off fast and robust
adaption. Increasing the speed of the controller further would be accompanied with
decreases in overall robustness. The presented controller can, for example, handle a cold
start, which may not be the case for a faster tuning set. If slower tuning is considered,
the robustness margins would increase; however, overall performance would be affected.

The simulations were performed using Simulink® Mathworks R2020a.

4. Results

To test, analyze, and validate our extremum seeking approach, three wind disturbance
regimes were considered: First, nominal wind speed regimes were tested including linear
slopes and steps. Second, noise was added to the nominal regime. Finally, our approach
was validated considering real wind data.

To simplify analysis of the proposed controller, “slow” wind changes were defined by
passing three Beaufort scales within one minute. This is equivalent to a wind rate change of

m g m
In contast, “fast” wind changes are defined as wind rate changes above this threshold
(absolute value).

4.1. Nominal Wind Regime

The nominal wind regime is visualized for a time frame of 300 s, and the results are
depicted in Figure 4. The upper graph shows the wind velocity v (disturbance) applied to
the plant. To evaluate the overall control performance, a cp value normalized with respect
to cp max (5) is utilized.

wind velocity
I

910 — ]
% 8 // \\\\ - ™~ - — =
R -/ ~ ~_| ]
s ~—/
S :
| | | 1 1
0 50 100 150 200 250 300
1 cp value & current
8 // A ,\/\/ F//],,r W\\f\/\f\j\/ S T AVAVAVA I ; Vel AT 10
» 08 IS \/\/\/J [’ .
So6 J N, J <
_ ,/"\/\/\ N '»\,M/ Y . B |
c ~ - - N o 4 WAy =
=oz2ff SRV, — S
o /= \ L ! L hl 0
0 50 100 150 200 250 300
1200 rotational speed & electrical power 400
. \| \ ; 7 N
_ 1000 N / L A }‘Y\ ~ .
E 800 N / ‘\\%\A Nfﬂffv A J N 00 <
£ 600 NK\/ N A % AN T O
c 400; e NN v ~ - .0
200 T T B
| | 1 1 L 0
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Figure 4. Simulation results with a nominal wind regimen composed of slow and fast changing wind velocities.

A cp value of one indicates a reached maximum power point, i.e., the controller
operates optimally for the given wind velocity. A normalized cp value is shown in the
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middle graph (blue). Starting from the idle state at t = 0 s, the perturbation signal is
applied to the current ipc, as shown in red. Note the ripples in the course of the current as
a result of the introduced perturbation. It takes the system 25 s to reach maximum power
point the first time. As expected, the controller operates close to the optimum for constant
or slow changing wind velocities (e.g., 25 s < t < 75 s). For fast changing wind velocities
and disruptive gusts, the controller temporarily operates below the optimum but quickly
reattains the optimal power point. In the lower graph, the corresponding power output
(red) and the rotor speed (blue) are depicted.

4.2. Analysis Response Time

Next, the controller response is analyzed for “slow” and “fast” wind changes; see
Figure 5. For slow wind changes (green), the controller adapts almost instantaneously.
For faster wind rate changes (blue and red), the controller deteriorates as long as the rate
change persists. Thus, for “slow” wind changes, our ES controller is fast enough.

sl
72
E {
£ 6 ) % 2
S 0.1 m/s
£ o V0.2 mis?
= | S e \Y 2
> ) 0.3 m/s
oL ! ! ! ! ! ! ! ! ! |
0 10 20 30 40 50 60 70 80 90 100
Time (seconds)
1 I D — e D= e S St “anman
i L .
Il / e
—~ 08 o~
8 H //\J - C 2
(%] I / P 0.1 m/s
2 o6h i ~
€ (' T p 0.2 mis?
— /
S L o
2 o4 : p 0.3 mis
S c‘
02— |
|
/| ! ! ! I ! ! ! ! \
0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

Figure 5. Response of the extremum seeking controller for slow (green and solid) and faster (blue or red, and dashed)

wind slopes.

The response time of the ES controller was estimated using step perturbation. The rel-
evant time constant is the time for the systems step response to reach 63.2% of its final
(asymptotic) optimal value cp = 1. For an average baseline wind velocity of 6% and step
size of 3 %, the controller response time is estimated to ~14 s. However, the system is
nonlinear and the response time increases with the baseline as well as step size. For
example, for the same baseline with an increased step size of 5 Z, the controller response
time is estimated to ~24 s.

4.3. Noisy Wind Regime

The noisy wind regime is displayed in Figure 6. To cover possible measurement errors,
a white noise with zero mean and standard deviation is used. As shown, the extremum
seeking controller performs very well considering high-frequency noise. After the study
with ideal artificial data, real wind regime data can now be used.
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Figure 6. Simulation results with white noise added to the wind regimen to cover possible measurement errors.

4.4. Validation of Real Data

The data for validation shown in Figure 7 were collected at Kaiser-Wilhelm-Koog on
the North Sea coast at an altitude of 10 m. As shown in the upper graph, the real wind data
combines simultaneously gusts as well as slow and disruptive changes in wind velocity.
As confirmed with a Shapiro-Wilk test (significance & = 1 - 1073), the wind rate changes
are normally distributed (mean 0.003 and standard deviation 1.30).

wind velocity
\
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o

[}

v (wind) [m/s]
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G U e TN a
So02h % 2=
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Figure 7. Simulation results with real wind data from collected in Kaiser-Wilhelm-Koog on the shore of the North Sea at a
height of 10 m.

Following a successful cold-start, as in the nominal case, the controller reaches near
optimal performance after 17 s. Throughout the demanding wind conditions, the controller
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shows impressive robustness. The controller is capable of adapting to “slow” wind changes
almost instantaneously. A cross validation of the controller with further wind data, not
presented here, shows robustness and fast convergence almost everywhere. However,
disruptive wind changes pose a challenge to control. The challenge was addressed by
limiting the amplitude of high-passed power signals using saturation.

For strong and fast wind changes, as in the time frame 130 s < t < 135 s, the ES
controller deteriorates temporarily because the response time is too large (=14 s) to adapt
in the meantime. In the time frames 60s < t < 70 sand 180 s < t < 190 s, we observe dete-
riorating controller performance. This is caused by a (casual) harmonic pattern in the wind
velocity, with a frequency similar to the introduced perturbation signal. Thus, the gradient
cannot be estimated reliably and the controller drifts. Note that, although the controller
deteriorates temporarily, overall stability and a steady-state optimum are guaranteed.

5. Discussion

Tracking the maximum power point for wind turbines is in general a nontrivial
challenge, requiring persistence of excitation, online estimation of the power map, and ro-
bust and stable control all together. As shown, extremum seeking is very well suited to
addressing these challenges.

In this paper, an adaptive control to the recently developed wind turbine MOWEA
was successfully applied. Key controller design criteria were fast adaption and robustness
with respect to real wind conditions to harvest maximum power in urban areas.

To this end, a comprehensive aero-electromechanical model of the wind turbine
under study including basic control was proposed. The derived model is nonlinear and
features a power output map that exhibits a maximum power point. The maximum
power point however is neither constant nor known due to changing wind conditions and
production variability.

The proposed control provides fast and robust adaptation to partial and full load
regions of small turbines without the need to introduce costly and error-prone wind speed
sensors. Only electrical values already measured were taken into account. As shown,
the proposed approach provides excellent performance for nominal and noisy wind chang-
ing regimes. Furthermore, the performance was validated considering real wind data,
including fast and disruptive turbulence, and gusts, and demonstrated cold-start capability
for the overall control scheme. Being advantageous, extremum seeking is easy to implement
with only a few key design parameters. The proposed control scheme is computationally
efficient and can be easily employed onto a local micro-controller.

For demanding disturbance regimens, as observed in urban areas and as considered
here, fast adaptation is key. Thus, the high-perturbation signal frequency chosen as well as
increasing the gain in the integral controller both increase the speed of adaptation. While
increasing gain reduces the robustness margin, choosing a higher perturbation frequency
allows us to harvest faster wind gusts. Therefore, the maximum perturbation frequency
was chosen (to not excite the internal dynamics), and then, the appropriate gain was tuned
to obtain robust adaption for all the considered urban wind scenarios.

Future work will address adaptive control of a variable array of turbines stacked together.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Alternating Current
BLDC Brushless Direct Current
DC Direct Current
ES Extremum Seeking
ESC Extremum Seeking Control
LIDAR Light Detection and Ranging
MOWEA Modulare Windenergieanlagen GmbH
SWT Small Wind Turbine
PI Proportional Integral
Nomenclature
Cer inner current controller
Cks Extremum Seeking (ES) controller
ipc DC current of the load circuit
km electric machine (generator) parameter
Ppc DC power at the load
Puc AC power of the electric machine (generator)/ AC-DC converter
P r rated wind turbine power
Py power of free air flow along a stream tube
R rotor radius
Tq generator torque
T rotor torque
v wind speed
(7 design wind speed also known as rated wind speed
A tip speed ratio
0 air density
T time constant of the inner current control loop
P electrical machine (generator) flux
wp frequency of perturbation signal of ES controller
wWH cutoff frequency of ES controller
wy rotor angular velocity (rotor speed)
Wy R rated rotor angular velocity (rated rotor speed)
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