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Abstract: In recent years, natural draft dry cooling systems with only one tower have been adopted
in some 2× 660 MW power-generating units owing to the advantage of lower construction costs. The
operating cases of two power-generating units and one power-generating unit will both appear based
on the power load requirement, which may lead to very different flow and heat transfer performances
of this typical cooling system. Therefore, this research explores the local thermo-flow characteristics
of air-cooled heat exchangers and sectors, and then analyzes the overall cooling performance of the
above two operating cases under various wind conditions. Using the numerical modeling method,
the results indicate that the flow and heat transfer performance of this cooling system decreases
significantly in the case of one unit with half sectors dismissed. At wind speeds lower than 8 m/s, the
difference in turbine back pressure between two units and one unit appears obviously higher than in
other wind conditions, even reaching 4.37 kPa. Furthermore, the air-cooled heat exchanger in the
lower layer always has better cooling capability than that in the upper layer, especially in conditions
where there is an absence of wind and under low wind speeds. The operating case of one unit is
not recommended for this dry cooling system because of the highly decreased energy efficiency.
In conclusion, this research could provide theoretical support for the engineering operation of this
typical natural draft dry cooling system in 2 × 660 MW power plants.

Keywords: natural draft dry cooling system with only one tower; power-generating unit; thermo-
flow characteristics; cooling efficiency

1. Introduction

Power plants located in arid regions prefer natural draft dry cooling technology owing
to its significant water-saving advantages [1,2]. In recent years, natural draft dry cooling
systems (NDDCSs) with only one tower have been proposed for the ultra-supercritical
2 × 660 MW power-generating units owing to its much lower construction cost. For this
type of NDDCS, the water-flow friction drag of an air-cooled heat exchanger (ACHE) with
a two-path design on the water side is crippled by nearly 72.80%. Meanwhile, its overall
cooling performance is found to be better than the traditional cooling system under weak
wind conditions [3]. However, in a situation where a power plant operates with two units
or only one unit, the thermo-flow performance of this typical cooling system has not been
illustrated yet. Therefore, this research will focus on exploring the above issue which may
provide theoretical guidelines for the engineering operation of this typical NDDCS with
only one tower in 2 × 660 MW power plants.

Recently, research has concentrated on revealing the thermo-flow characteristics of
some special cooling systems adopted in local power plants. Swirling motions were proved
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to be able to improve the thermal performance of short NDDCSs by reducing the cold
air inflow and increasing the draft speed. In addition, the crosswind influences on the
favorable swirl effects have also been investigated [4]. For a solar thermal power plant
with increased capacity, the tower spacing of three short NDDCSs in an in-line layout
was studied, then the interaction of the towers from the bottom to the top was identified
at different tower spacings and wind speeds [5]. The reconstruction of natural draft wet
cooling towers into natural draft dry cooling towers is attractive due to the saving of capital
expenditure for some old thermal power plants, but the thermal characteristics of dry
cooling towers reconstructed from obsolete wet cooling towers have been of concern [6].
The flue gas from an NDDCS cannot be discharged smoothly under unfavorable working
conditions and may cause severe corrosion on the inner shell of the cooling tower, hence the
flue gas flow and pollutant diffusion were numerically illustrated. In addition, increasing
the height of the flue gas outlet was recommended [7]. For NDDCSs with steel cooling
towers, the cooling performance with the cylinder-frustum tower shell was explored and
compared with the traditional hyperbolic tower shell [8]. Other cooling systems, such as
wind towers installed on the rooftops of buildings [9], as well as aero-dynamic devices, such
as the indoor air decontamination [10] and spilt-type air conditioner, were also studied [11].
These works have provided theoretical support for engineering application, however the
operation of cooling systems with only one tower has not been mentioned.

It is also worth pointing out that, in the past few years, much research has been
dedicated to discovering the thermo-flow characteristics of general cooling systems. By
using the numerical modeling process of the cold-end system and the innovative model
of theoretical prediction, the flow and heat transfer performances of the NDDCS under
different working conditions were revealed in detail [12,13]. Crosswind effects on local
sectors were specifically illustrated by analyzing the aerodynamic fields surrounding the
cooling columns [14,15]. The phenomenon of cold air inflow through the tower outlet
has been clearly explained, and it can reduce the cooling capability of a dry cooling
system [16]. Furthermore, the crosswind impacts were insightfully reviewed in 2019, which
resulted in many valuable guidelines for the design and operation of the NDDCS [17]. As
also mentioned, the transient start-up of the NDDCS has been studied in depth by the
University of Queensland, with the stages of natural convection, mixed convection, and
forced convection clarified in detail [18], the crosswind impacts disclosed [19], and the
time-dependent cold air inflow also analyzed [20].

The relevant enhancement strategies for the cooling performance of the NDDCS were
extensively put forward, such as the design of windbreakers [21–28], redistribution of
water-flow rate among air-cooled sectors [29–31], and structure optimization of both the
ACHE and the cooling towers [32–36]. Furthermore, the air jet-induced swirling plume
by nozzle [37], the hot-air extraction [38], the evaporation-aided cooling [39–41], and the
nozzle arrangement of the water spray system [42,43] were also proposed. Additionally,
the critical impact factors on the cooling performance of the NDDCS, such as the heat
exchanger arrangement, tower structure, crosswind, and mass flow ratio of circulating
water to steam, were thoroughly studied and evaluated, and provided theoretical directions
for the initial design of the cooling system [44].

Nowadays, the design of NDDCSs with only one tower has been put forward in some
ultra-supercritical 2 × 660 MW dry cooling power plants (details in Section 2.1). For this
type of cooling system, the operating cases of two power-generating units and one power-
generating unit will both appear following the regional power load requirement, and may
cause very different flow and heat transfer performances in an NDDCS. With regard to this
issue, this research will focus on revealing both the local thermo-flow characteristics and
the overall cooling performance of this typical NDDCS in the above two operating cases
under various wind conditions, and this will supply theoretical suggestions for its practical
engineering operation.
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2. Numerical Modeling
2.1. NDDCS with Only One Tower

Taking the following 2 × 660 MW power plant as a typical example, an NDDCS with
only one tower is designed to discharge the massive exhaust heat of the condensers. In
other words, the heat rejection of the condenser in each power-generating unit will be
taken away by the same one cooling tower, as shown in Figure 1a [3]. This type of dry
cooling system consists of an ACHE with a double-layer configuration (the lower layer is
named as layer B and the upper layer is named as layer A), a desulfurizer, a gas-condensing
system (GCS), a wet electrostatic precipitator (WESP), and a flue gas chimney, as depicted
in Figure 1b. The detailed geometric parameters are listed in Table 1. For the portioning of
the ACHE, it is divided into 14 air-cooled sectors, which are arranged alternatively so that
each power-generating unit (1# and 2#) has seven sectors, as presented in Figure 2.
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Table 1. Geometric parameters of ACHE, cooling tower, desulfurizer, GCS, WESP, and flue gas
chimney of NDDCS.

Parameter Symbol Value

Air-cooled heat exchanger and cooling tower

Height of tower (m) Ht 225
Height of tower throat (m) Htt 168.75
Height of each ACHE layer (m) HA/B 14.65
Interval of ACHE layer (m) Hi 1.2
Diameter of tower outlet (m) Do 128
Diameter of tower throat (m) Dtt 121
Diameter of tower bottom (m) Db 195
Number of cooling deltas Ncd 392
Number of air-cooled sectors Ns 14

Four subsystems inside cooling tower

Diameter of desulfurizer (m) Dd 18.6
Height of desulfurizer (m) Hd 38.05
Length of GCS (m) LG 20.9
Width of GCS (m) WG 14
Hight of GCS (m) HG 3.5
Length of WESP (m) LW 17.5
Width of WESP (m) WW 27.85
Height of WESP (m) HW 16.7
Diameter of flue gas chimney (m) Dc 8
Height of flue gas chimney (m) Hc 12.25Energies 2021, 14, 1308 4 of 18 
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2.2. Governing Equations

For numerical modeling of the NDDCS, cooling air with a low Mach number is
regarded as the impressible flow. Time-averaged Navier–Stokes equations with the Boussi-
nesq hypothesis are adopted to describe the flow and heat transfer performances of the dry
cooling system, given as follows [14,15]:

∇ · (ρ→u ϕ) = ∇ · (Γϕ∇ϕ) + Sϕ + Sϕ
′ (1)

The dependent variable ϕ equals 1, u (ui, uj, uk in x, y, z direction), cpt, k, and ε in the
continuity, momentum, energy, and turbulence equation, respectively. Γϕ and Sϕ represent
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the diffusion coefficient term and the internal source term. Furthermore, these parameters
are summarized in Table 2. In ACHE zones, the additional momentum sink and energy
source term Sϕ

′ should be appended to the corresponding equations [45]:

Sϕ
′ = −

∆p′ j Aj

Vmacro
(2)

Sϕ
′ =

Q′

Vmacro
(3)

where Aj and Vmacro mean the surface area and the macro volume. ∆pj
′ represents the

pressure drop, and Q′ is the heat rejection of the elemental macro, which are obtained by
the macro heat exchanger model [46].

∆p =
1
2

f ρu2
Amin (4)

Qmacro = εmacromacpa(twa1 − ta1)macro (5)

Q = ∑ Qmacro (6)

Table 2. Summary of the parameters in the governing equations.

Equations ϕ Γϕ Sϕ

Continuity 1 0 0

x-momentum ui µe
− ∂p

∂xi
+ 1

3 [
∂

∂xi
(µ ∂ui

∂xi
) + ∂

∂xj
(µ

∂uj
∂xi

) +

∂
∂xk

(µ ∂uk
∂xi

)]

y-momentum uj µe
− ∂p

∂xj
+ 1

3 [
∂

∂xi
(µ ∂ui

∂xj
) + ∂

∂xj
(µ

∂uj
∂xj

) +

∂
∂xk

(µ ∂uk
∂xj

)]

z-momentum uk µe
− ∂p

∂xk
+ ρg + 1

3 [
∂

∂xi
(µ ∂ui

∂xk
) +

∂
∂xj

(µ
∂uj
∂xk

) + ∂
∂xk

(µ ∂uk
∂xk

)]

Energy cpt µe/σT 0
Turbulence kinetic energy k µ + µT/σk Gk + Gb − ρε

Turbulence dissipation rate ε µ + µT/σε ρC1Sε− ρC2
ε2

k+
√

νε
+ C1ε

ε
k C3εGb

2.3. Boundaries, Meshing, and Solution

Ansys Fluent software is adopted to conduct the numerical modeling, and referring to
research [3,21], the computational domain and boundaries of this dry cooling system are
established, as shown in Figure 3. When developing the numerical model, the hexahedral
meshes are generated for the ACHE and cooling tower, while the tetrahedral ones for the
desulfurizer, gas-condensing system, wet electrostatic precipitator, and flue gas chimney.
The detailed geometries and local meshes of these key sections are displayed in Figure 4.
Finally, 6,542,372 meshes are formed for this computational domain. West wind appears
most frequently throughout the year, the velocity inlet boundary is set at the windward
surface, and the crosswind speed uz follows the power law equation [12,45]:

uz = uw(
Hz

Hre f
)

e
(7)

where Hz means the vertical distance from ground, uw implies the crosswind at the reference
height Href of 10 m, and is set with the typical values of 0, 4, 8, 12, and 16 m/s in this study.
The exponent e relating to the ground roughness and atmosphere is set as 0.2. The pressure
outlet boundary is appointed to the right surface, while the frontal, rear, and top surfaces
are set as symmetry. In the absence of wind, the pressure inlet boundary is assigned to the
four surrounding surfaces, while the pressure outlet boundary is given to the top surface.
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The ambient temperature at the boundary surface is set as the typical value of 12 ◦C. The
ground, tower shell, support pillars, and surfaces of the four facilities inside the tower are
set as the no-slip wall boundary. At the chimney outlet, the mass flow rate of flue gas is set
as 868.58 kg/s and temperature as 49.4 ◦C.
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Figure 4. Detailed geometries and local meshes of the key sections in the numerical model of NDDCS
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Based on the finite volume method, the SIMPLE algorithm is utilized in the pressure-
velocity coupling iteration process. The central and second-order discretization schemes
are adopted for the convection and diffusion terms in governing equations. The divergence
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criteria of the scaled residuals are 10−6 and 10−4 for the energy equation and the others.
Meanwhile, the heat rejection rate of the cooling system is further monitored to ensure
numerical convergence [2].

2.4. Model Validation

By carrying out the cooling air thermo-flow experiment with the scale model of an ND-
DCS in our previous works, the modeling and numerical methods are validated [3,30,45].
Based on the Euler scaling law, the heat exchanger bundles are replaced by the wire mesh
with controllable heating power to characterize the heat rejection from the radiators. Cross-
wind is realized through adjusting the air flow by the centrifugal fans in the wind tunnel.
Inside the cooling tower, 108 testing points are deployed along the z-direction with 12
layers and y-direction with 9 columns, as presented in Figure 5a. Each vertical distance
between two testing points equals 10 m, while the horizontal distance is 9 m.

The numerical modeling is conducted according to the prototype configuration of the
experimental NDDCS. Then, the numerical air ascending velocity was compared with the
experiment in the absence of wind and at a crosswind of 4 m/s. The relative error of the
ascending air velocity shows 13.25% and 12.7% in the absence of wind and at a crosswind
of 4 m/s, as displayed in Figure 5b. The difficulty of measuring the low wind speed as
well as some boundary effects which are uncontrollable in the experiment may cause such
errors. Fortunately, the experimental trend of the 108 testing points validates well with
the numerical modeling. As illustrated, Figure 5c shows their comparison at the typical
heights of 84.2 m and 144.2 m. In both cases, the flue gas discharge of the stack causes
higher velocity at the tower center than at other locations. Furthermore, in the absence
of wind, the air ascending velocity at the tower center with a height of 144.2 m decreases
versus that with a height of 84.2 m. Under a crosswind of 4 m/s at a height of 144.2 m, the
air ascending velocity in the frontal side of the cooling tower increases much more slowly
than that at the rear side due to the blocking effects of the upward air flows. Conclusively,
the numerical and experimental results agree well with each other, which implies that the
introduced numerical modeling methods could predict the thermo-flow characteristics of
the NDDCS accurately.
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3. Results and Discussions

In this research, for an NDDCS with one tower operating in the cases of two units
and one unit, the thermo-flow performances of the cooling deltas and air-cooled sectors
are firstly illustrated in Sections 3.1 and 3.2. Then, the overall cooling performances of the
cooling systems are presented and discussed in Section 3.3.

3.1. Thermo-Flow Performances of Cooling Deltas with One/Two Unit(s)

Figure 6 reveals the heat rejections and water outlet temperatures of double-layer
cooling deltas in the absence of wind in the cases of two units and one unit. It can be seen
that the heat rejections of cooling deltas show higher in layer A than in layer B. Therefore,
the water outlet temperatures present correspondingly lower. As also observed, in the
operating case of one unit, half of the air-cooled sectors quit operation meaning that the
cooling capability of the NDDCS will decrease significantly, which leads to the reduced
heat rejections and increased water outlet temperatures of the cooling deltas.
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Figure 8 shows the heat rejections and water outlet temperatures of double-layer 
cooling deltas under a typical crosswind of 12 m/s in the cases of two units and one unit. 
When under gale wind conditions, the heat rejections and water outlet temperatures of 
cooling deltas in layer A and layer B have small differences. Besides this, the thermo-flow 
performance gap in the cases of two units and one unit also reduces. In addition, the high 
wind speed can result in conspicuously non-uniform heat transfer performances of cool-
ing deltas in the two operating cases. 

Figure 6. Heat rejections and water outlet temperatures of double-layer cooling deltas in the absence of wind. (a) In the case
of 2 units; (b) in the case of 1 unit.

Figure 7 displays the heat rejections and water outlet temperatures of double-layer
cooling deltas under a typical crosswind of 4 m/s in the cases of two units and one unit.
Similar to the no-wind condition, air-cooled heat exchangers in layer A possess obviously
better thermo-flow characteristics than in layer B. While under the crosswind effects, the
cooling deltas in different sectors present quite non-uniform heat rejection and water outlet
temperature distributions. Besides this, the phenomenon is more apparent in the case of
one unit. This implies that the non-uniform thermo-flow characteristics of cooling deltas
will be aggravated with sectors off. As also pointed out, cooling deltas in the case of two
units have improved thermo-flow characteristics than in the case of one unit.
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Figure 8 shows the heat rejections and water outlet temperatures of double-layer
cooling deltas under a typical crosswind of 12 m/s in the cases of two units and one unit.
When under gale wind conditions, the heat rejections and water outlet temperatures of
cooling deltas in layer A and layer B have small differences. Besides this, the thermo-flow
performance gap in the cases of two units and one unit also reduces. In addition, the high
wind speed can result in conspicuously non-uniform heat transfer performances of cooling
deltas in the two operating cases.
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3.2. Thermo-Flow Performances of Air-Cooled Sectors with One/Two Unit(s)

The heat rejections and water outlet temperatures of double-layer sectors in the
absence of wind in the cases of two units and one unit are presented in Figures 9 and 10,
respectively. As can be seen, the heat rejections and water outlet temperatures of all
sectors display nearly the same, meanwhile the sectors show more superior heat transfer
characteristics in layer A than in layer B. In addition, Figure 10 proves that air-cooled
sectors in the case of one unit have deteriorated thermo-flow performances compared with
sectors in the case of two units in Figure 9. The air temperature fields of the ACHE in
Figure 11 present a uniform distribution, which also show higher values in the case of one
unit. This result denotes that when the air-side heat transfer surface of the ACHE decreases,
the cooling capability of the operating sectors will be inevitably crippled.

Under a typical crosswind of 4 m/s, Figures 12 and 13 describe the heat rejections and
water outlet temperatures of double-layer sectors in the cases of two units and one unit.
Under the crosswind effects, sectors in layer A still have obviously higher heat rejections
and lower water outlet temperatures than in layer B. With half sectors dismissed in the case
of one unit, the non-uniform distribution of thermo-flow performances of all operating
sectors becomes more evident. Moreover, the operating sectors present decreased heat
transfer performance. The above results can be further validated by the air temperature
fields given in Figure 14.
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Figure 14. Comparison of temperature fields of ACHE under a typical crosswind of 4 m/s in the cases of 2 units and 1 unit.

Under a typical crosswind of 12 m/s, the thermo-flow characteristics of double-layer
sectors in the cases of two units and one unit are compared in Figures 15 and 16. As
observed, the flow and heat transfer characteristics of sectors in layer A and B show
small differences under the high crosswind. Additionally, some middle sectors in layer B
present slightly higher heat rejections and lower water outlet temperatures, which differ
from the results in the absence of wind and at the small wind speed. Sector dismissal
could reduce the heat transfer performances of the ACHE slightly. As further illustrated,
Figure 17 depicts the significantly deteriorated air temperature fields in both operating
cases, implying the complicated thermo-flow performances of cooling systems under a
high crosswind.
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3.3. Overall Cooling Performances of NDDCS with One/Two Unit(s)

The overall cooling performances of an NDDCS with one tower in the cases of two
units and one unit are illustrated in the following Figures 18–21 by analyzing the heat
rejections, air mass flow rates, water outlet temperatures of the ACHE, and the turbine
back pressures under various typical crosswind conditions.

As observed in Figures 18 and 19, an NDDCS in the case of two units has a more
superior cooling capability than in the case of one unit with half air-cooled sectors dismissed.
Both the heat rejection and air mass flow rate decrease at first and then recover with the
increase in the crosswind. Furthermore, the worst thermo-flow performance appears at
the wind speed of 12 m/s and 8 m/s in the case of two units and one unit, respectively.
Figures 20 and 21 present the corresponding water outlet temperature of the ACHE and
the turbine back pressure. It can be seen that the ACHE has much higher water outlet
temperatures at various wind speeds when half the air-side heat transfer area is dismissed.
The turbine back pressure increases in correspondence with the cooling capability of the
NDDCS, implying the decreased energy efficiency of the power plant. Additionally, the
largest elevation of turbine back pressure approaches as high as 4.37 kPa under a crosswind
of 8 m/s.
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Figure 21. Turbine back pressures in the cases of two units and one unit under typical cross-
wind speeds.

4. Conclusions

Through numerical simulation, the thermo-flow characteristics of an NDDCS with
one tower in 2 × 660 MW power-generating units were studied in the operating cases of
two units and one unit under various crosswinds. The main findings are concluded as
follows.

(1) In the case of one power-generating unit with half sectors off, the thermo-flow
performances of cooling deltas, sectors, and the entire cooling system are crippled at
various wind speeds.

(2) The turbine back pressure difference between two units and one unit gets much
larger if the wind speed becomes smaller than 8 m/s, meanwhile the biggest gap could
reach as high as 4.37 kPa.

(3) In both cases of two units and one unit, the air-cooled heat exchanger in layer A
has a better heat transfer performance than that in layer B, especially in the absence of
wind and under the relatively small wind speed of 4 m/s.

(4) For an NDDCS with one tower in 2 × 660 MW power-generating units, the
operation of one unit is not recommended because of the decreased energy efficiency.

In the near future, the thermo-flow performances of this typical NDDCS under differ-
ent power outputs will be investigated for further improvement of cooling efficiency. At
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the same time, this research may provide some theoretical guidelines for the design of ND-
DCSs with one tower in other high-capacity power plants with 2 × 350 MW, 2 × 600 MW
(660 MW), and 4 × 600 MW (660 MW) power-generating units.
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Abbreviations

Nomenclature
A heat transfer surface area (m2)
cp specific heat (J Kg−1 K−1)
D diameter (m)
f pressure loss coefficient
H height (m)
k turbulent kinetic energy (m2 s−2)
L tube length (m)
m mass flow rate (kg s−1)
N number
p pressure (Pa)
Q heat rejection (W)
S source term in generic equation
t temperature (K)
u velocity (m s−1)
V volume (m3)
W width (m)
Greek symbols
ε turbulence dissipation rate (m2 s−3)
εmacro heat exchanger effectiveness
Γ diffusion coefficient (m2 s−1)
ϕ scalar variable
ρ density (kg m−3)
Subscripts
a air
w wind
wa water
1 inlet
2 outlet
Acronyms
ACHE air-cooled heat exchanger
GCS gas condensing system
NDDCS natural draft dry cooling system
WESP wet electrostatic precipitator
1 # one power-generating unit
2 # two power-generating unit
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