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Abstract: This paper investigates optimal power management of a fuel cell hybrid small unmanned
aerial vehicle (sUAV) from the perspective of endurance (time of flight) maximization in a stochastic
environment. Stochastic drift counteraction optimal control is exploited to obtain an optimal policy
for power management that coordinates the operation of the fuel cell and battery to maximize the
expected flight time while accounting for the limits on the rate of change of fuel cell power output
and the orientation dependence of fuel cell efficiency. The proposed power management strategy
accounts for known statistics in transitions of propeller power and climb angle during the mission,
but does not require the exact preview of their time histories. The optimal control policy is generated
offline using value iterations implemented in Cython, demonstrating an order of magnitude speedup
as compared to MATLAB. It is also shown that the value iterations can be further sped up using a
discount factor, but at the cost of decreased performance. Simulation results for a 1.5 kg sUAV are
reported that illustrate the optimal coordination between the fuel cell and the battery during aircraft
maneuvers, including a turnpike in the battery state of charge (SOC) trajectory. As the fuel cell is not
able to support fast changes in power output, the optimal policy is shown to charge the battery to the
turnpike value if starting from a low initial SOC value. If starting from a high SOC value, the battery
energy is used till a turnpike value of the SOC is reached with further discharge delayed to later in
the flight. For the specific scenarios and simulated sUAV parameters considered, the results indicate
the capability of up to 2.7 h of flight time.

Keywords: air mobility; fuel cell hybrid aircraft; stochastic optimal control; energy management;
drift counteraction optimal control

1. Introduction

With the growing market for unmanned aerial vehicles (UAVs), a wide range of
industries and organizations, including military, government, industrial, and recreational
users, deploy this technology across the globe [1–3]. Among different types of UAVs,
small unmanned aerial vehicles (sUAVs) [4] are attractive for military, aerial photography,
and environmental monitoring applications due to their small size and flexible operation [5].
Considering the (i) hardware and weight constraints, (ii) limited onboard energy storage,
and (iii) performance requirements for sUAVs, improving their endurance (maximizing
their flight time) is of great importance for extending the duration of their missions, which
could involve surveillance, search and rescue, disaster relief, traffic control, and precision
agriculture, thereby motivating the development of novel propulsion systems and the
implementation of optimal control policies for power and energy management. Among
different propulsion systems for such sUAVs, a hybrid propulsion system consisting of
a polymer electrolyte membrane fuel cell (PEMFC) and a battery has been proposed for
long duration missions, e.g., in [6–9]. Other propulsion systems may incorporate energy
harvesters, such as in [10]. In this paper we focus on novel approaches to the energy
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management of sUAVs through optimal coordination between the PEMFC and battery for
the previously proposed fuel cell hybrid propulsion system.

Rule-based (e.g., thermostat-like on-off control [11]), dynamic programming-based [12],
and model predictive control (MPC) [13] methods have been considered for the energy
management of hybrid aircraft. As in automotive energy management applications [14],
the use of simple rule-based strategies may not provide optimal performance, while the
conventional formulations of MPC and dynamic programming do not directly address
the flight time maximization objective. Furthermore, deterministic variants of MPC and
dynamic programming may require an accurate preview of the propeller power and climb
angle over a long horizon and are computationally demanding if optimization has to be
performed online. Similarly, the Pontryagin maximum principle (PMP)-based guidance
solutions [15] need accurate characterization of the flight environment.

In this paper, we consider a different approach to the problem of endurance maximiza-
tion for a hybrid UAV with a polymer electrolyte membrane fuel cell (PEMFC) based on an
application of stochastic drift counteraction optimal control (SDCOC) [16], which directly
addresses the problem of maximizing the time to constraint violation in a stochastic envi-
ronment. In our case, the objective is to maintain the vehicle flying for a maximum amount
of time by coordinating the fuel cell and the battery to provide the requested propeller
power subject to the limited amount of fuel and battery state of charge (SOC) onboard the
vehicle. The transitions in aircraft climb angle and propeller power are modeled stochasti-
cally by a Markov chain with the transition probabilities determined from historical data
representing typical missions of an sUAV. Then, a control policy that minimizes a cost
functional reflective of expected time-to-violate constraints is determined offline through
value iterations; this control policy is then deployed onboard for the online coordination of
the fuel cell and the battery in the sUAV.

In a preliminary conference paper [17] by the second author of this paper, the applica-
tion of SDCOC for power management of a hybrid sUAV with a direct methanol fuel cell
(DMFC) was considered. While the DMFC is often considered as a suitable power source
for ground vehicles [18] and has certain advantages, PEMFCs are more appealing for air
mobility applications [6,7] due to their relatively lower operating temperature, allowing for
a quick start-up [19], higher efficiency (up to 60% [18,20]) and power density, and higher
safety due to the use of the solid electrolyte [18].

Different from [17], in this paper, we consider the application of SDCOC to the power
management of a hybrid sUAV with a PEMFC rather than a DMFC. To accommodate a
different fuel cell and an sUAV, the fuel cell model is changed and improvements are made
to the models used to compute the propeller power and thrust, as well as the evolution of
the SOC.

More importantly, the lack of the ability of the PEMFC to rapidly change its power
output imposes a stringent operating constraint (rate limit on PEMFC power output),
which was not treated in [17], but is treated in this paper. This rate limit increases the
complexity of the problem as an extra state needs to be introduced in the model and
handled in SDCOC, and it also changes the optimal policies and the optimal response of
the system. For instance, as the fuel cell is not able to support fast changes in power output,
the optimal policy is shown to charge the battery to a turnpike value if starting from a low
initial state of charge value. If starting from a high SOC, the battery energy is used till a
turnpike value of the state of charge is reached with further discharge delayed to a later
phase of the flight. In either case, the high frequency chattering of fuel cell load demand
power in [17], which cannot be supported by the PEMFC, is eliminated.

Additionally, in this paper, the value iterations are implemented in Cython rather
than MATLAB, with an order of magnitude speedup as compared to the MATLAB implemen-
tation. As value iterations are frequently used to solve dynamic programming problems
in different applications and Python is becoming increasingly popular, our results on the
ten-fold speedup with Cython without a substantive increase of the code complexity are



Energies 2021, 14, 1304 3 of 21

of reference value to other researchers considering the computational implementation of
dynamic programming.

Furthermore, a discount factor is introduced into the cost function of SDCOC, and its
impact on the convergence speed of the value iterations is illustrated. It is shown that this
discount factor results in the faster convergence of value iterations, but the performance of
the control policy (in terms of exit time) is decreased.

While the SDCOC theory was developed in [16], that reference did not address
the fuel cell or sUAV application studied in this paper. Our approach to representing
motor power demand and climb angle by a Markov chain with a finite number of states
follows [21], which is the first (to the authors’ knowledge) paper proposing the use of
stochastic dynamic programming for automotive powertrain control applications; that
paper also did not address the fuel cell or sUAV application studied in the present paper,
nor the drift counteraction problem formulation.

The remainder of this paper is organized as follows: Section 2 describes the sUAV
sub-systems and their models. Section 3 presents an integrated model of the hybrid system
and defines the problem in a form suitable for SDCOC. Section 4 summarizes SDCOC, and
Section 5 reports the results. Finally, Section 6 presents concluding remarks.

2. Physical Description of the Systems and Model

An sUAV with a series hybrid propulsion system, shown in Figure 1, was chosen
in which the power supplied by the battery and the power supplied by the PEMFC are
combined to meet the propeller motor power demand. The PEMFC uses hydrogen as the
fuel, which is stored in the tank, and air from the atmosphere. A fraction of the energy
generated by the PEMFC can be used to charge the battery. The fuel cell pack and battery
pack are sized large enough so that they are able to meet the sUAV’s mean power demand
individually, should either one not be operating properly.

Figure 1. A diagram of a fuel cell-powered series hybrid small UAV (sUAV).

The model used in this paper for generating the SDCOC policies captures the battery’s
SOC dynamics, the fuel cell’s hydrogen rate dynamics, and the fuel cell load power
dynamics. Thus, the states of this model are the SOC, the mass of hydrogen remaining in
the gas tank, and the fuel cell load demand power. The motor power of the sUAV and climb
angle are treated as operating variables, and the SDCOC controller determines changes
in the fuel cell load demand power. This system level model has been implemented by
combining component submodels and characterizations available from the literature; our
methodology is generic and can accommodate changes in these component models.

2.1. sUAV Dynamics

A control-oriented dynamic model of the sUAV is used for SDCOC law development.
The sUAV is constrained to a longitudinal flight path in a vertical plane [22]. Table 1
defines the notations for the variables used in the model. Table A1 in Appendix A lists
the model parameter values, partly based on [23–25]. The development of lightweight
electric components (batteries, fuel cells, motors) for sUAVs is an active area of research;
see, e.g., [26,27]. In our model, we assumed that such lightweight components are available
to be consistent with the assumed sUAV’s weight.
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Table 1. List of variables used in the sUAV model.

Variable Description Unit

v Velocity of the sUAV m/s
γ Climb angle deg
T Thrust force N
α Angle of attack deg
L Lift force N
D Drag force N
CL sUAV coefficient of lift \
CD sUAV coefficient of drag \
ρair Air density kg/m3

PsUAV Power required by the sUAV W
N Angular speed of the electric motor RPM
PP Power generated by the propeller W

PP,ideal Ideal propeller power W
ηP Propulsive efficiency \

UM Electric motor driver’s input voltage V
IM Electric motor driver’s input current A
PM Elector motor driver’s input power W
ηM Motor efficiency \

PFC,total Total power of the fuel cell W
PFC,load Load demand power of the fuel cell W

Paux Power required by the auxiliaries W
UFC Single cell voltage V
IFC Single cell current A
iFC Single cell current density A/cm2

Uact Activation polarization V
Uohm Ohmic losses V
Uconc Concentration polarization V
UOC Equivalent open circuit voltage of a single fuel cell V
R′FC Modified single fuel cell resistance Ω
R̃′FC Variable defined in Equation (18) Ω · cm2

UB,OC Open circuit voltage of the battery V
SOC Battery’s state of charge \
PB Power of the battery W

SOC0 Initial SOC \
S f Split fraction \
u Control input \

∆PFC Defined in Equation (25) W
mFR Mass of fuel remaining kg

Using a flat Earth coordinate system, the longitudinal equations of motion of the sUAV
are given by:

v̇ =
Tcos(α)− D

m
− gsin(γ), (1)

γ̇ =
Tsin(α) + L

mv
− gcos(γ)

v
, (2)

where v is the velocity of the sUAV and γ is the climb angle. The lift L and drag force D are
characterized as:

L =
1
2

ρairv2Sre f CL, D =
1
2

ρairv2Sre f CD, (3)

where CL = CL0 + CL,αα, CD = CD0 + KCL
2. Neglecting vertical acceleration (i.e.,

with L = mg), solving Equations (1) and (2) yields the thrust required by the sUAV,

T =

[(
mv̇ + mgsin(γ) +

1
2

ρairv2Sre f CD0 +
2Km2g2

ρairv2Sre f

)2

+ (mvγ̇ + mgcos(γ)−mg)2

] 1
2

. (4)
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Here, ρair is a function of altitude. The power required by the sUAV is then given by:

PsUAV = Tv. (5)

2.2. Propeller Model

The propeller model is used to relate the torque and angular velocity generated
by the electric motor to the power required by the sUAV and the velocity of the sUAV,
respectively [22]. With the propulsive efficiency given by ηP, the power required to drive
the propeller is:

PP =
PsUAV

ηP
. (6)

According to the disk actuator theory, the ideal propeller power is:

PP,ideal =
1
2

Tv

(
1 +

√
1 +

8T
πρairv2dP

2

)
.

In general, the actual power required would be about 15% greater than this [28], which
means PP = 1.15PP,ideal . Thus, ηP can be calculated as:

ηP =
PsUAV

1.15PP,ideal
=

2

1.15 + 1.15
√

1 + 8T
πρairv2dP

2

. (7)

Combing Equation (7) with (5) and (6) yields:

PP =
1.15PsUAV

2
+

1.15PsUAV
2

√
1 +

8PsUAV

πρairv3dP
2 .

2.3. Electric Motor Model

Electric motors used in sUAV applications exhibit high speed and high torque, as well
as high power-to-weight ratios [29]. Assuming the power factor is equal to unity and the
magnetic losses can be neglected, the output power of the motor is given by:

PP = (UM − IMRM)(IM − IM,0). (8)

The angular velocity of the motor in revolutions per minute (RPM) can be expressed as:

N = (UM − RM IM)KV , (9)

which should be equal to the RPM of propeller N = v
JdP

. From Equations (8) and (9),
the motor current, IM, is:

IM =
PPKV

N
+ IM,0.

The motor power and motor efficiency are given by, respectively,

PM = UM IM, ηM =
PP
PM

.

2.4. Fuel Cell Model

A PEMFC system is the primary power source for the sUAV. The total power generated
by the fuel cell stack is calculated as:

PFC,total = nFCUFC IFC. (10)
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This power must cover the load demand PFC,load and the power required for auxil-
iaries [18], Paux,

PFC,total = PFC,load + Paux, (11)

where Paux is the total power required for the compressor motor, the hydrogen circulation
pump, the humidifier water circulation pump, the coolant pump, the cooling fan motor,
and the bias power, P0. After simplifications, Paux could be written as a function of the fuel
cell current [30],

Paux = P0 + nFCκFC IFC. (12)

The fuel cell current is a function of the current density and the fuel cell area,

IFC = iFC AFC,

where iFC could be obtained by solving the equation,

UFC = Urev −Uact −Uohm −Uconc. (13)

The reversible cell potential Urev is related to the molar specific Gibbs free energy ∆g f
and the number of ions passed in the reaction ne [24],

Urev =
∆g f

neF
.

The activation polarization Uact is a result of the energy required to initiate the reaction,
which can be described by the semi-empirical Tafel equation [31–33],

Uact = c0 + c1ln(iFC),

where c0 and c1 depend on temperature. When the current density is small, this equation
can be modified [34] as:

Uact = c0(1− e−c1iFC ), (14)

where c0 = −5.8× 10−4T̄ + 0.5736 and c1 = RT̄
neαFC F .

The ohmic losses Uohm are due to the resistance to the flow of (i) ions in the membrane
and in the catalyst layers and (ii) electrons through the electrodes [18],

Uohm = iFCR̃FC, (15)

where R̃FC = RFC AFC.
The concentration polarization Uconc, is given by

Uconc = d0ed1iFC . (16)

With the parameters given in Appendix A, the polarization curve of a single cell is
plotted in Figure 2. In reality, the current density could be controlled within a certain
range. After excluding the very low current densities (iFC < 0.1 A/cm2), (13) could be
linearized [34,35] as:

UFC = UOC − R̃FCiFC, (17)

where UOC is the voltage at which the linearized curve crosses the y-axis, which should
not be confused with Urev.
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Figure 2. Polarization curve for a given PEMFC.

Unlike ground vehicles, the sUAV changes its orientation during the flight, which
would change the inner resistance of the fuel cell by about five times [36] from horizontal
to vertical. To this end, (17) is modified to account for this effect as:

UFC = UOC − R̃′FCiFC, (18)

where R̃′FC = R̃FC(1 + k0sin(k1|γ|)). Combining Equation (18) with Equations (10)–(12)
yields:

nFCR′FC I2
FC − (nFCUOC − nFCκaux)IFC + PFC,load + P0 = 0, (19)

where R′FC = R̃′FC/AFC. Overall, IFC can be expressed as:

IFC =
nFC(UOC − κaux)−

[
n2

FC(UOC − κaux)2 − 4nFCR′FC(PFC,load + P0)
] 1

2

2nFCR′FC
. (20)

2.5. Battery Model

The battery model represents a pack of Model 21700 lithium polymer battery cells.
The battery pack is assembled in such a way that the cells are connected in series. Accord-
ing to [37], the open-circuit voltage of the battery can be estimated as:

UB,OC = SOC(UB,max −UB,min) + UB,min. (21)

The battery power and the fuel cell load demand power sum up to provide the
electrical power to the motor such that:

PM = PB + PFC,load. (22)

Further, the current drawn from the battery set is obtained by solving:

PB = nB(UB,OC IB − I2
BRB,int), (23)

which should not exceed its maximum discharge current IB,max.
The battery Coulombic efficiency in the battery model is assumed to be 100%. Thus,

the SOC is satisfied as:

SOC(t) = SOC0 −
∫ t

t0

IB(t)
CB

dt. (24)

where t, t0, and SOC0 are the current time, initial time, and initial SOC, respectively.
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3. Hybrid System Model and Problem Formulation
3.1. Hybrid System

The fuel cell load demand power, which will be indicated as PFC in the following
section, is the only variable under control. Due to the output characteristic of the PEMFC,
the change of PFC is chosen to be 5% of its maximum power, which depends on γ according
to (18). The fuel cell load demand power dynamics are then:

PFC(tn+1)− PFC(tn) = u · ∆PFC, (25)

where u ∈ {−1, 0, 1}, ∆PFC = 5%PFC,max, and PFC(tn) is the fuel cell load demand power at
t = tn. Here, three different values of u correspond to decreasing, sustaining, or increasing
PFC. According to Equation (19), the maximum load cell power can be calculated as:

PFC,max =
4nFCR′FCP0 − (nFCUOC − nFCκaux)2

−4nFCR′FC
. (26)

Using Equations (25) and (26), the final expression representing the fuel cell load
demand power dynamics is given by:

dPFC
dt

= u · 5%
4nFCR′FCP0 − (nFCUOC − nFCκaux)2

−4nFCR′FC
. (27)

The SOC dynamics are obtained by differentiating both sides of (24) with respect to time,

dSOC
dt

= − IB
CB

. (28)

Combing (28) with (21) and (23) yields,

dSOC
dt

=
−nBUB,OC +

√
(nBUB,OC)2 − 4nBRB,intPB

2nBRB,intCB
, (29)

where UB,OC = SOC(UB,max −UB,min) + UB,min.
The motor power and battery power are related by:

PB = S f PM, (30)

where S f is referred to as the split fraction, which could be calculated from (22) as:

S f =
PM − PFC

PM
.

Using Equations (29) and (30), the final expression representing the SOC dynamics is
given by:

dSOC
dt

=
−UB,OC +

√
(UB,OC)2 − 4RB,intS f PM

nB

2RB,intCB
, (31)

where the internal resistance RB,int and the battery capacity CB are assumed to be con-
stant [38].

The mass of remaining fuel dynamics is obtained from Faraday’s law as:

dmFR
dt

= −nFC IFC
neF

Mh, (32)

where IFC is calculated from PFC as shown in (20).
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Equations (25), (29), and (32) are the final form of the state equations used in this
study, where the states of the system are x = [SOC, MFR, PFC], the control is u ∈ {−1, 0, 1},
the outputs of the system are y = [S f , PB], and the operating variables are w = [PM, γ].
These operating variables are treated as measured disturbances in the model.

Based on the above modeling assumptions and parameters in Table A1, the maximum
fuel cell output power is 795 W at γ = 0 deg, 496.14 W at γ = ±10 deg, and 335.71 W at
γ = ±20 deg. The theoretical maximum power for the battery series (of eight batteries) is
2940 W, due to the limitation of the discharge current (35 A); the maximum power of the
battery is 1176 W at any climb angle.

3.2. Problem Formulation

The forward Euler method is used in this paper to approximate the time derivatives.
During each time segment ∆t, the motor power of the sUAV is w1 and the climb angle is
w2.

The following updated equations approximately model the sUAV hybrid propul-
sion system:

SOC(tn+1) = SOC(tn) +
dSOC

dt
(tn)∆t,

MFR(tn+1) = MFR(tn) +
dMFR

dt
(tn)∆t,

where SOC(tn) and MFR(tn) are the state of charge and the mass of hydrogen remaining
at t = tn.

The system is controlled by the change of the fuel cell load demand power ∆PFC at
each discrete time instant. Thus, the fuel cell power is modeled as:

PFC(tn+1) = PFC(tn) + u∆PFC(tn).

The motor power and climb angle are typically unknown a priori. In this paper,
a Markov chain model is used to describe the evolution of w1 and w2 with the transition
probabilities identified from the historical data. Once particular w1 and w2 values are
encountered, a prediction of their probability distribution over the next time segment will
be made using the Markov chain model.

The objective of the stochastic endurance maximization problem is to determine a
control law that maximizes the time the sUAV can travel before the system states exit a
prescribed set,

G =
{
(SOC, MFR, PFC) : SOCmin ≤ SOC ≤ SOCmax,

MFR,min ≤ MFR ≤ MFR,max, 0 ≤ PFC ≤ PFC,max

}
. (33)

The constraints on the SOC and MFR in Equation (33) reflect the minimum and maxi-
mum values of the battery state of charge and the mass of fuel, respectively. The constraints
on PFC are reflective of the fact that the fuel cell load demand power cannot (i) exceed the
maximum power of the fuel cell and (ii) be negative.

The optimal control policy developed in this paper through the application of DCOC
specifies the change in fuel cell load power over one step, ∆PFC(t) = PFC(t + 1)− PFC(t),
as a function of SOC(t), the mass of hydrogen fuel left, MFR(t), and the current fuel cell
load power, PFC(t). The battery power complements fuel cell power in matching propeller
requested power.
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3.3. Markov Chain Modeling

A Markov chain model [39] is used to represent the evolution of w (in our case,
w = [w1, w2]). The transition probabilities of the Markov chain are defined as:

pij = prob{w(tn+1) ∈Wj |w(tn) ∈Wi}, (34)

where Wi and Wj (i, j = 1, · · · , N) are cells partitioning the feasible range of the operating
conditions. The state dependence of the transition probabilities adds flexibility in reflecting
the typical motor power and climb angle profiles of an sUAV.

The pij’s can be obtained from the statistical analysis of the historical flight data,

pij =
Mij

Mi
, (35)

where Mij is the total number of transitions from the cell Wi to the cell Wj (i.e., w(tn) ∈
Wi, w(tn+1) ∈ Wj), while Mi is the total number of transitions from Wi to any other cell,
including Wi [21].

4. Control Law Construction

Here, we adopt the SDCOC framework from [16], which is applied to a discrete-time
model with the following form,

x(tn+1) = f (x(tn), u(tn), w(tn)), (36)

where x(tn) is the state vector, u(tn) is the control vector, and w(tn) is the vector of
operating variables, which is not known until the time instant tn. The system has both
control constraints and state constraints imposed as u(tn) ∈ U and {x(tn), w(tn)} ∈ G,
respectively, where U and G are specified sets. A Markov chain with a finite number of
states is used to represent transitions in w(tn) ∈ W = {wp : p ∈ P}. Here, P is the size
of the grid for w. The transition probability from w(tn) = wi ∈ W to w(tn+1) = wj ∈ W
is denoted by pij, expressed in (34). In a discounted variant of SDCOC, the objective is
to determine a control function u(x, w) such that, with u(tn) = u(x(tn), w(tn)), a cost
functional of the form,

Jx0,w0,u = Ex0,w0

[
τx0,w0,u(G)−1

∑
t=0

δt · 1
]

, (37)

is maximized. Here, τx0,w0,u(G) ∈ Z+ represents the first time instant when the trajectories
of x(tn) and w(tn), which are denoted by {xu, wu} and result from applying the control
u(tn) = u(x(tn), w(tn)) with values in the set U, exit the prescribed compact set G. δ is a
discount factor [40]. For δ = 1, (37) maximizes the exit time, i.e., the time till the prescribed
constraints become violated. The use of the discount factor 0 < δ < 1 facilitates faster
convergence of the value iterations. Note that {xu, wu} is a random process, τx0,w0,u(G)
is a random variable, and Ex0,w0 [·] denotes the conditional expectation given the initial
values of x and w.

To solve (37), the value iterations approach is used, which produces a sequence of
value function approximations, Vn, at specified grid-points x ∈ {xk : k ∈ K},

V0(xk, wi) ≡ 0,

Vn(xk, wi) = max
um ,m∈M

{
∑
j∈J

Fn−1( f (xk, um, wi), wj) · pij · δt + 1

}
,

where u ∈ {um : m ∈ M} is a specified grid for u. Here, K and M are the size of
the grid for x and u, respectively. In each iteration, once the values of Vn−1 at the
grid-points have been determined, linear or cubic interpolation is employed to approx-
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imate Vn−1( f (xk, um, wi), wj) as Fn−1(x, wi) = Interpolate[Vn−1](x, wi), if (x, wi) ∈ G,
and Fn−1(x, wi) = 0, if (x, wi) /∈ G. A termination criterion of the form |Vn(x, wi) −
Vn−1(x, wi)| ≤ ε for all x ∈ {xk : k ∈ K} and i ∈ P, where ε > 0 is sufficiently small,
is used.

Once an approximation of the value function, V∗, is available, an optimal control law
is determined as:

u∗(x, wi) ∈
{

u : V∗(x, wi)−∑
j∈J

V∗( f (x, u, wi), wj) · pij · δ− 1 ≤ ε

}
.

5. Control Law Computations and Results
5.1. sUAV Configuration and Model Parameters

The model was parameterized for a 1.5 kg sUAV [23] that can be used for aerial
photography and environmental monitoring applications. The minimum and maximum
SOC values were set to SOCmin = 0.2 and SOCmax = 0.8. The minimum and maximum
values of MFR were set as MFRmin = 2 g and MFRmax = 9 g. For the value iterations,
the SOC grid was chosen with a step size of 0.05, and the MFR grid was chosen with a step
size of 0.5 g. The grid for the control variable u was set as {−1, 0, 1}.

The transition probabilities for the operating variables (motor power and climb angle)
were obtained from the time histories of the sUAV motor power and climb angle using (35)
and assuming a time step ∆t = 1 s. These time histories were based on a scenario in which
an sUAV follows a moving ground vehicle that sUAV operators are interested in monitoring.
In this scenario, the ground vehicle, and consequently the sUAV, is assumed to be traveling
with the velocity profile defined by concatenating the EPA Highway Cycle [41] nine times.
For the sUAV, the speed profile is modified to remain above the stall speed while avoiding
extreme acceleration values.

The climb angle time history, shown in Figure 3, was obtained from the Google Earth
elevation profile for a path from Monroe, West Virginia, to Princeton, West Virginia, with
the help of GPS visualizing software [42]. See [43] for the assessment of the accuracy of
such extracted profiles.

Figure 3. Time histories of the sUAV climb angle.

Figure 4 provides the time histories of the sUAV motor power calculated based on
the equations in Section 2.3. The trajectories in Figures 3 and 4 were used to compute the
transition probabilities.



Energies 2021, 14, 1304 12 of 21

Figure 4. Time histories of the sUAV motor power.

5.2. Control Law Computation

Cython was used for control law computations as it is more efficient than MATLAB in
handling nested for loops and two-dimensional interpolation. In our numerical experi-
ments with dynamic programming, Cython was about 10 times faster than MATLAB.

To further speed up the value iterations, a discount factor was introduced. When
testing the effect of the discount factor on the optimal policy, a zero climb angle (γ = 0)
was assumed, which means that the only operating variable was the motor power. Table 2
shows the average exit time based on 100 random simulations for discount factors from 0.91
to 0.99. The stopping criterion was chosen with ε = 10−10 for all δ. Computations were
performed on a Hasee K780G-i7 laptop with a CORE i7-4710MQ (2.5–3.5 GHz) processor
and 24 GB of RAM.Note that the number of iterations and the computing time decrease
as the discount factor decreases, but so does the exit time. The discount factor δ = 0.95
was ultimately chosen as a compromise between value iteration convergence speed and
solution accuracy. Figure 5 shows that the value iterations with a discount factor of δ = 0.95
converge much faster than those with δ = 1.

Table 2. Average exit time for different discount factor.

δ Number of Iteration Computing Time
(min)

Exit Time with 20% Initial
SOC (s)

Exit Time with 80% Initial
SOC (s)

0.99 2258 830.02 6358.44 9742.99
0.97 753 100.69 6276.18 9716.86
0.95 448 58.27 6221.37 9640.24
0.93 317 39.22 6186.50 9610.22
0.91 244 30.55 6159.65 9602.55

Figure 5. The effect of the discount factor in the value iteration approach.
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5.3. Endurance Maximization Results

We used ε = 10−10 in the stopping criterion for the value iterations. Figure 6 illustrates
the resulting control policy. Note that when SOC is low, the control policy calls for an
increase in PFC to charge the battery. This is reasonable given that the fuel cell cannot alone
respond rapidly to fast changes in motor power request, and hence, the battery has to be
charged to do so.
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Figure 6. A cross-section of the control policy in the endurance maximization problem for
PM = 132.52 W and with (a) γ = 0 deg, PFC = 0 W, (b) γ = 0 deg, PFC = 302.1 W, (c) γ = 20 deg,
PFC = 0 W, and (d) γ = 20 deg, PFC = 302.1 W.

The simulation results are given for three cases in Figures 7–18. The first case (Sce-
nario I) corresponds to a higher initial SOC, and the second case (Scenario II) considers a
lower initial SOC. The third scenario is for a mid-range initial SOC and is used to confirm
the SOC behavior observed in the first two scenarios. In all cases, the initial fuel mass
and initial fuel cell power are the same: MFR,0 = 6 g and PFC,0 = 0 W. The dashed lines in
Figures 8, 12, and 16 indicate the constraints mentioned in Section 5.1. The spikes of power
in Figures 7, 11, and 15 correspond to the time instants when the sUAV starts to accelerate
while the positive and negative spikes of climb angle represent the time when the sUAV
starts to climb or descend.

Figure 7. sUAV PM and γ versus time, Simulation Scenario I.
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Figure 8. SOC and remaining MFR versus time, Simulation Scenario I; dashed lines show constraints.

Figure 9. Fuel cell load demand power and split fraction versus time, Simulation Scenario I.
The dashed and dashed-dotted lines in the top sub-figure indicate the maximum PFC with |γ| = 0 deg
and |γ| = 20 deg, respectively.

Figure 10. Battery power, Simulation Scenario I.
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Figure 11. sUAV PM and γ versus time, Simulation Scenario II.

Figure 12. SOC and remaining MFR versus time, Simulation Scenario II; dashed lines show constraints.

Figure 13. Fuel cell load demand power and split fraction versus time, Simulation Scenario II.
The dashed and dashed-dotted lines in the top figure indicate the maximum PFC with |γ| = 0 deg
and |γ| = 20 deg, respectively.
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Figure 14. Battery power, Simulation Scenario II.

Figure 15. sUAV PM and γ versus time, Simulation Scenario III.

Figure 16. SOC and remaining MFR versus time, Simulation Scenario III; dashed lines show constraints.
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Figure 17. Fuel cell load demand power and split fraction versus time, Simulation Scenario III.
The dashed and dashed-dotted lines in the top figure indicate the maximum PFC with |γ| = 0 deg
and |γ| = 20 deg, respectively.

Figure 18. Battery power, Simulation Scenario III.

Figures 7–10 illustrate the closed-loop response for the first simulation scenario.
The initial SOC is 0.8, and it decreases rapidly until it reaches a value of about 0.5. Then, it
stays near this value between 2000 and 5000 s. Finally, when the mass of hydrogen reaches
a relatively low value, the SOC starts to decrease and continues to decrease until the con-
straints are violated. The fuel cell load demand power keeps a relatively low value during
the whole flight, and the mean value of the split fraction is negative during the 2000 to
5000 s time interval, which is the period when the SOC is kept at about 0.5.

Figures 11–13 illustrate the closed-loop response for the second simulation scenario.
The initial SOC is 0.2. The battery is charged until it reaches a value of about 0.5 to enable
the battery to sustain rapid propeller power fluctuations. Then, the SOC stays near that
value of 0.5 between 500 and 1500 s. Finally, when the mass of hydrogen reaches a relatively
low value, the SOC starts to decrease and continues to decrease until the constraints are
violated. The fuel cell load demand power increases rapidly at first to charge the battery,
then it keeps a relatively low value during the rest of the flight. The mean value of the
split fraction is negative from the beginning to about 1500 s, which is the period when the
battery is charged from SOC = 0.2 to about 0.5.

According to the results from Scenarios I and II, a turnpike behavior of the battery
SOC is observed, with the SOC converging to about 0.5 and staying at that value for a
while before decaying. To confirm this turnpike behavior, we additionally considered
the responses with the developed policy to the initial SOC of 0.6. These are shown in
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Figures 15–18. The exit times for Scenarios I, II, and III were, respectively, 9890 s, 6019 s,
and 8478 s.

6. Conclusions

This paper considers an endurance maximization problem for a small unmanned aerial
vehicle (sUAV) with a hybrid propulsion system consisting of a polymer electrolyte fuel
cell and a battery, both driving an electric motor connected to a propeller. A stochastic drift
counteraction optimal control (SDCOC) approach is employed to develop control policies
for optimally coordinating the fuel cell and the battery while enforcing the constraints on
the fuel cell power output rate of change. Cython is used to implement value iterations
and demonstrated an order of magnitude speedup versus MATLAB without increasing the
code complexity, due to its efficiency in handling nested for-loops. Additionally, the use
of a discount factor is shown to significantly speed up the value iterations at the price of
decreased performance. The results illustrate the effectiveness of the SDCOC strategy in
regulating the charging behavior of the battery by the fuel cell to provide the capability to
respond to rapidly varying motor power demand.

The proposed approach based on SDCOC is particularly suitable for handling stochas-
tic disturbances and can be applied to sUAVs exposed to headwinds with the headwind
modeled as a stochastic disturbance. Accounting for such wind disturbances, extensions to
include thermal dynamics, systematic and comprehensive comparison with other energy
management approaches and propulsion system choices, the systematic study of the ro-
bustness to model uncertainties, as well as actual flight experiments represent directions
for continuing research. In particular, our study of the discount factor impact on the
computation time and exit time suggests that the flight time is sensitive to the choice of the
energy management strategy; our approach based on SDCOC is optimal in the sense of
maximizing expected flight time within a stochastically modeled environment.
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Appendix A

The parameters of the sUAV model described in the paper are listed in Table A1.

Table A1. Parameters used in the sUAV model.

Variable Description Value Unit

m Mass of the sUAV 1.5 kg
g Gravitational acceleration 9.81 m/s2

Sre f Wing area 0.09 m2

CD0 sUAV coefficient of drag at α = 0 0.1038 \
K Coefficient in Equation (3) 0.0637 \
dP Diameter of the propeller 0.24 m
J Advance ratio 0.37 \
RM Motor resistance 0.105 Ω
IM,0 Motor current at zero load 1.3 A
KV Motor speed constant 1490 RPM/V
nFC Number of single cells in series 12 \
P0 Bias power of the fuel cell 5 W
κaux Coefficient in Equation (12) 0.05 V
AFC Fuel cell area 200 cm2

∆g f Molar specific Gibbs free energy 237.3 kJ/mol
ne Number of ions passed in reaction 2 \
F Faraday constant 96,485 C/mol
T̄ Temperature of the reaction 333.15 K
αFC Charge transfer coefficient 0.5 \
R Universal gas constant 8.314 J/(mol ·K)

RFC Ohmic resistance defined in Equation (15) 0.0024 Ω
d0 Coefficient in Equation (16) 3e-5 V
d1 Coefficient in Equation (16) 8 cm2/A
k0 Coefficient in Equation (18) 4 \
k1 Coefficient in Equation (18) 1 \
Mh Molecular weight of H2 2 g/mol
nB Number of batteries in series 8 \
UB,min Open circuit voltage when SOC = 0 2.5 V
UB,max Open circuit voltage when SOC = 1 4.2 V
RB,int Battery internal resistance 0.012 Ω
CB Standard discharge capacity 14400 C
IB,max Maximum discharge current 35 A
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