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Abstract: Accurate and timely macro forecasting requires new and powerful predictors. Carbon
emissions data with high trading frequency and short releasing lag could play such a role under
the framework of mixed data sampling regression techniques. This paper explores the China case
in this regard. We find that our multiple autoregressive distributed lag model with mixed data
sampling method setup outperforms either the auto-regressive or autoregressive distributed lag
benchmark in both in-sample and out-of-sample nowcasting for not only the monthly changes of
the purchasing managers’ index in China but also the Chinese quarterly GDP growth. Moreover, it
is demonstrated that such capability operates better in nowcasting than h-step ahead forecasting,
and remains prominent even after we account for commonly-used macroeconomic predictive factors.
The underlying mechanism lies in the critical connection between the demand for carbon emission in
excess of the expected quota and the production expansion decision of manufacturers.

Keywords: high-frequency carbon emissions trading; macroeconomic forecast; mixed data sampling
regression; GDP growth; purchasing managers’ index; out-of-sample prediction

JEL Classification: C53; E27; Q47; Q59

1. Introduction

Predicting macro indicators has always been a hot area of research. This is because
accurate and timely forecast serves as an important reference point for economic decision-
making by both policymakers and investors. Giannone et al. [1] find that the timeliness,
as well as the quality of information, are helpful to increase prediction accuracy when
generating nowcasts of quarterly GDP data using current-quarter data when they are
immediately available. To deal with the fact that macroeconomic time series are often of
different frequencies, researchers resort to the mixed data sampling (MIDAS) regressions.
When higher frequency data is evaluated at its original format rather than an aggregated
one, the information contained in various data sampled across different frequencies could
be retained to the largest extent. What is more, while in traditional co-frequency models
we need to wait for the release of data over a full reporting cycle before making predictions,
in the MIDAS model one can immediately update the prediction output upon continuous
changes in high-frequency predictors. Quite a few studies have applied this MIDAS
approach to macro forecasting in China. Though more frequent than the prediction target
variables, their chosen predictors are still traditional macroeconomic variables that are
limited by some time lag in data publication [2]. Therefore, finding our true high-frequency
predictors without any lag, preferably real-time trading data, would help improve the
accuracy and timeliness of Chinese macro forecasts.
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Given the vital connections between GDP, trade, foreign direct investment (FDI), and
carbon emissions in China [3], the goal of the current research is to explore whether carbon
emissions trading data could serve as a new powerful predictor for Chinese macro forecasts.
Carbon emissions trading is a tool designed to reduce emissions via market power. To
implement this tool, the government sets a cap to control the total quantity of carbon
emission, and then allocates quota to polluting firms according to a set of rules. The reason
why we propose such a predictor is as follows.

The demand for and hence the trading activities of carbon emissions come from the
difference between carbon allowances and actual emissions generated in the production
process. In general, during economic booms, emissions will increase given that firms
expand production and subsequently want more quota to emit carbon. If extra permits
are not granted by the government, these demands will be reflected in the trading of
carbon emissions. The extant literature focuses on how to price the permit, overlooking the
information discovery function. We investigate the predictability of macro indicators by
carbon emissions trading by highlighting its informational relevance with the state of the
economy and its data availability on a daily basis.

We choose China as a case study for two reasons. One, the task of forecasting Chinese
growth has become challenging in recent years after the country’s high speed growth phase.
Two, the Chinese carbon emissions trading market is highly regulated, reflecting actual
demands rather than speculations. The Chinese high-frequency carbon emissions trading
data has been available since the establishment of the pilot market in Shenzhen since 2013.
And the data quality will continue to improve along with the official launch of the national
carbon emissions trading system of China in 2020.

Our empirical strategy is to exploit the information contained in weekly and monthly
data on the average price and volume of carbon emissions trading. We treat these two
series as high-frequency indicators in both the single-predictor and multiple autoregressive
distributed lag model with mixed data sampling method (ADL-MIDAS) framework. The
primary output is forecast for the quarterly GDP growth rate in China. Since quarterly GDP
has relatively few data points in the relevant sample period, to triple the number of output
observations, the monthly manufacturing Purchasing Managers’ Index (PMI) growth rate
serves as our secondary prediction target. We conduct three comparison analyses. First of
all, we investigate whether our ADL-MIDAS model with high-frequency carbon emissions
trading data as inputs can outperform a benchmark auto-regressive (AR) model without
such data. Second, we move to investigate whether our ADL-MIDAS model can produce
superior performance than another benchmark autoregressive distributed lag (ADL) model
that employs the same high-frequency carbon emissions trading data. Third, we adopt
a combined forecasting model and investigate whether adding high-frequency carbon
emissions trading data into the combination can perform well in comparison to the case of
using only usual macro forecast factors.

The main results of using carbon emissions trades to forecast Chinese GDP growth
are summarized below. When comparing the ADL-MIDAS model with the AR and ADL
benchmarks, even using the same high-frequency carbon emissions trading data, our
single-predictor and multiple ADL-MIDAS regressions are shown to improve both in-
sample and out-of-sample nowcasting performance significantly (i.e., one can think of
nowcasting as forecasting in very short intervals, or equivalently in our set up, using
carbon emissions trading data close to the quarterly GDP figure release day for the purpose
of predicting next-quarter GDP growth rates). This finding indicates that carbon emissions
trading data indeed add value, and the MIDAS setup will extract such value by retaining
effective information contained in high-frequency indicators for the macro forecast. Then,
when comparing the nowcasting results with the h-step ahead forecasts of MIDAS, we
conclude that the MIDAS model performs better in terms of nowcasting than forecasting.
The reason why nowcasting stands out is that the high-frequency data encompasses
too much information which may turn out to be outdated in predicting further away
macroeconomic variables. Thus, the advantage of the MIDAS model lies in its timely
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forecast. Next, in a combined forecasting setting, our finding is that the combination
including high-frequency carbon emissions trading data can generate more accurate and
stable out-of-sample forecasts than the combination consisting of only commonly used
monthly macroeconomic predictors. In other words, the high-frequency data indeed brings
in new messages uncovered by traditional factors. Finally, after we replace the forecast
target from GDP to PMI, similar results are obtained—the multiple ADL-MIDAS model
incorporating the high-frequency carbon emissions trading data can improve the out-of-
sample prediction accuracy for monthly manufacturing PMI growth in comparison to AR
and ADL models. Overall, the above-mentioned results imply that the MIDAS model
with high-frequency carbon emissions trading data can play an important role in Chinese
macro forecasts.

The rest of the paper is organized as follows: Section 2 reviews the background
of China’s carbon emissions trading market, and the relevant literature on the MIDAS
methodology and its applications in a setting similar to ours. Section 3 formally introduces
our MIDAS model specification, the benchmarks, as well as the evaluation criteria with
respect to prediction accuracy. Section 4 presents the summary statistics of data used,
followed by Section 5 that describes the result of how high-frequency carbon emission
trading data perform when foreshadowing GDP and PMI growth in China. The last
Section 6 concludes or article.

2. Institutional Background and Literature Review

In this section, we first introduce the development of China’s carbon emissions trading
market. Then, we review the relevant literature on Chinese macro forecasts and our
empirical methodology.

The Chinese market for trading carbon emissions emerged along with a global wave
of using market mechanisms to mitigate environmental protection issues. To mitigate the
greenhouse effect and promote sustainable economic development, countries around the
world have reached a series of cooperative agreements such as the Kyoto Protocol. In
light of these agreements, the European Union Emissions Trading System (EU ETS) had
been officially put into operation in 2005. Since then, to fulfill their respective emissions
reduction commitments, protocol participant countries have started to establish their own
carbon emissions trading markets. As one of the developing countries, although China
has not yet entered the stage of mandatory emissions reduction, it actively participates
in the global emissions reduction plan. Specifically, in June 2013, the first regional carbon
emissions trading pilot market was initiated in Shenzhen. Subsequently, other markets
were established in a number of cities and provinces including Guangdong, Shanghai,
Beijing, Hubei, Tianjin, Chongqing, and Fujian.

Carbon emissions trading serves as a tool to reduce emissions through market power.
This arrangement functions via properly pricing carbon emissions, providing an incentive
for firms to internalize the externality of pollution. Essentially, given binding constraints,
companies choose either to cut down production activities to reduce emissions or to pay for
carbon emissions beyond the limit. The government sets a cap to control the total quantity
of carbon emissions and allocates allowances to each firm according to a set of agreed-upon
standards. If a firm needs more carbon emissions quota or has unused quotas, it can buy or
sell in the market.

The allocation process of the total carbon allowance is crucial for designing the carbon
emissions trading system. There exist two types of allocation methods: free allocation
and paid allocation. As for the free allocation, carbon emissions allowances are allocated
to polluting enterprises based on a joint consideration of their historical emissions or
outputs and some corresponding benchmark levels. In regard to the paid allocation, carbon
emissions allowances are distributed through auctions hosted by the government or sold
by the government at a fixed price. At the early stage of China carrying out its pilot trading
markets, the free allocation method is implemented first. As the carbon emissions trading
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market gradually matures in China, the paid allocation method starts to rise in proportion
to the free one.

Besides the allocation process, measures taken by the government to ensure firm
compliance is another important issue. If a firm’s actual carbon pollutants emitted during
the inspection period exceed the permitted amount allocated to it, the environmental court
will penalize the firm for breaking government regulations. The existing penalties include
issuing a rectification order with a time limit, recording misbehaviors in a national firm
credit system, reporting to public administrators and tax authorities, blacklisting carbon
emission violators, canceling various rights such as previously granted tax exemptions,
qualification for winning awards, and future subsidies. This punishment system for
non-compliant manufacturers guarantees that heavy polluting firms will purchase extra
carbon emission allowances since the overall cost of just polluting beyond the limit is
extremely high.

In 2019, the annual allowances transacted in Chinese carbon emissions trading pilot
markets have reached an amount of 93 million tons and a turnover of 1.57 billion Yuan.
Taking the Guangdong market as an example, which has the largest transaction amount
among all pilot markets in 2019, trading companies come from six industries including
civil aviation, steel, cement, paper, petrochemical, and power generation. In each industry,
the criterion for an individual company being qualified to trade is emitting 20,000 tons of
carbon dioxide or consuming energy that is equivalent to 10,000 tons of standard coal per
year. According to the Department of Ecology and Environment of Guangdong Province,
free quote accounts for a proportion of 95% to 97% of total emissions depending on which
industry the firm belongs to.

Early studies on carbon emissions trading mainly focus on developing theories about
price formation. With the operation of EU ETS and associated trading data, there is a
growing strand of empirical research about testing theoretical pricing mechanisms as well
as the volatility and spillover effect of carbon emissions trading prices on other markets or
even the entire economy. Turning to the China case, due to a short history of Chinese carbon
emissions trading, the extant research on such markets in China is still in its infancy. While
most scholars investigate potential determinants of carbon emissions trading price in China,
such as the weather, energy price, government policies, financial market fluctuations, and
the macro-economy [4,5], others have discussed volatility spillovers of carbon trading
prices. However, to our knowledge, no one has utilized information in this price to conduct
macro forecasts in China. Our paper aims to fill this gap.

Now, let us focus on two lines of literature that are closely related to the present study:
one that links carbon emissions trading to the operation of the macro-economy, and the
other that highlights the application of MIDAS regressions in the macro forecast.

Using data published by the EU ETS, many empirical papers have attempted to
attribute a large part of the pricing formation of carbon emissions to macroeconomic factors.
e.g., Alberola et al. [6] considered the fluctuation in economic activity as a key driving
force of carbon price changes in Germany, the U.K., Poland, and Spain. Chevallier [7]
finds that the economic conditions in Europe influence prices of EU ETS carbon emissions
with a lag, and this is due to institutional constraints. Zou and Wei [8] demonstrated that
the spot prices of certified carbon emissions (CERs) traded on the BlueNext exchange are
significantly and positively affected by macroeconomic status proxied by the EU-27 index
of industrial production index. With respect to China’s carbon emissions trading, there
are relatively fewer relevant studies. Zhou and Xu [9] employed VAR and VEC models
to explore the influencing factors of Chinese carbon trading prices, and the results show
that the CSI Industrial Index is positively associated with prices of carbon emissions. In
addition, Zeng et al. [5] resorted to a structural VAR model to study the same question.
Statistically significant and positive correlations are found between economic growth and
carbon trading prices in China.

Given that the existing literature focuses on how carbon trading prices are determined
by the macroeconomic conditions, it is surprising that few works are conducted to examine
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the informational contents of these pricing and traded quantity data. Their macro forecast
implication is a possible direction to explore as long as proper econometric tools are
adopted to reconcile the frequency mismatch between high-frequency carbon emissions
trading proxies with quarterly macroeconomic indicators. One potential solution is the
MIDAS model, which can be regarded as an extension of the ADL. Unlike traditional
co-frequency models that often require all the input variables to be standardized at the
same frequency, the most prominent advantage of the MIDAS framework is that it can
directly deal with data with different frequencies. Therefore, by using MIDAS, we could
avoid problems such as losing high-frequency information during aggregation or obtaining
false data points when the interpolation method is used to transfer low-frequency variables
to high-frequency ones.

The analytical framework of MIDAS is developed by Ghysels et al. [10–12]. And it
is originally applied to test risk-return trade-offs and predict financial market volatility.
Following studies continue to explore the time dimension of the MIDAS method [13,14].
They propose the time-series linear regressions of the MIDAS model and discuss various
augmented versions of MIDAS such as adding weighting schemes and ordered lags into
the plain MIDAS model. Andreou et al. [15] first derive the asymptotic properties of the
MIDAS estimator, and then use Monte-Carlo simulations to prove that this estimator is
actually more efficient than those estimated from traditional co-frequency models in which
an equal weighting scheme is adopted and constraints on the underlying data generating
process are imposed. The MIDAS models are also extended to combine with other models.
For example, Marcellino and Schumacher [16] introduce FA-MIDAS as a joint model of
the MIDAS and the factor model. Breitung and Roling [17] propose a non-parametric
version of the standard MIDAS model. Foroni et al. [18] develop an unrestricted MIDAS
model (U-MIDAS), which allows for the case of no weighting schemes. Barsoum and
Stankiewicz [19] incorporate Markov transformation into the U-MIDAS model to forecast
GDP growth over different phases of business cycles.

The advantage of MIDAS in dealing with data at different frequencies has been
frequently explored in macro forecasts. Marcellino and Schumacher [16] work in their
FA-MIDAS model to predict German GDP. Clements and Galvão [20] rely on monthly
indicators to foreshadow the U.S. quarterly GDP growth. Clearly, the MIDAS model
exhibits advantages in short-term GDP forecasts. Ghysels and Wright [21] integrate the
MIDAS model and the Kalman filter so that daily data can be used to predict the GDP
growth, inflation rate, unemployment rate, etc. Clements and Galvão [22] employ a
multiple MIDAS with a list of leading indices to predict U.S. GDP growth. They show that
the MIDAS model performs better than a benchmark AR model. Kuzin et al. [23] use both
the MIDAS and M-VAR model to predict European GDP; their result is that: the MIDAS
model outperforms in the short run, while the M-VAR model is superior in the long run.
Bai et al. [24] compare the performance of the MIDAS model and the State Space model
on predicting the U.S. quarterly GDP growth. The MIDAS model again excels in terms of
timeliness. Andreou et al. [25] employ nearly 1000 different daily financial indicators to
predict the U.S. quarterly GDP growth. Indeed, high-frequency financial data plays a role
in the macro forecast. Bessec and Bouabdallah [26] construct an FA-MIDAS model with
Markov transformation, in which they also utilize high-frequency financial data to predict
U.S. GDP growth. They obtain good in-sample estimates in their analytical framework.

Our paper follows these empirical works by further investigating how a particular type
of high-frequency data, carbon emissions trading proxies which combine the characteristics
of high-frequency financial data and the activities of manufacturers, performs in forecasting
macroeconomic indicators by using China as a case study. A few papers also apply MIDAS
in Chinese macro forecast, confirming the superior performance of the MIDAS family with
high-frequency inputs in predicting contemporaneous China’s quarterly GDP growth. Yet
no research has explored the relative importance of carbon emissions trading markets. We
step into this blank.
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3. Empirical Methodology

The MIDAS regression model is designed to deal with data of different frequencies in
the same modeling framework. Let us start with the fundamentals of single-predictor and
multiple MIDAS models.

3.1. Basic Setup

The single-predictor MIDAS (m, K) is the most basic form of all, where m is the
frequency ratio calculated by comparing the high-frequency independent variable and
low-frequency dependent variable, and K denotes the maximum order of lags in the
independent variable. For example, if the dependent variable y is sampled quarterly and
the independent variable x is a monthly indicator, then we have 1 observation for y and 3
observations for x every quarter. Hence, the frequency ratio m in this example equals 3.
The regression specification is given by:

yt = µ + βW(L; θ)xtm + εt, (1)

where the weighting function W(L; θ) = ∑K
k=0 w(k; θ)Lk. In this definition, Lk represents

the lag operator of the high-frequency indicator x such that Lkxtm = xtm−k, and w(k; θ)
describes the weighing scheme with parameter vector θ =

(
θ0, θ1, . . . , θp

)
. The non-linear

least squares (NLS) approach is usually used to estimate the parameters in Equation (1).
If the restriction on the weighting function is removed, then an unrestricted MIDAS

model (U-MIDAS) can be obtained with the following form [18]:

yt = µ +
K

∑
k=0

βkxtm−k + εt. (2)

The ordinary least squares (OLS) methodology can be used to estimate the vector of
coefficients β = (β0, β1, . . . , βK). To have a better understanding, we rewrite Equation (2)
in the matrix notation. Suppose we use a monthly predictor x to forecast a quarterly
target variable y given a frequency ratio m = 3. By assuming that monthly data in the
current and the previous two quarters all have explanatory power on y, the MIDAS model
characterizing this example can therefore be expressed as: y3

...
yn

 =

 1
...
1

x9 · · · x1
...

. . .
...

x3n · · · x3n−8


 β0

...
β9

+

 ε3
...

εn

. (3)

There are ten parameters to be estimated in this specification.
Now we move on to introducing multiple high-frequency independent variables, say,

n variables. The specification of the multiple MIDAS model (M-MIDAS) is:

yt = µ +
n

∑
i=1

βiW(i)
(

L; θ(i)
)

x(i)tmi
+ εt, (4)

where mi is the frequency ratio of the i-th high-frequency independent variable. Of course,
mi can vary across different independent variables. For a quarterly dependent variable, it is
possible to include in Equation (4) both monthly (m = 3) and weekly (m = 12) independent
variables. Finally, we utilize in the empirical section of this paper the version adding a list
of autoregressive terms of the dependent variable on the right-hand side. The ADL-MIDAS
model with a single predictor is given by:

yt = µ +
py

∑
j=1

αjyt−j + βW(L; θ)xtm + εt, (5)
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where py is the maximum lagged order of y. This treatment considers the persistent effects
in the dependent variable as the predictive target.

3.2. Weighting Scheme and Estimation Method

Comparing to traditional models using input data of the same frequency, such as
the ADL model, the MIDAS model takes more advantage of the high-frequency data via
implementing flexible weighting schemes. This section discusses advantages and problems
with the unrestricted and restricted weights respectively.

First, unrestricted MIDAS can be estimated via OLS and is straightforward to interpret.
It can retain as many lag periods of the high-frequency predictor (K as large) as the sample
size is large enough to ensure effective estimation. However, the U-MIDAS model has a
parameter proliferation issue. That is, the number of parameters in U-MIDAS increases
with the number of predictors, data frequency of predictors, as well as the number of lags
included in the model. U-MIDAS is only applicable if the frequency difference between the
predictors and the target variable is not large, that is when the frequency ratio m is small.

On the other hand, a weighting function can be imposed in MIDAS to address the
parameter proliferation of U-MIDAS and add parsimony to the model. Ghysels et al. [27]
illustrate that, when the data generating process follows a certain constraint, the MIDAS
estimator under a well-tuned weighting scheme turns out to be more efficient than the
U-MIDAS one. Even an incorrect constraint might be useful in terms of efficiency as long
as the sample size of the data under consideration is small.

Therefore, the key elements of MIDAS are determining the optimal weighting scheme
w(k; θ) and the optimal lag order K. Following the suggestions made on the weighting
scheme of MIDAS [14], this study selects three types of weighting schemes commonly used
in the literature, namely, the Almon polynomial, exponential Almon polynomial, and Beta
distribution polynomial. A great deal of flexibility can already be achieved with a few
weighting parameters summarized in θ. Taking the Almon polynomial weighting scheme
as an example, two to four parameters is sufficient to achieve a high degree of flexibility,
that is, p = 1, 2, or 3 in:

w(k; θ) = θ0 + θ1k + θ2k2 + . . . + θpkp. (6)

The exponential Almon polynomial weighting scheme is obtained by augmenting the
Almon polynomial one:

w(k; θ) = exp
(

θ0 + θ1k + . . . + θpkp)/ K

∑
k=1

exp
(

θ0 + θ1k + . . . + θpkp). (7)

Finally, the Beta distribution polynomial weighting scheme is given by:

w(k; θ) = f
(

k
K

, θ1, θ2

)
/

K

∑
k=1

f
(

k
K

, θ1, θ2

)
, (8)

where f (x, a, b ) = xa−1(1− x)b−1Γ(a + b)/Γ(a)Γ(b), and Γ(a) =
∫ ∞

0 e−xxa−1dx.
Figure 1 plots the weights of lag indexes for each weighting scheme. The two columns

of Figure 1 represent two different sets of parameter values, corresponding to fast decaying
weighting and slow increasing weighting, respectively. For example, the first figure in
the left column plots the weights for 50 lags from an exponential Almon polynomial
weighting scheme with θ = (1,−0.2). In time-series prediction, such asymmetric weights
are consistent with the intuition that predictor data from a long time ago should have a
lesser effect than more recent data on the predictive power for movements in the target
variable. However, traditional models with an equal weighting scheme miss this point. This
contrast is evident in Andreou et al. [15], where the authors find that the MIDAS estimator
is more efficient than those estimated by traditional models with equal weighting scheme,
especially when the underlying data generating process follows the constraint that high-
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frequency predictors indeed have predictive power for the dependent variable. Another
benefit of using a weighting scheme is the convenience of selecting lag orders. In the
U-MIDAS model, the lag order of a predictor usually needs to be determined by repeated
attempts if without theoretical support. However, if the appropriate weighting scheme is
selected, the estimated weight of the lagged terms can approach zero asymptotically as the
lag order increases. Thus, one can determine the best lag order by discarding the lagged
term whose weights are close to zero [14]. The lag order is simultaneously determined as
the weighting parameters are estimated, thus the lag selection in MIDAS is largely driven
by data. However, it is possible that a carefully chosen parameterized weighting scheme
leads to information loss as the “smoothness” constraint “shrinks” the unrestricted function
and reduces sampling noise. As pointed out by Sinko [28], there is a tradeoff between
information loss and noise reduction, but the ultimate importance lies in that whether the
MIDAS model produces sensible forecasts.
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With a weighting scheme and the associated constraints imposed on the MIDAS
model, we normally utilize the NLS for parameter estimation. First, an initial set of values
is set for the parameters θ =

(
θ0, θ1, . . . , θp

)
in the weighting scheme. Our model then

becomes a linear regression and thus the OLS could be used to estimate the coefficients
β = (β0, β1, . . . , βK). Given the first-round solution, the final solution can be obtained via
implementing an iterative method. One may have a concern that the initial values of the
parameters θ might exert significant influences on the final results. We argue this is not
the case by repeating our exercises with a variety of choices on the initial values and by
showing that the optimal estimation is independent of these choices. As for determining
the optimal weighting scheme of w(k; θ) and the optimal lag order of K, various selection
criteria are applied in this research, such as the Akaike information criterion (AIC), Bayesian
information criterion (BIC), root-mean-square deviation (RMSE), mean squared forecast
errors (MSFE), etc.
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3.3. H-Step Ahead Forecast of MIDAS

From now on, we distinguish between nowcasts and forecasts. A nowcast, a.k.a. a
real-time forecast, refers to the use of current data to predict the target variables in the
same current period. In contrast, an h-step ahead forecast means using current data to
predict the target variables in the future. The h-step ahead forecast model of MIDAS can be
written as:

yt+h|t = µ + βW(L; θ)xtm + εt+h. (9)

When h = 0, the above equation represents a typical nowcast or real-time forecast setup.
One prominent advantage of MIDAS is that we can keep updating the high-frequency
predictors with the latest data during the period h = (m − 1)/m to h = 0. This is in contrast
to the co-frequency model, in which h can only take integer values. For example, the
National Bureau of Statistics of China often releases the data on the third-quarter GDP
growth in mid-October. Thus, the AR (1) model can only make a prediction when the
second-quarter GDP growth is public in mid-July (in this case h = 1). But if we use the
MIDAS model and monthly predictors, our prediction for the third-quarter GDP growth
could be updated every month by taking into account the latest information revealed by
the monthly predictors. With weekly or even daily frequency indicators, the macro forecast
can be updated more frequently.

3.4. Benchmark Models

We list in this subsection three benchmark models whose results we will compare our
MIDAS outputs to. The first benchmark is the AR Model as the autocorrelation is usually
presented in the time series of macroeconomic variables due to the inertia of economic
systems. The AR model uses historical data of the dependent variable to predict its future
value. A p-order autoregressive model AR(p) is given by:

yt = µ +
p

∑
j=1

αjyt−j + εt. (10)

By setting the AR model as the first benchmark, we aim to evaluate whether our
proposed ADL-MIDAS model with high-frequency carbon emission trading data perform
better than models without such trading data in macro forecasts.

The second benchmark is the ADL model. Autoregressive distribution lag can repre-
sent traditional models requiring variables sampled at the same frequency.

yt = µ +
py

∑
j=1

αjyt−j +
qx

∑
i=0

βixt−i + εt. (11)

One can view ADL as a simple vision of ADL-MIDAS in Equation (5) with unrestricted
weight schemes on the predictors as in Equation (2). By establishing the ADL model as
the second benchmark, we would like to know whether our proposed ADL-MIDAS model
with high-frequency carbon emission trading data can outperform models that also adopt
high-frequency carbon emissions trading data but use specifications different from MIDAS.

Thirdly, we consider a combined forecast model. A combination forecast is defined
in the sense that we arrive at multiple sets of prediction values by using multiple models.
And the final prediction output is a weighted average of a variety of predictive values.
The weights follow a chosen weighting function, e.g., the BIC weighting function is listed
as follows:

ŷt =
K

∑
k=0

wk ŷk,t; (12)

wk = e−BICk /
K

∑
k=1

e−BICk . (13)
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What is good about the combined forecast model is that it can synthesize the prediction
results of different models and overcome potential uncertainty and instability in forecasting
models. It is sometimes imperative to consider different models at the same time because
certain predictors may require the use of specific models which might not be necessarily
compatible under other models’ framework. The relevant research shows that combination
forecasting might be more stable than forecasts generated by individual models [29–32].
We follow Andreou [33] by employing four kinds of weighting functions in our combined
forecast model, i.e., the equal weights (EW), BIC, MSFE, and discounted MSFE (DMSFE).

3.5. Forecasting Accuracy Index

The models are applied to real data and their performance on the out-of-sample
forecast is evaluated. A proportion of the sample is held as a forecasting (testing) sample,
say one-third or one-fifth of the sample. A fixed window forecasting scheme is adopted
in this paper. For example, consider a one-step-ahead forecast with a forecasting sample
that is last on third of the whole sample period, denoted 1/3 L. For the first period in the
forecasting sample, T+1, where T = 2/3 L, the first T periods data are used to estimate
the model, then forecast yT+1. Next, use the fixed window, that is the first T+1 periods’
data to re-estimate the model, of course, the weights for each lag are re-estimated, which is
equivalent to re-selecting the number of lags. Then forecast yT+2, so on and so forth, and
obtain all 1/3 L out-of-sample forecasts and evaluate the prediction errors. The reason for
using a fixed window, instead of a rolling window is that the sample size is relatively small
due to the short history of the carbon emission markets in China.

The RMSE is used in this paper as a basis to measure predicted errors and the relative
accuracy of our macro prediction. The formula for calculating RMSE is given by:

RMSE =

√
1
m

m

∑
i=1

(ŷi − yi). (14)

The ratio of the RMSE of our proposed model to the RMSE of the first benchmark
model AR is denoted by rRMSE:

rRMSE =
RMSE o f underlying model

RMSE o f AR
. (15)

As a result, rRMSE < 1 indicates that our model has smaller errors, hence better
forecasting performance than AR. Both the mean absolute scaled error (MASE) and mean
absolute percentage error (MAPE) serve as auxiliary evaluation criteria.

MAPE =
1
m

m

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣; (16)

MASE =
1
m ∑m

i=1|ŷi − yi|
1

m−1 ∑m
i=2|yi − yi−1|

. (17)

Although a smaller-than-1 rRMSE confirms a better forecasting performance of our
model, it is often hard to verify whether this outperformance is statistically significant,
especially when the statistics of rRMSE is close to 1. To deal with this flow, the Diebold-
Mariano test is used here, which is a method to compare prediction accuracy and test
whether the difference is statistically significant [34]. The null hypothesis is that there is no
significant difference in prediction accuracy. Let the h-step ahead prediction error at time t
from model 1 and that from model 2 be denoted by ε1

t+h|t and ε2
t+h|t.

ε1
t+h|t = yt+h − y1

t+h|t

ε2
t+h|t = yt+h − y2

t+h|t
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H0 : E
[

L
(

ε1
t+h|t

)]
= E

[
L
(

ε2
t+h|t

)]
H0 : E[dt] = 0, dt = L

(
ε1

t+h|t

)
− L

(
ε2

t+h|t

)
H1 : E[dt] > 0, one sided test,

where L
(

ε1
t+h|t

)
is a loss function measuring the accuracy of each forecast (usually in the

form of squared error loss or absolute error loss). The Diebold-Mariano test statistic is
given by:

S =
d( ˆLRVd/T
)1/2 ∼ N(0, 1),

and ˆLRVd is a consistent estimate of the asymptotic long-run variance of
√

Td. If the p-value
of the Diebold-Mariano test statistic falls below 0.05, then we reject the null hypothesis
of equal predictive accuracy at the 5% level. We choose to conduct the one-sided test in
this study. Consequently, the alternative hypothesis is that our proposed ADL-MIDAS
model produces more accurate forecasts than the benchmark model. It is noteworthy that
we apply the DM test to the one-step-ahead forecasts only (see Section 5), and the forecast
horizon is 1 in the calculation of LRVd.

4. Data

High-frequency carbon emission trading data is investigated as macro predictors in
the present paper, including the monthly and weekly trading prices and volume. We
process these trading data by taking the first-order difference of their logarithm values. The
target variables include quarterly GDP growth and monthly manufacturing PMI growth
in China. In this form, the time series does not suffer from seasonal effects. We control
for the predictability of three common macroeconomic factors: the total value of imports
and exports, total retail sales of consumer goods, and investment in fixed assets. The time
range of the original data spans from October 2013 to December 2019, and the data is
sourced from the National Bureau of Statistics and Wind database. All variables in our
setup are in growth rate format. Except for the growth rate for carbon emissions trading
prices, all other growth rate proxies refer to the real growth rates based on constant price
levels. Table 1 lists the definitions and sources of our variables, and Table 2 includes the
corresponding summary statistics after processing. The ADF stationary test results tell us
that all processed data except total retail sales of consumer goods (cv2) are stationary at a
significance level of 10%. As the main target variable and predictors are stationary, and cv2
is used as one control variable in the combined forecast analysis, in order to be consistent
in the measurement of the variables (growth rate or percentage changes), cv2 is retained as
it is in this study.

The original data on high-frequency trading of carbon emissions in pilot Chinese
markets is available on a daily basis. To obtain comparable variables in all frequencies, we
aggregate daily transactions into weekly, monthly, and quarterly data. Although the MI-
DAS model can directly deal with mixed frequency data, it requires that the frequency ratio
between high-frequency predictor and low-frequency target variable remains unchanged.
This requirement causes some difficulties in dealing with weekly data since the number
of weeks in each month is not fixed over time. The operation manual of the R package
midasr suggests us to assume that one month has exactly four weeks [27]. So, we need to
fix the number of weeks in any given month, taking 4 observations for a month. When a
particular month has 5 observations, the first week is deleted. When there are less than
4 observations in a particular month, we use the average of the price from the previous
week and that from the next week to fill in the missing trading price. The missing trading
volume is hence recorded as 0. There are in total 4 weeks of zero volume data out of 252
observations in the weekly sample of carbon emissions trading.
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Table 1. Variable definitions and data sources.

Symbol Variable Definitions Frequency Observations Data Source

GDP GDP Growth Rate Quarterly 21

National Bureau of
Statistics of China

PMI PMI Growth Rate Monthly 63

cv1 Investment in Fixed Assets, Accumulated Growth Rate Monthly 63

cv2 Total Retail Sales of Consumer Goods, Growth Rate Monthly 63

cv3 Total Value of Imports and Exports, Growth Rate Monthly 63

mprice ∆LN(monthly trading price) Monthly 63

Wind
mamount ∆LN(monthly trading amount) Monthly 63

wprice ∆LN(weekly trading price) Weekly 252

wamount ∆LN(weekly trading amount) Weekly 252

Table 2. Stationarity test and summary statistics.

ADF Test-Statistics Lag Mean Median Max Min Standard Deviation

GDP −3.377 * 5 0.0688 0.0690 0.0770 0.0600 0.0043

PMI −1.91 * 4 −0.0026 −0.0039 0.0517 −0.0494 0.0224

cv1 −1.71 ** 5 0.0813 0.0895 0.1974 −0.0028 0.0632

cv2 −2.948 5 0.0900 0.0960 0.1220 0.0490 0.0193

cv3 −1.543 * 5 0.0094 0.0172 0.2043 −0.2102 0.0893

mprice −3.144 * 4 −0.1223 −0.1429 0.9441 −0.9697 0.3951

mamount −3.421 ** 5 0.5533 0.2874 3.7160 −1.9636 1.1103

wprice −3.428 ** 10 −0.1260 −0.1551 1.3315 −1.1697 0.4602

wamount −4.124 *** 10 0.5855 0.3672 5.4342 −3.6966 1.5009

Note: The symbols ***, **, and * represent significance under significant levels of 1%, 5%, and 10%, respectively. And all the variables in this
table are growth rate data.

5. Results
5.1. Forecasting Results for Quarterly GDP Growth

For assessing the forecasting performance, the whole dataset is divided into a training
set and a test set. The training set is used to estimate models, and the test set is used
to calculate the forecasting accuracy index and perform the test. The most recent 1/5
(denoted as 1/5 L) and the most recent 1/3 (denoted as 1/3 L) of the total sample are
chosen respectively as the test sets for robustness check.

Both single-predictor and multiple ADL-MIDAS models are considered. The pre-
dictors are the trading price change and trading amount change, both have weekly
and monthly frequencies. Thus the proposed forecasting models for GDP are (1) ADL-
MIDAS with monthly price change (mprice); (2) ADL-MIDAS with monthly amount change
(mamount); (3) multiple ADL-MIDAS with both mprice and mamount; (4) ADL-MIDAS
with weekly price change (wprice); (5) ADL-MIDAS with weekly amount change (wprice);
(6) multiple ADL-MIDAS with both wprice and wamount. Model index (1)–(6) will be used
in the tables presenting forecasting results.

Considering the short history of the carbon trading pilot market in China, thus a
relatively small sample for quarterly GDP in the relevant time horizon, the U-MIDAS
model, which means a MIDAS model without weighting scheme, is not considered. The
optimal lag order and optimal weighting scheme are determined based on AIC by the
model selection function from the R package midasr [27]. Two benchmark models are
chosen, one is the AR model without any trading data, and the other is the ADL model
with the same frequency trading data (quarterly price and amount).
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Based on the autocorrelation and partial autocorrelation of GDP growth in Figure 2, we
select the AR(1) term for the benchmark AR and ADL models, as well as for ADL-MIDAS
models. In practice, we also test AR terms with higher lag orders for the significance of the
coefficient and the fitting effect. It turns out that lag order 1 is still the most appropriate
and parsimonious choice.
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Now we are going to discuss the nowcasting of GDP. The forecasting results from the
above models are evaluated by rRMSE, both in-sample and out-of-sample forecasts, as
well as the Diebold-Mariano test for out-of-sample forecast accuracy difference between
the proposed MIDAS models and the benchmark AR model. Specifically, we choose the
one-sided test, so our alternative hypothesis in this section is that the underlying model is
more accurate than the benchmark AR model.

Firstly, according to the rRMSE results in Table 3, it can be found that the multiple ADL-
MIDAS models consistently have rRMSE smaller than 1, and outperform the benchmark
AR and ADL model in nowcasting GDP, both in-sample and out-of-sample. Specifically,
multiple ADL-MIDAS with weekly predictors generate the smallest rRMSE across all
models for in-sample prediction with both test sets. For the out-of-sample forecast, ALD-
MIDAS with mamount, and multiple ALD-MIDAS with monthly predictors generate the
smallest rRMSE, for the 1/5 L and 1/3 L test set, respectively. As for single-predictor
models, they have better in-sample performance than the benchmark AR model, but the
out-of-sample prediction performance is less stable. Except for the single-predictor model
with mamount, the out-of-sample rRMSE of the other three single-predictor models at least
once exceeded 1, which indicates that they failed to outperform the benchmark model AR
in one of the test sets. The ADL model fails to outperform the benchmark AR model for
out-of-sample forecasts in both test sets, though the in-sample performance is better than
the AR model.

Secondly, according to the Diebold-Mariano test results presented in Table 4, most MI-
DAS models previously superior to the AR model in the out-of-sample rRMSE comparison
can reject the null hypothesis at a significant level of at least 10%. For example, for the 1/3
L test set, the p-value of the multiple ADL-MIDAS model with monthly trading data is
0.0537, and the p-value of the multiple ADL-MIDAS model with weekly trading data is
0.02925, which indicates that this model has significantly better predictive accuracy than
benchmark model AR.
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Table 3. GDP nowcasting performance comparison by rRMSE.

Test Model Predictors
1/5 L as Test Set 1/3 L as Test Set

In-Sample Out-of-Sample In-Sample Out-of-Sample

(1) wprice 0.669 1.408 0.684 1.231
(2) wamount 0.888 0.762 0.667 1.272

(3) wprice, wamount
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Table 4. GDP nowcasting performance comparison by Diebold-Mariano test.

Test Model Predictors
H1: Test Model Is More Accurate than AR Model

1/5 L as Test Set 1/3 L as Test Set

(1) wprice p-value = 0.9569 p-value = 0.9918
(2) wamount p-value = 0.02901 p-value = 0.9273
(3) wprice, wamount p-value = 0.1105 p-value = 0.02925
(4) mprice p-value = 0.9082 p-value = 0.007315
(5) mamount p-value = 0.01344 p-value = 0.03328
(6) mprice, mamount p-value = 0.02232 p-value = 0.0537
ADL price, amount p-value = 0.9680 p-value = 0.6384

Tables 5 and 6 contain the estimation results of the models. The coefficients of high-
frequency price and amount variables are calculated based on the estimated weighting
parameters in MIDAS models. Consistent with the former results, multiple ADL-MIDAS
models except that using monthly transaction data for 1/3 L test set, yield more significant
lag coefficients for the high-frequency predictors, thus outperform the single-predictor
ADL-MIDAS and the benchmark models. Moreover, evaluated by the AIC statistics,
multiple ADL-MIDAS models also have smaller information loss than single-predictor
ADL-MIDAS, except MIDAS with mprice and mamount for 1/3 L forecasting sample. The
Jarque-Beta normality test and the Ljung-Box Q test of serial autocorrelation are conducted
on residuals. The order of the Ljung-Box Q test is selected as min{floor(n/2)-2,40}. Test
results indicate that, for all models and both forecasting samples, residuals satisfy the
normality assumption, and are not auto-correlated, on the 5% significance level.

As for the small differences in the prediction performance and model fitting between
the weekly predictors and the monthly predictors, it may be closely related to the character-
istics of the carbon emissions market in China. That is, ADL-MIDAS models with monthly
trading data have slightly smaller rRMSE and more significant advantage in prediction
accuracy, though less significant predictors. Figure 3 shows the trend of quarterly, monthly,
and weekly trading amount data. It can be found that there is usually more transaction at
the mid and the end of the year. Generally speaking, the companies are more likely to make
the trading decision at a relatively fixed month instead of a certain week. That is, when the
companies decide to buy or sell carbon allowances based on their production status in the
last period, it might be no difference in trading this week or next week. Another possibility
of ineffective information in weekly or even higher frequency data is that the market is not
mature yet, and thus the quality of trading data is poor due to the low liquidity, etc. On
some trading days, the trading amount is extremely small. And when companies decide
to buy or sell carbon allowances, they might fail to find a counterparty due to the low
liquidity. That is why the daily trading data are not used as predictors, and weekly trading
data may also contain some invalid information.
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Table 5. Estimation results for GDP forecasting models (1/5 L as test set).

Variables
Weekly Trading Data Monthly Trading Data

ADL AR
(1) (2) (3) (4) (5) (6)

GDPt–1
0.5463 ***
(0.1522)

0.914 ***
(0.2552)

0.8244 ***
(0.1042)

0.5291 ***
(0.1332)

0.9444 **
(0.4047)

0.7161 **
(0.2613)

0.5692 ***
(0.0980)

0.7795 *
(0.4403)

amount1 −0.0466 *
(0.0257)

−0.1255 ***
(0.0285)

−0.0799
(0.0483)

−0.1951 ***
(0.0196)

−0.0281 **
(0.0100)

amount2 0.3401
(0.3250)

0.0657 *
(0.0330)

−0.0904
(0.3797)

0.1783 ***
(0.0189)

amount3 −0.0365 ***
(0.004)

price1 −0.3272 ***
(0.0494)

−0.3569 ***
(0.0576)

−0.3283 ***
(0.0337)

−0.3846 *
(0.1718)

−0.1782 **
(0.0725)

price2 0.1077 ***
(0.0321)

0.0694 **
(0.0257)

0.3949 ***
(0.1108)

0.2568 *
(0.1172)

−0.0983
(0.1025)

price3 −0.0375 *
(0.0153)

Intercept 3.0393 **
(1.0701)

0.5725
(1.7935)

1.1507
(0.7278)

3.148 ***
(0.9381)

0.3695
(2.8272)

1.9048
(1.8125)

2.9002 ***
(0.688)

1.4795
(3.1343)

AIC −30.070 −24.435 −36.400 −25.370 −20.725 −33.177 −25.796 −23.900
JB 0.425 0.665 0.171 0.251 0.705 0.768 0.341 0.724
LB Q 0.612 0.435 0.262 0.481 0.212 0.057 0.355 0.563

Note: The symbols ***, **, and * represent significance under significant levels of 1%, 5%, and 10%, respectively. The standard error of the
parameter is in parentheses. JB is the p-value for the Jarque-Bera normality test on the residuals, LB Q is the p-value for the Ljung-Box Q
test of the serial correlation on the residuals.

Table 6. Estimation results for GDP forecasting models (1/3 L as test set).

Variables
Weekly Trading Data Monthly Trading Data

ADL AR
(1) (2) (3) (4) (5) (6)

GDPt−1
0.4229 ***
(0.0845)

0.3566 **
(0.1534)

0.965 ***
(0.0395)

0.4831 *
(0.2435)

0.8333 ***
(0.1052)

0.8748 ***
(0.1522)

0.4354 **
(0.1838)

0.5393 ***
(0.0786)

amount1 −0.0088 *
(0.0040)

0.0864 ***
(0.0097)

−0.0661 ***
(0.0155)

−0.0683 **
(0.0217)

−0.0150
(0.02)

amount2

−2.62 ×
10−5

(7.06 ×
10−4)

−0.0709 ***
(0.0072)

5.0838
(38.1961)

2.5948
(5.3568)

amount3
3.10 × 10−5

(2.24 ×
10−5)

0.0094 ***
(0.0009)

price1 −0.2114 ***
(0.0284)

−0.1762 ***
(0.0268)

−0.1635 ***
(0.0399)

−0.0583
(0.0446)

−0.0420
(0.0528)

price2 0.1148 ***
(0.0200)

0.0353 ***
(0.0054)

2.6137
(5.3759)

−1.9371
(3.6016)

−0.1190
(0.0664)

price3 −0.012 ***
(0.0023)

−0.0014 ***
(0.0002)

Intercept 3.9885 ***
(0.5974)

4.4276 ***
(1.0527)

0.2296
(0.2691)

3.5127 *
(1.70000)

1.1876
(0.7262)

0.8938
(1.0490)

3.8608 **
(1.2845)

3.1764 ***
(0.5586)

AIC −32.145 −33.747 −47.471 −28.673 −32.563 −30.175 −26.731 −31.923
JB 0.071 1.363 0.191 0.125 0.805 0.319 0.861 0.651
LB Q 0.883 0.582 0.091 0.392 0.756 0.649 0.642 0.231

Note: The symbols ***, **, and * represent significance under significant levels of 1%, 5%, and 10%, respectively. The standard error of the
parameter is in parentheses. JB is the p-value for the Jarque-Bera normality test on the residuals, LB Q is the p-value for the Ljung-Box Q
test of the serial correlation on the residuals.
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In summary, compared with the benchmark model AR and ADL model using the
same frequency trading data, the single-predictor and multiple ADL-MIDAS models
using high-frequency carbon emission trading data improve in-sample and out-of-sample
nowcasting performance. This indicates that adding trading data might improve quarterly
forecasts of real GDP growth, and the MIDAS models could be helpful to make better
use of the effective information in high-frequency indicators. As for single-predictor and
multiple ADL-MIDAS models, the multiple ADL-MIDAS models using both trading price
and trading amount as predictors outperform the single-predictor model with only one
predictor. Besides, considering the cycle of carbon trading decision-making and the low
liquidity of the current carbon emissions trading data, monthly trading data might be more
stable as predictors for quarterly GDP growth forecast than weekly trading data.

Furthermore, we extend the discussion to h-step ahead GDP forecast with the multiple
ADL-MIDAS. Recall that when h = 0, our model specification becomes a typical nowcast or
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real-time forecast; and when predicting the GDP growth of the first quarter, h = 1/3 step
means that the lasted data of predictors starts from February, whereas h = 2/3 step means
that the lasted data of predictors starts from January.

Table 7 shows the nowcast and h-step ahead forecast of multiple ADL-MIDAS models
compared to benchmark model AR(1). It is found that when h < 1, ADL-MIDAS models
have a dominant advantage in the out-of-sample forecast with monthly trading data. That
indicates that the MIDAS models perform better in nowcasting. The possible reason is that
the high-frequency data has a large amount of real-time transaction information, most of
which may become outdated in forwarding prediction.

Table 7. Nowcast and H-step ahead GDP forecast from M-MIDAS (1/3 L as test set).

Model Forecast Horizon In-Sample Out-of-Sample

RMSE rRMSE RMSE rRMSE

M-MIDAS
(Monthly trading data)

h = 0 0.0384 0.6148 0.2443 0.6582
h = 1/3 0.0460 0.7361 0.1831 0.4933
h = 2/3 0.0460 0.7366 0.1796 0.4839
h = 1 0.0487 0.7806 0.2535 0.6829
h = 2 0.0599 0.9587 0.7439 2.0043

M-MIDAS
(Weekly trading data)

h = 0 0.0367 0.5873 0.2774 0.7473
h = 1/3 0.0193 0.3095 0.3029 0.8161
h = 2/3 0.0216 0.3465 0.4622 1.2452
h = 1 0.0240 0.3842 0.7486 2.0169
h = 2 0.0292 0.4671 0.4028 1.0852

AR
h = 1 0.0625 1.0000 0.3712 1.0000
h = 2 0.0778 1.2454 0.5527 1.4890

Last but not least, the combined forecast is examined. We use a combination forecast
to explore whether the groups adding high-frequency trading data have better forecasting
performance than the groups with only common monthly macroeconomic factors. Besides
the usefulness of the combined forecast discussed in Section 3.4, another important reason
for choosing a combination forecast is to address the problem of lack of degrees of freedom.
For example, adding three factors directly in the multiple ADL-MIDAS models would
increase the number of parameters by 6 to 9. And too many parameters will affect the
accuracy of the estimation considering the limited sample size.

We use the growth rate of the following three common macroeconomic factors: invest-
ment in fixed assets (cv1), total retail sales of consumer goods (cv2), and the total value of
imports and exports (cv3). Each of these three control variables is added to the multiple
ADL-MIDAS in Equation (5) respectively, as additional predictors besides carbon emission
trading variables. As a result, three new multiple ADL-MIDAS models are obtained. Their
forecast is subsequently combined weighting by EW, BIC, MSFE, and DMSFE, respectively.
Finally, the prediction accuracy of the combined forecast is evaluated and compared to that
of single-predictor ADL-MIDAS as well as the benchmark AR model. Similarly, the total
dataset was split into a training set and a test set, and 1/5 L and 1/3 L test set lengths are
considered respectively. Nowcasting is still the focus, that is, we use the current trading
data to predict the GDP growth in current period. However, the latest data of three factors
start from one month ago due to the delay in publication time. For example, when pre-
dicting the first-quarter GDP growth at the end of March, the latest trading data available
starts in March, but the latest data of the chosen macroeconomic factors start in February.

Group (1) is the benchmark group, containing three single-predictor models, each
with one monthly macroeconomic factor. Group (2) adds the multiple ADL-MIDAS model
with monthly trading data as the fourth model. And Group (3) adds the multiple ADL-
MIDAS model with weekly trading data as the fourth model. The weighted average of the
predictions from the models within one group is the final forecast from each group.
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Tables 8 and 9 show the out-of-sample performance of different groups. It is obvious
that all the groups outperform the AR model. As for the four weighting functions in the
combination forecast, it can be found that for the 1/5 L test set, both BIC and EFMSE
are more efficient weighting function, and for the 1/3 L test set, BIC weighting is the
most efficient, by generally generating smallest error measurements. Specifically, for the
1/5 L test set, both Group (2) and Group (3) show smaller rRMSE than the benchmark
Group (1), especially with BIC weighting. For the 1/3 L test set, the BIC weighting
out-of-sample performance of Group (2) and Group (3) stays similar to the benchmark
Group (1). But for the other three weighting functions, Group (2) and Group (3) still
outperform the benchmark Group (1), indicating that the groups containing high-frequency
predictors have more stable forecasting performance. Thus, even taking common and
useful macroeconomic predictors into consideration, it is still helpful to introduce high-
frequency carbon emission trading data as new predictors.

Table 8. Out-of-Sample performance of combination forecasts for GDP by different groups (1/5 L as
test set).

Selection Criteria rRMSE rMAPE rMASE

GROUP (1) (2) (3) (1) (2) (3) (1) (2) (3)

EW 0.993 0.901 0.933 0.876 0.823 0.835 0.866 0.815 0.827
BICW 0.998 0.788 0.799 0.976 0.769 0.715 0.972 0.768 0.712
MSFE 0.924 0.828 0.865 0.834 0.771 0.792 0.825 0.765 0.785
DMSFE 0.923 0.824 0.863 0.833 0.768 0.791 0.823 0.762 0.784

AR 1 1 1

Table 9. Out-of-Sample performance of combination forecasts for GDP by different groups (1/3 L as
test set).

Selection Criteria rRMSE rMAPE rMASE

GROUP (1) (2) (3) (1) (2) (3) (1) (2) (3)

EW 0.882 0.807 0.844 0.868 0.805 0.829 0.867 0.807 0.828
BICW 0.637 0.635 0.747 0.599 0.599 0.711 0.598 0.598 0.713
MSFE 0.784 0.716 0.768 0.768 0.716 0.752 0.767 0.720 0.752
DMSFE 0.786 0.712 0.769 0.770 0.712 0.753 0.769 0.716 0.752

AR 1 1 1

5.2. Forecasting Results for Monthly Manufacturing PMI Growth

To address possible concerns about the previous results due to the limited sample size,
in this section, the monthly PMI growth is used as a new target variable and therefore there
are three times more data points. Based on the autocorrelation and partial autocorrelation
of PMI growth in Figure 4, we select the AR (1) model as the benchmark model. In practice,
we also test AR models with higher lag orders larger and AR (1) is still turned out an
appropriate choice considering the significance of the coefficient and the model fitting.

Due to limited space, we only consider 1/3 of the total sample size as the test set.
Monthly PMI growth is the target variable, monthly trading data (mprice, mamount) become
the same frequency predictors in the ADL model. Thus, weekly trading data (wprice,
wamount) are used as high-frequency predictors in the single-predictor and multiple ADL-
MIDAS models.

Table 10 provides rRMSE results for PMI growth forecasts. Compared with benchmark
model AR, the multiple ADL-MIDAS model using both high-frequency predictors of the
weekly trading price change and trading amount change and the single-predictor ADL-
MIDAS model using only weekly trading price change, improve in-sample and out-of-
sample prediction performance. The ADL model with the same frequency trading data
and the single-predictor ADL-MIDAS model using only weekly trading amount change,
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perform well in-sample but fail to outperform the AR model out-of-sample. Besides, the
multiple ADL-MIDAS model consistently yields smaller rRMSE than the single-predictor
ADL-MIDAS model. This conclusion is similar to that of the quarterly GDP growth forecast.
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Table 10. PMI nowcasting performance comparison by rRMSE.

Model Independent Variables In-Sample
Out-of-Sample

Fixed Window Rolling Window Recursive Window

MIDAS wprice 0.9456 0.9657 0.9860 0.9803
MIDAS wamount 0.8593 1.0811 1.0481 1.0700
M-MIDAS wprice, wamount 0.7733 0.8916 0.9255 0.8973
ADL mprice, mamount 0.8480 1.0561 1.0702 1.0587
AR 1 1 1 1

Table 11 shows the Diebold-Mariano test results. Although the out-of-sample rRMSE
of the ADL model using the same frequency trading data is slightly bigger than 1, the p-
value of the Diebold-Mariano test statistic is 0.64 and we can’t reject the null hypothesis that
the two benchmarks, the ADL model and the AR model, have equal prediction accuracy.
For the multiple ADL-MIDAS model using weekly trading data, the Diebold-Mariano
test results show that it is significantly better than the ADL model (p-value of 0.06 rejects
the null hypothesis of equal prediction accuracy at the 10% significance level), but not
significantly better than the AR model (p-value of 0.18 fails to reject the null hypothesis of
equal prediction accuracy at the 10% significance level).

Table 11. PMI nowcasting performance comparison by Diebold-Mariano test (fixed window).

H1: Test Model Is More Accurate than Benchmark Model

Test Model Predictors AR as Benchmark Model ADL as Benchmark Model

MIDAS wprice p-value = 0.3534 p-value = 0.2215
MIDAS wamount p-value = 0.7532 p-value = 0.5853
M-MIDAS wprice, wamount p-value = 0.1765 p-value = 0.06173

It is not surprising that monthly trading data might be a more stable predictor for
quarterly GDP growth forecast than weekly trading data, while weekly trading data is a
better predictor for monthly PMI growth. The possible reason might be that the information
contained in the monthly carbon emission trading data often correspond to the production
status for a longer period. On the other hand, the companies are more likely to make the
trading decision at relatively fixed months at the mid and the end of the year based on
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their production status in the last period. So, weekly trading data might contain more
information related to the current month, while monthly data contains information for a
longer period.

Table 12 provides the results of coefficient estimation. Compared with the benchmark
models AR, ADL, and the single-predictor MIDAS models, the multiple ADL-MIDAS
model has more significant coefficients. This is consistent with the out-of-sample forecasting
performance. However, evaluated by AIC, the ADL-MIDAS with wamount turns out to
have the least information loss among the five models. Jarque-Bera normality test results
again confirm that the residuals from all models satisfy the normality assumption. Ljung-
Box Q test results show that, except for the ADL-MIDAS with wamount, all the other models
have no auto-correlated residuals.

Table 12. Estimation results for PMI forecasting models.

Variables (1) (2) (3) ADL AR

PMIt−1
0.8987 ***
(0.0689)

0.8941 ***
(0.8941)

0.8811 ***
(0.0675)

0.8758 ***
(0.0779)

0.8850 ***
(0.0709)

price1 −1.4180 **
(0.6070)

−0.1204
(0.0954)

−0.7711
(0.7990)

price2 0.4436
(0.4345)

0.0631 **
(0.0249)

−1.0234
(0.6381)

price3 −0.0049 ***
(0.0016)

amount1 −0.1241
(0.0899)

2.7905 *
(1.4373)

−0.0969
(0.1870)

amount2 0.0615 **
(0.0244)

−2.2288 *
(1.0968)

0.3283 **
(0.1455)

amount3 −0.0048 ***
(0.0015)

0.3527 **
(0.1693)

−0.3464 **
(0.1304)

Intercept −0.2650
(0.1897)

0.2029
(0.1670)

0.1287
(0.1252)

−0.2800
(0.2088)

0.0896
(0.1447)

AIC 104.726 97.121 101.711 106.353 113.900
JB 0.260 0.184 0.627 0.413 0.658
LB Q 0.294 0.004 0.201 0.185 0.257

Note: The symbols ***, **, and * represent significance under significant levels of 1%, 5%, and 10%, respectively.
The standard error of the parameter is in parentheses. JB is the p-value for the Jarque-Bera normality test on the
residuals, LB Q is the p-value for the Ljung-Box Q test of the serial correlation on the residuals.

Besides, we select different estimation windows in this part. It seems that the fixed
window has better out-of-sample prediction performance than the recursive window or
rolling window, though the difference is not obvious. This might be related to the algorithm
settings. For recursive window and rolling window, the parameters would be recalculated
with new data, but the lag orders and the weight schemes are determined at the beginning.

Since there more observations for PMI than GDP in this sample period, the U-MIDAS
model without constraints is also taken into consideration. Table 13 shows the in-sample
and out-of-sample rRMSE of the multiple ADL-MIDAS models and the corresponding
U-MIDAS models with the same lag but no weighting scheme. As mentioned before,
we select three types of weighting schemes: Almon polynomial (almonp), exponential
Almon polynomial (nealmon), and Beta distribution polynomial (nbeta). For the two
high-frequency predictors in multiple models, we get nine candidate ADL-MIDAS models
with different combinations of weighting schemes. It can be found that all nine candidate
ADL-MIDAS models have smaller out-of-sample RMSE than the benchmark model AR,
indicating that adding high-frequency trading data is indeed helpful. Specifically, the
multiple ADL-MIDAS model in the previous analysis is the fifth ADL-MIDAS model in
Table 13, and it is selected by AIC, in-sample RMSE, and significance of the coefficients.
The U-MIDAS models show advantages in-sample, but the ADL-MIDAS models with
weighting schemes have smaller out-of-sample RMSE. It is consistent with the discussion
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of the weighting scheme in Section 3. Although the U-MIDAS model can retain the
information in the data to the largest extent, excessive consumption of degrees of freedom
might cause considerable efficiency loss. What’s more, there are nine different combinations
of weighting schemes and it could be the case that none of them constitute an appropriate
constraint, so even incorrect constraints might be useful when the sample size is small.

Table 13. PMI nowcasting performance of M-MIDAS and U-MIDAS by rRMSE.

In-Sample Out-of-Sample
Weighting Scheme

M-MIDAS U-M-MIDAS M-MIDAS U-M-MIDAS

1 0.8829 0.7514 0.8531 1.0743 nealmon & nealmon
2 0.8272 0.4164 0.9773 2.3280 nealmon & almonp
3 0.8829 0.8267 0.8530 0.8819 nealmon & nbeta
4 0.8048 0.6797 0.9853 1.0934 almonp & nealmon
5 0.7733 0.6307 0.8916 1.4749 almonp & almonp
6 0.9082 0.7481 0.9881 1.1403 almonp & nbeta
7 0.8712 0.7234 0.8607 1.2745 nbeta & nealmon
8 0.8426 0.6797 0.9658 1.0934 nbeta & almonp
9 0.9083 0.5327 0.9004 1.1936 nbeta & nbeta

In sum, the results of using trading data to forecast monthly manufacturing PMI
growth show that the multiple ADL-MIDAS models with high-frequency carbon emission
trading data improve the out-of-sample prediction accuracy beyond the AR model and
ADL model using the same frequency trading data. And the conclusion is consistent with
the previous results in the forecast of quarterly GDP growth.

6. Conclusions

Since the establishment of the pilot carbon emissions trading in 2013, the high-
frequency carbon emissions trading data has been available. This paper provides a pre-
liminary analysis and discussion on the quality of carbon emissions trading data as a
predictor for macroeconomic indicators. With the national carbon emissions trading system
of China officially launched in 2021, the quality of carbon trading data will continue to
improve. Existing research of China’s carbon market focuses on the pricing mechanism,
thus our work fills the gap in the area of the application of carbon trading data. Containing
information about the state of the economy and available on a daily basis without time lag,
the high-frequency carbon emission trading data have the potential to be good predictors
in macro forecasts.

The method chosen in this study is MIDAS, which can directly deal with data sampled
at different frequencies and retaining the effective information in the high-frequency
indicators. Monthly and weekly trading price change and trading amount change of carbon
emissions market are chosen as high-frequency indicators to establish single-predictor
and multiple ADL-MIDAS models, to predict quarterly GDP growth rate and monthly
PMI growth rate. The forecasting performance of competing models is evaluated with
both rRMSE and Diebold-Mariano test. By comparing with a benchmark AR model, we
find models with high-frequency carbon emission trading data have better forecasting
performance than models without trading data. By comparing with the ADL model using
the same frequency carbon emission trading data, we find models with high-frequency
carbon emission trading data have better forecasting performance than models with the
same frequency trading data. Combination forecasting methods are also adopted to predict
GDP growth rate, the results find the combination forecasts from the groups containing
high-frequency trading data have better forecasting performance than the groups with only
common macroeconomic factors. Thus, it is still useful to introduce high-frequency carbon
emission trading data as new predictors; even same-frequency macroeconomic predictors
have already done a good job. Further analysis of the nowcast and h-step ahead forecast
with MIDAS models, we found that the advantage of MIDAS models lies in nowcasting.
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The possible reason is that the high-frequency data has a large amount of information and
therefore has more outdated information in forwarding prediction.

Concerning the forecast of monthly manufacturing PMI growth rate, it can be shown
that the multiple ADL-MIDAS models with high-frequency weekly carbon emission trading
data improve the out-of-sample prediction accuracy beyond the AR model and the ADL
model using the same frequency trading data. The conclusion is consistent with the
previous results in the forecast of quarterly GDP growth.

The results of this study can be improved with more data availability and higher
data quality after the official launch in the following ways. Firstly, there will be more
flexible choices of multiple models and higher credibility of statistical results. Secondly,
with enhanced liquidity in a more actively traded carbon market, daily trading data may be
employed as a predictor. Thirdly, the analysis of this study is based on public information,
with more companies trading in the market; it is possible to visit companies to collect
detailed information of carbon trading decisions. Last but not least, the macro data are
obtained from the official website of the National Bureau of Statistics of China. Considering
the problem of data revision, using real-time data might be more practical for nowcasting.
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