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Abstract: The optimal reactive power dispatch (ORPD) problem represents a fundamental concern 

in the efficient and reliable operation of power systems, based on the proper coordination of numer-

ous devices. Therefore, the ORPD calculation is an elaborate nonlinear optimization problem that 

requires highly performing computational algorithms to identify the optimal solution. In this paper, 

the potential of metaheuristic methods is explored for solving complex optimization problems spe-

cific to power systems. In this regard, an improved salp swarm algorithm is proposed to solve the 

ORPD problem for the IEEE-14 and IEEE-30 bus systems, by approaching the reactive power plan-

ning as both a single- and a multi- objective problem and aiming at minimizing the real power losses 

and the bus voltage deviations. Multiple comparison studies are conducted based on the obtained 

results to assess the proposed approach performance with respect to other state-of-the-art tech-

niques. In all cases, the results demonstrate the potential of the developed method and reflect its 

effectiveness in solving challenging problems. 

Keywords: optimal reactive power dispatch; power loss minimization; voltage deviation; salp 

swarm algorithm; current mismatch Newton-Raphson 

 

1. Introduction 

Ensuring an adequate amount of reactive power (var) is essential for the reliable op-

eration of power transmission systems, as the var insufficiency may lead to severe voltage 

collapse and major power interruptions [1]. Including various regulation procedures, re-

active power planning has become a challenging issue that contributes to the secure and 

economic development of power systems [2]. The optimal reactive power dispatch can be 

addressed as a single- or multi-objective problem aiming at the total generation cost re-

duction reflected in the active power losses minimization. This goal is achieved by the 

proper coordination of various control equipment, such as the reactive output of genera-

tion units, transformers’ tap settings and the static var compensator operation, while re-

sponding to the functioning constraints of the power grid. Considering the continuous 

and discrete variables that define the reactive power planning, highly performant algo-

rithms are needed in order to solve the resulting nonlinear optimization problem [3]. Var-

ious optimization methods have been proposed over years in literature for solving the 

ORPD problem. Initially, classical optimization methods including the gradient method 

[4], linear programming [5], interior point [6] or nonlinear programming [7], have been 

used to solve the reactive power planning problem. Nonetheless, the complex infrastruc-

ture of power systems, implying the control of numerous types of resources, brings chal-

lenges in finding the optimal solution by applying these algorithms. In order to deal with 

the numerous decision variables that define the ORPD problem, the implementation of 

new advanced methods is required. In this regard, recent studies propose the approach 

of meta-heuristic algorithms, such as genetic algorithms [8], the gravitational search algo-

rithm [9], the differential search algorithm [10] or the moth-flame optimization [11]. Meta-
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heuristic algorithms are distinct from deterministic methods as they are capable of sys-

tematically driving the solution during the computation process to the nearest possible 

optimal solution position, avoiding the convergence to local optima at an early stage. No 

matter the type of the decision variables, the solution is continuous, as the results for both 

discrete and integer variables are rounded off to obtain a plausible solution. The final so-

lution is further obtained based solely on the actual continuous variables. The newly re-

sulted solutions may be far from the global optimal or unfeasible. In order to reduce the 

probability of stagnation in local minima, numerous metaheuristic algorithms have been 

developed over years, each with specific strategies for the solution space exploration in 

search of the global optimum. Numerous previous studies approach the ORPD problem 

as the optimization of one objective function or of two objective functions computed sep-

arately. For a more detailed analysis of reactive power planning, recent works define the 

ORPD as a multi-objective optimization problem, focusing on the power losses reduction, 

bus voltage setting, as well as voltage stability issues. Numerous real-world problems re-

quire the optimization of conflicting multiple objectives, including minimizing or maxim-

izing synchronously [12], which leads to a set of solutions that compose the so-called Pa-

reto front. For an improved spreading of the solutions over the Pareto front, current re-

search relies more and more on the implementation of metaheuristic techniques for solv-

ing these complex problems. Many studies proposed multi-objective approaches, such as 

the non-dominated sorting genetic algorithm [13], the multi-objective particle swarm op-

timization [14] or the strength pareto evolutionary algorithm [15], in order to solve the 

ORPD problem. The salp swarm algorithm (SSA) is a novel nature-inspired optimizer rec-

ommended for solving single and multiple objectives, defined by high convergence and 

coverage [16]. Considering these features, recently, this new metaheuristic technique finds 

its use also in the power systems sector. In [17], the salp swarm optimization algorithm is 

applied for developing an intelligent and robust controller for islanded microgrids, the 

optimal allocation of wind-based distributed generation in existing networks is deter-

mined in [18] based on SSA, a convolutional neural network is used in conjunction with 

SSA in [19] for power forecasting of photovoltaic systems, while authors of [20] propose 

a modified version of the algorithm to solve the optimal power flow problem in transmis-

sion systems. As the need of reliable metaheuristic optimizers continues, the authors of 

this paper propose an improved salp swarm algorithm aiming at increased efficiency and 

consistency in identifying the optimal solution. The main contribution of this work can be 

summarized as follows: 

1) Solving the ORPD, both as a single- and multi- objective problem, based on a novel 

optimization technique, namely the salp swarm algorithm. 

2) Improvement of the original algorithm tested on 23 frequently used benchmark func-

tions. 

3) The validity of the proposed model for total power loss reduction and voltage profile 

enhancement. 

The rest of the paper is organized as follows: Section 2 is dedicated to a brief descrip-

tion and the mathematical formulation of optimal reactive power dispatch (ORPD) prob-

lem. The optimizer implementation is further described in Section 3 along with a short 

description of the SSA model and proposed improvements. The simulation results and 

the techniques comparison on the IEEE 14-bus and IEEE 30-bus test systems are provided 

in Section 4. Finally, Section 5 presents the conclusions of the study and outlines the future 

works. 

2. ORPD Problem Formulation 

The ORPD problem can be formulated as a single- or multi-objective problem aiming 

to determine the optimal settings of the decision variables in order to minimize the vari-

ous objectives, while satisfying various equality and inequality constraints. The decision 

variables that define the ORPD problem include the control settings for the reactive power 
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and the bus voltage. Therefore, the vector of independent variables, x, contains the reac-

tive power output of the generators, the functional settings of the capacitors banks (CB) 

and the transformers’ operating tap ratios, while the vector of dependent variables, de-

noted by y, includes the active power injected by the slack bus, Pslack, the voltage at each 

load bus and the current flow through transmission power lines. Accordingly, x and y can 

be expressed as follows: 

, ,[ , , ]
G CB TG N CB N Nx Q N T  (1) 

[ , , ]slack N ijy P V I  (2) 

2.1. Objective Functions 

Two objectives have been considered in this paper, namely the active power losses 

and bus voltage deviations, as they represent basic concerns in both transmission and dis-

tribution systems operation, considering the involved derived economic loss and reliabil-

ity problems. 

2.1.1. Function 1: Total Active Power Losses 

The first objective function, F1, addresses the economic aspects of the reactive power 

planning problem by aiming to minimize the total active power losses in the system. In 

this study, the active power losses are computed by subtracting from the slack bus power 

injection the difference between the active power demand, PD,i, and the active power out-

put of deployed generators, PG,i, while N denotes the set of buses in the system: 

1 , ,min  slack D i G i

i N i N

F P P P
 

 
   

 
   (3) 

2.1.2. Function 2: Bus Voltage Deviation 

The second objective function, F2, addresses the quality aspects of the power supply 

in solving the ORPD problem, focusing on the voltage profile enhancement. Monitoring 

the bus voltage across the system is a highly important security concern for maintaining 

an adequate reactive power reserve. In this regard, the objective aims at the voltage mag-

nitude deviation reduction with respect to a predefined reference value, 𝑉𝑖
𝑟𝑒𝑓

, as follows: 

2min  
L

ref

i i

i N

F V V


   (4) 

where NL is the set of load buses. 

2.1.3. Multi-Objective Approach 

The proper functioning of power systems is based on engineering optimization solu-

tions that often pursue conflicting objectives. Under these conditions, the application of 

techniques for simultaneous optimization of opposite goals can be a challenge in identi-

fying a compromise solution. In this study, the ORPD calculation is also investigated as a 

multi-objective problem, aiming at the simultaneous minimization of total power losses 

and bus voltage deviation: 

1 2min  ( , )F F
 

(5) 

2.2. Equality Constraints 

For the proper functioning of the system, the load flow equations must be met re-

gardless of the operating conditions. Representing the equality constraints of the optimi-
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zation problem, the load flow equations are calculated in this paper using the current mis-

match and Cartesian coordinates of the Newton-Raphson method (presented in Section 

3.1), considering its efficiency in terms of computation performance corresponding to the 

transmission networks features. 

2.3. Inequality Constraints 

The inequality constraints of the ORPD problem define the operational restrictions 

of the various devices involved, including the capacitor banks and the generators func-

tional constraints, the transformers’ tap settings, as well as the bus voltage and lines ca-

pacity limits. 

2.3.1. Generator Constraints 

The operation restriction of generators involves the maintenance of their reactive 

power output within the interval delimited by its upper and lower boundaries, given by: 

min max

, , , ,    G i G i G i GQ Q Q i N     (6) 

where NG denotes the set of buses where the generators are installed in the system. 

2.3.2. Capacitor Banks Constraints 

The reactive power compensated by the shunt capacitor banks is restricted within the 

upper and lower limits, as follows: 

min max

, , , ,   CB i CB i CB i CBQ Q Q i N     (7) 

where NCB represents the set of buses where the capacitor banks are connected. 

2.3.3. OLTC Transformers Constraints 

Transformer’s tap operation settings can vary between the minimum and maximum 

available value: 

min max ,   1...i i i TT T T i N     (8) 

where NT is the number of transformers. 

2.3.4. Load Bus Voltage Constraints 

Under any condition, the bus voltage magnitude at each load bus i must be main-

tained within the admitted minimum and maximum boundaries, as formulated below: 

min max ,   i i i LV V V i N     (9) 

2.3.5. Lines Transmission Capacity 

The current crossing the power lines must be restricted within their thermal limits, 

in order to avoid the lines overloading: 

max ,   ,ij ijI I i j N    (10) 

where ij is the index for the transmission line connecting buses i and j. 

3. Model Implementation 

3.1. Load Flow Calculation 

The power flow computation represents the most important tool for power grid op-

eration, as it determines the steady state conditions of the system. The power flow results 

underlie any operation, control or planning analysis. There are numerous methods that 
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can be applied in load flow computation, among which the Newton power flow method 

is preferred in terms of quadratic convergence and robustness [21]. Based on the problem 

formulation (power or current mismatch computation) and coordinates (Cartesian, polar 

or complex form), the Newton–Raphson method can be applied as six different ap-

proaches in solving the power flow problem [22]. 

In this paper, the current mismatch formulation of Newton-Raphson method is im-

plemented for load flow calculation using Cartesian coordinates representation of the 

state variables, introduced in [23], where the Jacobian matrix is composed of 2 × 2 blocks. 

The real and imaginary parts of the current mismatch can be expressed as follows: 

   
 2 2

1

      ,
sp re sp im N

re re imi i i i
i ij j ij j

re im
j

i i

P V Q V
I G V B V i j N

V V 


     


  (11) 

   
 2 2

1

      ,
sp im sp re N

im im rei i i i
i ij j ij j

re im
j

i i

P V Q V
I G V B V i j N

V V 


     


  (12) 

where 
sp

iP  and 
sp

iQ are the specified active and reactive power at bus i, while Gij and Bij 

represent the conductance and susceptance between bus i and bus j. 

Based on Equations (11) and (12), the partial derivatives of the current mismatches 

can be computed with respect to the real and imaginary parts of the voltage, 𝑉𝑖
𝑟𝑒and 𝑉𝑖

𝑖𝑚, 

using the formulas centralized in Table 1. The major advantage of the Cartesian represen-

tation in the current mismatch Newton-Raphson is given by the off-diagonal elements of 

the Jacobian, which are equal to elements in the nodal admittance matrix. Therefore, they 

can be computed before starting the iterative process, which leads to a reduction of the 

required computational effort. 

Table 1. Partial derivatives in the current mismatch load flow formulation considering Cartesian 

coordinates. 
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Numerous studies of the ORPD problem consider the specified voltage at generator 

buses as a control variable [24–29]. In the proposed model, the control variable for gener-

ators (except for the slack bus) is the reactive power setpoint, which operates within the 

specified limits, thus the load flow method can only consider PQ type buses. Without the 

requirement of checking reactive power boundaries of PV buses during the iterative pro-

cess, a faster convergence of the load flow calculation is assured. 

3.2. Salp Swarm Optimization 

Salps are a species of marine organisms from the family of Salpidae, with similar 

appearance to jellyfish. In the process of searching food, salps exhibit a swarm behavior, 

forming a salp-chain, which inspired the salp swarm algorithm (SSA) proposed by Mir-
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jalili et al. in [16]. The population in a salp-chain consists of a leader and a group of fol-

lowers, where the leader searches for a food source and the followers change their position 

with respect to the salp ahead of them, and consequently to the leader. Considering an 

optimization problem with n variables, and xi the position of salp i, represented by a vec-

tor of n elements xi = [x1i, x2i, …, xni], the leader of the salp-chain updates its position using 

the following equation: 

  

  

1 2 3
1

1 2 3

,  >0.5 

,  0.5 

j j j j

j

j j j j

F c ub lb c lb c
x

F c ub lb c lb c

   


 
   



 (13) 

where Fj is the value in the jth dimension of the food source F (the best known position), 

ubj and lbj are the upper bound and lower bound, respectively, in the jth dimension and 

parameters c2 and c3 are randomly generated numbers in the interval [0,1]. Parameter c1 is 

computed using the following equation: 

2
4

1 2

t

Tc e

 
 
   (14) 

where t is the current iteration and T is the total number of iterations. 

Once the leader’s position is updated, the followers are changing their position using 

the equation below: 

 
1

2

i i i j

j j jx x x    (15) 

where xji is the position in jth dimension of salp i, with 2 ≤ i ≤ n. 

Parameter c1 is crucial for the SSA model, as it influences both the exploration and 

exploitation of the solution space for the optimization problem. The iterative process be-

gins with high values for c1, which allows higher random modifications to the leader’s 

position, emphasizing the exploration of the search space. The exploitation phase occurs 

as the parameter is exponentially decaying, allowing the leader to make smaller adjust-

ments around the food source. 

3.3. Multi-Objective SSA 

A salp swarm algorithm can also be formulated in a multi-objective optimization ap-

proach by using a fixed-sized archive that stores the best non-dominated solutions during 

the iterative process. This methodology requires two steps. Firstly, the algorithm searches 

for the non-dominated solutions among the archive members and the population of salps 

at the current iteration and updates the archive with the identified non-dominated solu-

tions. In the second step, if the archive contains more solutions than the maximum size, 

the algorithm removes solutions until the archive reaches the imposed dimension. 

The procedure starts with computing the distance between two solutions in the ar-

chive, di. If the distance between the two points is smaller than a threshold, determined 

by Equation (16), the rank of the solutions is increased by one [16]. Once the process is 

repeated for every pair of solutions in the archive, a roulette wheel selection is applied on 

the solutions’ ranks, deleting the selected solutions from the archive until it reaches the 

maximum size. The ranking process ensures a better distribution of the solutions, favoring 

the elimination of similar solutions. In the following equation, maxi and mini are the max-

imum and minimum values of the objective function i in the archive, and n is the number 

of objective functions: 

max min
,    1...

_

i i
id i n

Archive Size


    (16) 

In the single-objective algorithm, the salp leader updates its position with respect to 

the food position, which represents the best-known position attained since the start of the 
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iterative process. As there cannot be defined a single best solution in multi-objective prob-

lems, the food position is selected from the archive solutions. Aiming at the distribution 

improvement, a roulette wheel is once again applied for the solutions’ rank, in this case 

emphasizing solutions in less crowded neighborhoods. 

3.4. Proposed Improvements 

Despite the numerous advantages of the SSA, defined by Equations (13)–(15), the al-

gorithm can be modified in order to accelerate the convergence speed and balance the 

exploration and exploitation phases [30]. The modifications proposed for the original salp 

swarm algorithm include an opposition-based learning strategy in forming the initial pop-

ulation to ensure a better distribution of the salps in the search space. Also, a new type of 

salps, called exploring salps, are integrated to boost the exploration capabilities of the 

swarm. Frequently used in population-based optimization algorithms, crossover and mu-

tation operators are added in the position updating process of salps and the survival of 

the fittest mechanism is applied to further increase exploration of salps during the entire 

iterative process. 

3.4.1. Opposition-Based Learning Initial Population 

The performance of population-based metaheuristic algorithms heavily relies on the 

initial population. In most optimization problems, no information about the global opti-

mum location is available a-priori, therefore individuals comprised in the initial popula-

tion should be uniformly distributed across the search space. Since population-based me-

taheuristic algorithms are computationally demanding, researchers are usually inclined 

to reduce the population size for obtaining a faster convergence speed. In this context, the 

traditional initialization method, that consists in generating random individuals, is not 

provided with sufficient individuals to assure an adequate coverage of the search space. 

For solving this issue, this paper explores the benefits of a larger initial population. More-

over, it can be reasonably assumed that the randomly generated individuals can be far 

away from the optimal solution, even oppositely placed. To mitigate the aforementioned 

risk, an Opposition-Based Learning (OBL) strategy is also employed in the proposed ini-

tialization method. OBL is a machine learning concept introduced in 2005 by Tizhoosh in 
[31], that consists in generating the opposite individuals �̃�𝑗

𝑖, computed as follows: 

i i
j j j jx lb ub x    (17) 

The proposed initialization method consists in choosing a number of initial individ-

uals (Ninit) larger than the population size (Ntot). Half of the initial individuals (Ninit / 2) are 

provided by the traditional random generation method, while the rest of the population 

is completed by generating the opposite individuals according to (17). Finally, the objec-

tive function is evaluated for all the initial individuals, and the best Ntot individuals are 

retained in the first iteration of ISSA [32]. 

3.4.2. Introducing the Exploring Salps and Performance Hierarchy 

In the original SSA, the search process is guided mostly by the leader salp, which 

may lead to a decreased performance as the leader is the only independent individual 

within the population. Based on these premises, the authors of this paper introduce a new 

salp category called “exploring salps”, which behave similarly to the leading salp. How-

ever, the follower salps continue to be guided by the leader. In this manner, an improve-

ment of both exploration (during the first iterations) and exploitation (during the final 

stages) processes is obtained. 

Each follower salp is influenced by the previous one, according to (15). In this case, a 

better convergence rate can be achieved through the previous salps sorting based on a 

performance ranking. The best individual is selected as the leader salp, the following Nexp 

as exploring salps and the remainder Nfol are considered as follower salps (Nfol = Ntot − 1 − 
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Nexp). Finally, the number of exploring salps, Nexp, is linearly increasing as iterations ad-

vance for assuring a better support to the exploitation process during final iterations. 

3.4.3. Crossover 

The third improvement proposed by this paper is also focusing on exploitation pro-

cess improvement. A classical crossover operator is added as an additional position up-

dating mechanism for the exploring salps, activated with a probability (pCO) that is in-

creased during the iterative process. The crossover operator generates a single offspring 

as the weighted average [33] between its two parents, namely the selected exploring salp 

and the food source. Moreover, a second variation for the crossover operator is introduced 

using Equation (18) to increase the food source influence upon the offspring, with the 

same pCO probability: 

 

 

2 2 1

2 2 1

1 ,          0.5

1 / 2 / 2,  0.5

i

j ji

j i

j j

F r x r r
x

F r x r r

     
 

    

 (18) 

where r1 and r2 are randomly generated numbers in the interval [0,1]. 

3.4.4. Mutation 

Metaheuristic algorithms are constantly challenged by the increasing complexity of 

engineering optimization problems. To mitigate the risk of stagnation in local optima, the 

proposed algorithm includes a mutation operator, which aims to enhance the exploration 

capabilities of the conventional SSA. The operator is applied only for the follower salps 

with a mutation probability pmut. In this regard, the mutated follower salp copies the posi-

tion of a randomly selected salp and then it behaves similar to an exploring salp around 

that position. To avoid interfering with the exploitation process, the mutation probability 

is linearly decreased as iterations progress: 

  

  

1 2 3
1

1 2 3

,  m >0.5 

,  m 0.5 

j j j j

j

j j j j

x m ub lb m lb
x

x m ub lb m lb

   


 
   



 (19) 

where m1, m2 and m3 are randomly generated numbers in the interval [0, 1]. 

3.4.5. Survival of the Fittest 

The evolutionary metaheuristic algorithms are built upon the survival of the fittest 

(SOF) principle, as it provides better survival and reproduction chances to the most per-

formant individuals and lower chances to the individuals with worse objective functions 

values. In this purpose, an elimination mechanism is introduced in [34], in order to re-

move the weakest individuals from the population and replace them with new randomly 

generated individuals. The algorithm proposed in this paper also integrates the elimina-

tion mechanism to the least performant NSOF salps. In this manner, the population diver-

sity is increased, only at the cost of losing the weakest individuals. 

Figure 1 depicts the flowchart of the modified salp swarm algorithm with the inte-

gration of proposed improvements. The source code for the proposed improved salp 

swarm algorithm (ISSA) is publicly available (for the source code of ISSA see: 

https://www.mathworks.com/matlabcentral/fileexchange/87172-improved-salp-swarm-

algorithm). A validation process of the model is conducted in the case study on typical 

benchmark functions by comparing its performance with the original SSA. 

https://www.mathworks.com/matlabcentral/fileexchange/87172-improved-salp-swarm-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/87172-improved-salp-swarm-algorithm
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Figure 1. Flowchart of ISSA methodology. 

4. Case Study 

4.1. Load Flow Validation 

As the ORPD problem requires multiple load flow computations and faster conver-

gence to solution, two different approaches of the Newton-Raphson method, namely the 

power-mismatch Newton-Raphson (NR-P) and the current mismatch Newton-Raphson 

(NR-C), have been investigated in this study in terms of accuracy and computational time. 

The validation of the implemented NR-P and NR-C methods is carried out on the IEEE 

30-bus test system using as reference the results generated by the dedicated tool for power 

systems analysis, MATPOWER [35]. Figure 2 depicts the relative errors of the bus voltages 

for both methods. It can be observed that good results have been provided by both algo-

rithms, with a maximum relative error of 2.6 × 10−7 recorded for the NR-P method, and 

6.51 × 10−8 in NR-C method, respectively. For a better evaluation of the accuracy, 10,000 

randomly load flow scenarios were generated. MATPOWER has been applied to solve the 

10,000 load flow scenarios, and the obtained results have been further compared to the 

results provided by the implemented NR-P and NR-C methods for the same scenarios. 

NR-P method showed an average voltage relative error of 3.7 × 10−6, while NR-C obtains 

an average error of 9.9 × 10−6. 

 

Figure 2. Bus voltages relative errors of NR-P and NR-C compared to MATPOWER. 
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The load flow computation time for both the power-mismatch Newton-Raphson and 

the current mismatch approach are also compared for the 10,000 scenarios previously 

mentioned. The NR-P method completed the simulations in 11.57 s, while the NR-C 

method finalized the same task in 6.81 s, outperforming the classical NR-P method by 

41.14% in terms of convergence speed. Given the desired goal of obtaining a more rapid 

load flow calculation method, NR-C has been further used in the study for solving the 

ORPD problem using the proposed ISSA optimizer. 

4.2. Conventional SSA vs. ISSA 

In this section, the comparison of the standard SSA, whose source code can be ac-

cessed at [36], and the proposed ISSA is performed by running both algorithms 30 times 

on 23 typical benchmark functions used in literature [16]. The performance evaluation is 

carried out by assessing the following metrics: the best, average and worst solutions, as 

well as the standard deviation, all presented in Table 2. It can be observed that the pro-

posed ISSA methodology shows improved results on most of the benchmark functions in 

comparison to the standard SSA. On 13 functions (marked in bold), ISSA obtained a better 

solution, while the same best solution is identified by both algorithms for the other 10 

functions. 

Table 2. Results of SSA and ISSA on the benchmark test functions 

Benchmark 

Function 

Best Average Worst Std. Dev. 

ISSA SSA ISSA SSA ISSA SSA ISSA SSA 

F1 5.64 × 10−13 5.15 × 10−9 6.38 × 10−12 6.96 × 10−9 1.45 × 10−11 1.05 × 10−8 4.02 × 10−12 1.21 × 10−9 

F2 1.18 × 10−7 3.68 × 10−6 3.08 × 10−7 5.48 × 10−6 5.72 × 10−7 8.03 × 10−6 1.10 × 10−7 9.74 × 10−7 

F3 8.90 × 10−14 1.83 × 10−10 2.53 × 10−12 4.35 × 10−10 6.48 × 10−12 8.45 × 10−10 1.72 × 10−12 1.94 × 10−10 

F4 1.32 × 10−7 6.45 × 10−6 6.71 × 10−7 1.19 × 10−5 1.55 × 10−6 1.74 × 10−5 3.81 × 10−7 2.33 × 10−6 

F5 2.587318 0.011634 4.110208 117.4396 4.858855 1183.956 0.429069 244.1039 

F6 2.16 × 10−10 1.72 × 10−10 3.19 × 10−10 4.50 × 10−10 5.01 × 10−10 7.88 × 10−10 7.59 × 10−11 1.65 × 10−10 

F7 1.08 × 10−6 0.000552 2.23 × 10−5 0.002002 8.94 × 10−5 0.005095 2.38 × 10−5 0.001264 

F8 −3854.25 −3617.37 −2877.61 −3052.87 −2402.63 −2531.64 329.3672 316.8193 

F9 1.28 × 10−13 9.949586 1.01 × 10−12 22.85084 3.01 × 10−12 44.77286 7.44 × 10−13 9.469586 

F10 1.91 × 10−7 7.44 × 10−06 4.79 × 10−7 0.810233 1.06 × 10−6 2.316849 1.99 × 10−7 0.817508 

F11 4.46 × 10−13 0.132949 5.91 × 10−12 0.33718 2.84 × 10−11 0.693639 6.39 × 10−12 0.14227 

F12 8.13 × 10−13 9.42 × 10−13 2.56 × 10−12 0.051897 3.99 × 10−12 0.62195 7.46 × 10−13 0.143383 

F13 2.42 × 10−12 4.49 × 10−12 0.000366 0.001099 0.010987 0.010987 0.002006 0.003353 

F14 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 1.62 × 10−16 2.31 × 10−16 

F15 0.000307 0.000618 0.000307 0.000829 0.000307 0.001223 3.41 × 10−14 0.000204 

F16 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 8.04 × 10−16 5.80 × 10−15 

F17 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 7.99 × 10−16 1.33 × 10−14 

F18 3 3 3 3 3 3 1.38 × 10−14 7.38 × 10−14 

F19 −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 1.61 × 10−15 5.99 × 10−15 

F20 −3.322 −3.322 −3.23084 −3.21497 −3.2031 −3.20301 0.051146 0.036284 

F21 −10.1532 −10.1532 −10.1532 −8.80506 −10.1532 −2.63047 4.91 × 10−12 2.543965 

F22 −10.4029 −10.4029 −10.0486 −8.46635 −5.08767 −5.08767 1.348527 2.588702 

F23 −10.5364 −10.5364 −10.5364 −9.28557 −10.5364 −5.17565 3.47 × 10−12 2.30611 

The 23 benchmark functions introduce various challenges for metaheuristic optimi-

zation algorithms in finding the global optimum. There are seven unimodal functions (F1–

F7), six multimodal functions (F8–F13) and ten fixed-dimension multimodal functions 
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(F14–F23). For several functions, the enhanced exploration provided by the implemented 

improvements allowed ISSA to reach a significantly lower value of the objective function 

(e.g., the objective function value in F9 is 9.49586 for SSA and 1.28 × 10−13 for ISSA, respec-

tively). The average value of the solutions reflects the overall performance of the algo-

rithms, and as it can be seen, ISSA is outperformed by the standard algorithm for only one 

function (F8). In other cases, ISSA shows considerably lower averages (e.g., F7, F11, F12). 

For function F5, even though SSA finds a better solution, ISSA achieves lower average and 

a reduced standard deviation. The proposed algorithm obtains lower values in terms of 

standard deviation for all functions, except F8 and F20, proving the improvements role in 

increasing the consistency of the algorithm. Overall, the results obtained by ISSA in solv-

ing the benchmark functions prove that the proposed algorithm can provide superior so-

lutions for complex engineering problems, such as the ORPD. 

As the authors of the original SSA stated in [16], the algorithm exploration is not 

proper balanced to its exploitation capabilities. The additions to the standard algorithm 

introduced in this paper are solving the exploration deficiencies, as the proposed ISSA 

achieves better results compared to the original SSA for most of the objective functions. 

The exploitation ability and overall robustness of the algorithm are further increased, as 

the standard deviations in ISSA have considerably lower values in comparison with SSA 

for the evaluated benchmark functions. 

4.3. Single-Objective ORPD Results 

The proposed optimization algorithm is employed for the ORPD problem on two 

frequently used test systems, namely the IEEE 14-bus and IEEE 30-bus test systems [37], 

considering real power losses and bus voltage deviation minimization as objective func-

tions. 

4.3.1. IEEE 14-Bus System 

 The IEEE 14-bus test system contains nine controllable devices, including the slack 

bus, four generators, one shunt capacitor and three on-load tap-changing transformers, 

with their limits presented in Table 3. The settings for the transformer taps and the shunt 

capacitor are defined as discrete variables, which vary in steps of 0.01 p.u. for the trans-

former taps and in steps of 0.005 p.u. for the capacitor bank. 

Table 3. Control variables limits for IEEE 14-bus system. 

Control 

variable 

QG2 

[p.u.] 

QG3 

[p.u.] 

QG6 

[p.u.] 

QG8 

[p.u.] 

Transformers 

Tap 

[p.u.] 

Capacitor 

Bank 

[p.u.] 

Min. −0.4 0 −0.06 −0.06 0.9 0 

Max. 0.5 0.4 0.24 0.24 1.1 0.18 

In this case study, the proposed ISSA method is applied on the IEEE 14-bus system 

for each objective function considered and the results are further compared to the stand-

ard algorithm, as well as other methods studied in the literature, such as the particle 

swarm optimizer (PSO), the gravitational search algorithm (GSA), the improved gravita-

tional search algorithm (IGSA) [38], the diversity enhanced PSO (DEPSO) and JAYA algo-

rithm [39]. Furthermore, 30 simulations are conducted for both SSA and ISSA in order to 

test the algorithms’ consistency in finding the optimal solution and a statistical compari-

son is performed. 

Power Loss Minimization 

The first objective function considered in this study is the total real power loss mini-

mization, described by Equation (3). The optimal control variables obtained by the pro-
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posed algorithm and the other metaheuristic techniques are presented below. As men-

tioned in Section 3.1, the developed load flow calculation method only considers PQ 

buses, as it ensures reduced computation time, thus the reactive power output of genera-

tors is a specified fixed value. Table 4 displays the voltages at the generator buses instead, 

in order to properly compare SSA and ISSA results to other algorithms presented in the 

literature, where the control variables values correspond to the best simulation for each 

algorithm. 

As it can be observed, both SSA and ISSA converged into similar solutions. Both al-

gorithms achieve total power losses of 12.2834 MW, which represents the best value of the 

objective function reached among the highlighted algorithms, with 0.9% better compared 

to the next best solution, obtained by IGSA. However, even if ISSA and SSA show the 

same performance in at least one trial, Table 5 and Figure 3 depict that ISSA shows better 

stability by achieving lower values for both the average value and the standard deviation. 

After the 30 trials, the median value (represented by the red line) of the power losses ob-

tained by ISSA was 12.2866 MW, while the value for SSA was 12.2879 MW. Therefore, it 

can be concluded that the improvements proposed for the standard SSA enhance the ro-

bustness of the algorithm. 

Table 4. Optimal control variables settings for power-loss minimization for IEEE 14-bus system. 

Control Variables GSA PSO IGSA DEPSO JAYA SSA ISSA 

Bus  

voltages 

(p.u) 

V1 1.1 1.1 1.1 1.019 0.959 1.1 1.1 

V2 1.076398 1.077022 1.076578 1.0393 0.9604 1.085801 1.085802 

V3 1.052355 1.046782 1.046787 0.9817 0.9664 1.05631 1.056346 

V6 1.008185 1.020621 1.062305 1.0246 1.0389 1.096912 1.096919 

V8 1.049006 1.071699 1.097861 1.0015 1.0019 1.1 1.1 

Transformer  

tap ratio  

(p.u.) 

T1 1.04 1.02 1.02 1.03 1.0451 1.03 1.03 

T2 1.02 1 0.94 0.95 0.9733 0.9 0.9 

T3 1 1.04 1 1.03 1.0135 0.98 0.98 

Capacitor  

bank 

(p.u.) 

Q9 0.035 0 0.05 0.14 0.15 0.18 0.18 

Power Losses (MW) 12.64782 12.46588 12.39706 13.4086 13.466 12.2834 12.2834 

Table 5. Statistical comparison of the results for power loss minimization for IEEE 14-bus system. 

 GSA PSO IGSA DEPSO JAYA SSA ISSA 

Min. ∆P 12.64782 12.46588 12.39706 13.4086 13.466 12.2834 12.2834 

Avg. ∆P 13.21897 12.78373 12.46443 - - 12.2899 12.2885 

Max. ∆P 14.36926 13.67714 12.90281 - - 12.3099 12.3062 

Std. dev. ∆P 0.52 0.38 0.094 - - 0.0066 0.0061 
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Figure 3. Boxplots of SSA and ISSA for power losses minimization for IEEE 14-bus system. 

As the previous comparison study on the benchmark functions reveals in Section 4.2, 

the SSA and ISSA algorithms provide similar results when applied on small problems. As 

the IEEE 14-bus implies few control variables, a resemblance can be observed in the results 

obtained by the two methods, with the outperformance of ISSA over SSA by only a small 

margin in terms of consistency in achieving the optimal settings for the ORPD problem. 

Voltage Deviation (VD) Minimization 

Another purpose in solving the ORPD problem is the minimization of bus voltages 

deviation from the reference value. In this case, the objective function is defined by Equa-

tion (4), considering Vref = 1 p.u. The control variables for the assessed methods are dis-

played in Table 6. 

The best solutions for ISSA and SSA of VD minimization are 0.0353 p.u. and 0.0373 

p.u, respectively. Despite the fact that IGSA achieves a VD of 0.0339 p.u, the proposed 

algorithm shows the best average and standard deviation among the highlighted methods 

in this study, as it can be observed in Table 7. In this case, the standard deviation for ISSA 

is 0.003 p.u, which is 40% lower compared to the standard algorithm. 

Table 6. Optimal control variables settings for voltage deviation minimization for IEEE 14-bus system. 

Control Variables GSA PSO IGSA SSA ISSA 

Bus  

voltages 

(p.u) 

V1 1.061589 1.061683 1.060879 1.1 1.036251 

V2 1.035651 1.042381 1.040856 1.033085 1.007634 

V3 0.99018 1.013994 1.011222 0.989761 1.021722 

V6 1.024779 1.023954 1.016776 1.0198 1.036232 

V8 1.030956 1.018293 1.035129 1.026928 1.073828 

Transformer  

tap ratio  

(p.u.) 

T1 1.04 1.1 1.04 1.04 1.04 

T2 0.94 0.9 0.9 0.93 0.92 

T3 0.96 0.9 0.92 0.92 0.91 

Capacitor 

Bank 

(p.u.) 

Q9 0.03 0.05 0.05 0.17 0.07 

Voltage deviation (p.u.) 0.06727 0.08808 0.0339 0.0373 0.0353 
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Table 7. Statistical comparison of results for voltage deviation minimization for IEEE 14-bus system. 

 
GSA PSO IGSA SSA ISSA 

Min. VD 0.06727 0.08808 0.0339 0.0373 0.0353 

Avg. VD 0.1791 0.18294 0.04583 0.0415 0.0404 

Max. VD 0.30376 0.27049 0.09056 0.0594 0.0512 

Std. dev. VD 0.066 0.0603 0.017 0.0052 0.003 

The boxplots resulted from the 30 trials are displayed in Figure 4. As the results re-

veal, ISSA proves a more consistent performance than the SSA. The standard algorithm 

found 5 solutions with VD over 0.045 p.u. in the performedsimulations, while the im-

proved algorithm presents only one outlier, with the value of 0.0512 p.u. 

 

Figure 4. Boxplots of SSA and ISSA for VD minimization for IEEE 14-bus system. 

4.3.2. IEEE 30-Bus System 

The controllable devices of the IEEE 30-bus test system include six generators, four 

transformers and nine shunt capacitors, with their boundaries displayed in Table 8. The 

transformers’ tap, as well as the shunt capacitors output are modeled as continuous vari-

ables, for an adequate comparison with the ORPD results available in literature, obtained 

by other meta-heuristic techniques. 

Table 8. Control variables limits for IEEE 30-bus system. 

Control  

Variable 

QG2 

[p.u.] 

QG5 

[p.u.] 

QG8 

[p.u.] 

QG11 

[p.u.] 

QG13 

[p.u.] 

Transformers Tap 

[p.u.] 

Capacitor Banks 

[p.u.] 

Min. −0.2 −0.15 −0.15 −0.10 −0.15 0.9 0 

Max. 1 0.8 0.6 0.5 0.6 1.1 0.05 

ISSA efficiency in solving the ORPD problem for the IEEE 30 test system is evaluated 

by comparing the results obtained for the considered objective functions with the conven-

tional SSA, as well as six other optimization algorithms, including the differential evolu-

tion (DE) [24], the quasi-oppositional teaching learning based optimization (QOTLBO) 

model proposed in [25], a PSO-tabu search (PSO-TS) hybrid model developed in [26], the 

chemical reaction optimization (CRO) [27], a modified sine-cosine algorithm (MSCA) pro-

posed in [28] and the marine predator algorithm (MPA) [29]. 

  



Energies 2021, 14, 1222 15 of 22 
 

 

Power Loss Minimization 

Analogous to the previous study, the considered first objective function is the mini-

mization of active power losses. The optimal solutions of ISSA, the conventional SSA and 

the other algorithms proposed in the literature are presented in Table 9. 

Table 9. Optimal control variables settings for power-loss minimization using different algorithms for IEEE 30-bus system. 

Control Variables MPA PSO-TS CRO QOTLBO DE MSCA SSA ISSA 

Bus  

voltages 

(p.u) 

V1  1.1 1.1 1.0998 1.1 1.1 1.1 1.1 1.1 

V2  1.0949 1.0943 1.0939 1.0942 1.0931 1.0945 1.0941 1.0944 

V5 1.0761 1.0749 1.0743 1.0745 1.0736 1.0753 1.0746 1.0749 

V8 1.078 1.0766 1.0762 1.0765 1.0756 1.0769 1.0765 1.0766 

V11 1.0873 1.1 1.0997 1.1 1.1 1.1 1.1 1.1 

V13 1.1 1.1 1.0999 1.0999 1.1 1.1 1.1 1.1 

Transformer  

tap ratio  

(p.u.) 

T1 0.9807 0.9744 0.9765 1.0251 1.0465 1.0355 1.0262 1.0466 

T2 1.0222 1.051 0.9574 0.9439 0.9097 0.9063 0.9039 0.9 

T3 0.9765 0.9 0.9748 0.9992 0.9867 0.98591 0.9784 0.9761 

T4 0.9707 0.9635 0.9546 0.9732 0.9689 0.9679 0.9655 0.9639 

Capacitor 

Bank 

Reactive  

Power 

Output 

(p.u.) 

Q10  0.0179 0.05 0.0499 0.05 0.05 0.0499 0.0291 0.05 

Q12 0.0483 0.05 0.0499 0.05 0.05 0.0499 0.05 0.0389 

Q15 0.0397 0.05 0.0499 0.05 0.05 0.04949 0.0406 0.043 

Q17 0.0499 0.05 0.0499 0.05 0.05 0.05 0.05 0.05 

Q20 0.0422 0.0386 0.0422 0.0445 0.04406 0.0487 0.0356 0.0428 

Q21 0.0461 0.05 0.0499 0.05 0.05 0.0499 0.05 0.05 

Q23 0.0469 0.05 0.0263 0.0283 0.028004 0.0397 0.0353 0.0316 

Q24 0.0412 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Q29 0.0329 0.0213 0.0228 0.0256 0.025979 0.0251 0.0251 0.0211 

Power Losses (MW) 4.5335 4.5213 4.5322 4.5594 4.555 4.5399 4.5172 4.5149 

As it can be observed, ISSA achieved 4.5149 MW in power losses, which is the best 

value among the evaluated algorithms. Despite the similarity of the solutions obtained by 

most of the algorithms, a better solution is reached by ISSA due to the mechanisms imple-

mented to enhance exploration and exploitation. A summary of the obtained results is 

provided in Table 10, containing the minimum, maximum, average and the standard de-

viation values of the objective function for the SSA, ISSA and the other assessed algo-

rithms. It can be observed that ISSA achieved the best results for all criteria, with a low 

standard deviation as well, proving the algorithm’s numerical consistency in solving com-

plex problems, such as the ORPD. 

Table 10. Statistical comparison of results for power loss minimization for IEEE 30-bus system. 

 MPA PSO-TS CRO QOTLBO DE MSCA SSA ISSA 

Min. ∆P 4.5335 4.5213 4.5322 4.5594 4.555 4.5399 4.5172 4.5149 

Avg. ∆P 4.55389 - 4.5413 4.5601 - 4.5518 4.5317 4.5269 

Max. ∆P 4.6006 - 4.5476 4.5617 - 4.5768 4.5595 4.5472 

Std. dev. ∆P - - - 0.037 - - 0.0110 0.0088 

An assessment on the robustness and efficiency of both the original SSA and ISSA in 

solving the ORPD problem is conducted by running 30 simulations as well, and statisti-

cally comparing the results. For a better qualitative and quantitative analysis of the results, 

the boxplot representation has been used in Figure 5. The boxplots reveal that in the 30 

trials, where the active power losses minimization was considered as objective, the worst 

solutions found by SSA and ISSA are 4.5595 MW and 4.5472 MW, respectively, while the 

best solutions are 4.5172 MW for SSA and 4.5149 MW for ISSA. As reflected in Figure 5, 
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ISSA finds low values of the objective function more often, with a median value of 4.5253 

MW, while the median for SSA is 4.5317 MW. 

 

Figure 5. Boxplots of SSA and ISSA for power losses minimization for IEEE 30-bus system. 

Voltage Deviation (VD) Minimization 

The second objective function considered in solving the ORPD problem in the IEEE 

30-bus system is the minimization of load bus voltage deviations. Once again, a compari-

son is performed between the proposed ISSA and other metaheuristic optimizers. The re-

sults for the control variables obtained by the assessed algorithms are displayed in Table 

11. As it can be observed, ISSA solution led to a voltage deviation of 0.0831 p.u., achieving 

an improvement of 2.69% compared to the standard SSA, while also reaching the best 

value among the analyzed approaches. 

Table 11. Optimal control variables settings for VD minimization using different algorithms for IEEE 30-bus system. 

Control Variables MPA PSO-TS CRO QOTLBO DE MSCA SSA ISSA 

Bus  

voltages 

(p.u) 

V1 0.9971 0.9867 1.0089 1.0005 1.01 1.0574 1.0054 0.9793 

V2 0.9959 0.991 1.0044 0.9919 0.9918 1.015 1.0039 1 

V5 1.0164 1.0244 1.0218 1.0217 1.0179 1.0129 1 1.0042 

V8 0.9971 1.0042 1.0041 1.0147 1.0183 1.0047 1.0005 0.9996 

V11 1.0387 1.0106 1.0027 0.995 1.0114 1.0431 1.0837 1.0966 

V13 1.0251 1.0734 1.0284 1.0447 1.0282 1.0072 1.0294 1.0684 

Transformer  

tap ratio  

(p.u.) 

T1 1.0556 1.0725 1.0142 1.0076 1.0265 1.0574 1.0847 1.0765 

T2 1.018 0.9797 0.9004 0.903 0.9038 0.9134 0.9092 0.9341 

T3 1.023 0.9273 1.0136 1.0472 1.0114 0.9668 0.9952 1.0869 

T4 0.9676 0.9607 0.9667 0.9674 0.9635 0.9649 0.9339 0.9354 

Capacitor 

Bank 

Reactive  

Power 

Output 

(p.u.) 

Q10  0.045 0.0095 0.05 0.0487 0.0494 0.0499 0.0172 0.0343 

Q12 0.0497 0.0215 0.0199 0.0304 0.0109 0.0002 0.0097 0.0488 

Q15 0.0499 0.0226 0.0498 0.05 0.05 0.0378 0.0127 0.0182 

Q17 0.024 0.0005 0 0 0.0024 0.0173 0.0364 0.0118 

Q20 0.0463 0.0359 0.05 0.05 0.05 0.0499 0.0345 0.0459 

Q21 0.0499 0.0401 0.0499 0.05 0.0491 0.0499 0.0424 0.0487 

Q23 0.0426 0.0427 0.05 0.05 0.0499 0.0481 0.0458 0.0364 

Q24 0.0499 0.0374 0.05 0.05 0.0497 0.05 0.0378 0.0244 

Q29 0.0193 0.021 0.0497 0.0256 0.0223 0.0222 0.0099 0.0113 

Voltage Deviation (p.u.) 0.08514 0.0866 0.0849 0.0856 0.0911 0.097 0.0854 0.0831 
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Similar to the previous cases, 30 simulations are performed for the VD minimization 

objective for both SSA and ISSA methods. The results are outlined in Figure 6, using box-

plots of objective functions values, as well as in Table 12, where the performance metrics 

for ISSA, SSA and the other algorithms are highlighted. The dimension of the boxplots 

demonstrates the superiority of ISSA with respect to SSA in identifying better solutions 

for the VD minimization objective. The median value achieved by ISSA in 30 runs is 0.0933 

p.u., showing an improvement of 9.3% over the standard SSA median (0.10294 p.u.). 

Given the narrower appearance of ISSA boxplot and the position of the 75th percentile 

being at 0.0984 p.u. it can be concluded that the proposed method generally provides bet-

ter results in comparison with the standard algorithm. 

 

Figure 6. Boxplots of SSA and ISSA for VD minimization for IEEE 30-bus system. 

Table 12. Statistical comparison of results for voltage deviation minimization for IEEE 30-bus system. 

 MPA PSO-TS CRO QOTLBO DE MSCA SSA ISSA 

Min. VD 0.08513 0.0866 0.0849 0.0856 0.0911 0.097 0.0854 0.0831 

Avg. VD 0.09454 - 0.0863 0.0872 - 0.1019 0.1088 0.0947 

Max. VD 0.099 - 0.0898 0.0907 - 0.138 0.1649 0.1202 

Std. dev. VD - - - 0.0314 - - 0.0207 0.0080 

In accordance with the results for the benchmark functions, the narrow distribution 

of the resulted VD in ISSA leads to a lower standard deviation (0.008 p.u.) compared to 

SSA, which achieves a standard deviation of 0.0207 p.u. Although ISSA provides the best 

solution among the algorithms presented in Table 12, the algorithm is surpassed by other 

methods (i.e., MPA, CRO and QOTLBO) in terms of the worst solution obtained. ISSA’s 

worst solution among the 30 simulations was 0.1202 p.u., while MPA worst solution is 

0.099 p.u., and CRO is reported to obtain an average VD for the tested system of only 

0.0863 p.u. with the worst achieved value of 0.0898 p.u. 

4.4. Multi-Objective Approach 

In power systems scheduling, the operators must handle both technical and eco-

nomic aspects, thus the reactive power dispatching problem must be solved by finding a 

compromise solution considering multiple objectives simultaneously. Giving the conflict-

ing nature of power losses, determined in Equation (3), and the voltage variation objective, 

computed as the sum of voltage deviations at each load bus, defined by Equation (4), the 

multi-objective SSA (MO-SSA) is further applied in this study to simultaneously minimize 

these two objective functions. The improvements proposed in this paper for the single-
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objective SSA are integrated in the multi-objective approach as well and an analysis is 

conducted in order to assess the performance of MO-ISSA with respect to the standard 

MO-SSA, as well as three other state-of-the-art metaheuristic algorithms for multi-objec-

tive problems: the non-dominated sorting genetic algorithm (NSGA-III) [40], the multi-

objective particle swarm optimization (MOPSO) [41] and the multi-objective grey wolf 

optimizer (MOGWO) [42]. The analysis is performed on both IEEE 14-bus and IEEE 30-

bus test systems. 

4.4.1. Multi-Objective Optimization on IEEE 14-Bus System 

The first test system analyzed in solving the multi-objective ORPD problem using the 

five previously mentioned algorithms is the IEEE 14-bus system. The performance evalu-

ation of the proposed algorithm is conducted by analyzing the Pareto fronts generated by 

MO-ISSA and the other considered methodologies, displayed in Figure 7. 

As the results reveal, MOPSO, NSGA-III and MOGWO fail to reach proper diversity 

and spreading on the Pareto front in comparison to MO-SSA and MO-ISSA. MOPSO and 

NSGA-III achieve a good distribution on the inferior part of the Pareto front, at the cost of 

a poor exploration of the superior part of the front, focusing more on the power losses 

minimization. MO-SSA presents a better overall performance compared to MOPSO and 

NSGA-III, as its solutions achieve lower values on both axes of the Pareto front. On the 

other hand, MOGWO reaches good distribution and exploration on the superior part of 

the front. On the lower side of the front, the algorithm identifies less solutions, proving a 

poor distribution. In the highlighted area of Figure 7, solutions of MOGWO dominate the 

solutions of MO-SSA, while also achieving better distribution of solutions. However, MO-

SSA obtains a wider front. 

 

Figure 7. Pareto fronts for IEEE 14-bus system. 

The proposed improvements implemented for the single-objective SSA are also en-

suring a good performance in the multi-objective ORPD approach. The Pareto fronts anal-

ysis shows that the proposed algorithm achieves a better distribution of the solutions com-

pared to the standard MO-SSA and the other assessed algorithms. Furthermore, MO-ISSA 

provides the best solutions, dominating the solutions obtained by all other methods. 
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4.4.2. Multi-Objective Optimization on IEEE 30-Bus System 

The same analysis is further conducted on the IEEE 30-bus test system. Figure 8 de-

picts the Pareto fronts generated based on the optimal sets identified by each algorithm. 

For the IEEE 30-bus system, MO-SSA and MO-ISSA outperform the other algorithms in 

most areas of the Pareto front, attaining lower values of both the objective functions. 

 

Figure 8. Pareto fronts obtained for IEEE 30-bus system. 

In the highlighted area from Figure 8, MO-SSA is surpassed in performance by all 

the other algorithms, while NSGA-III and MOPSO present comparable solutions to MO-

ISSA in this particular area. Similar to the previous case, the performances of NSGA-III 

and MOPSO are generally inferior to the other algorithms, indicating poorer efficiency of 

the exploitation process. In this case, MOGWO obtained better coverage of the Pareto 

front in comparison to the IEEE 14-bus system. However, MOGWO is giving once again 

noticeably inferior results compared to MO-ISSA. 

The solutions situated at the extremities of the Pareto front are more focused towards 

one objective function, leading to worse values for the conflicting objective function. In 

other words, lower values for power losses correspond to unfavorable solutions for volt-

age deviations and vice versa. The best power losses, and consequently the worst VD, 

achieved by MO-SSA are 4.66 MW and 0.88 p.u., respectively, while in the other extremity 

of the Pareto front, VD reaches 0.13 p.u. with power losses of 6.29 MW. On the other hand, 

the best solution for power losses withMO-ISSA is 4.6 MW, with a total voltage deviation 

of 1.25 p.u., while the lowest achieved VD is 0.1 p.u. with power losses of 5.9 MW. There-

fore, due to reduced exploration capability of the conventional algorithm, MO-SSA pro-

vides worse solutions  in comparison to MO-ISSA and lower spread across the Pareto 

front, since it stores multiple identical or similar solutions in the archive. The replacing 

procedure of non-dominated solutions from the archive fails to reach a proper diversity 

of solutions for MO-SSA. The Pareto front for MO-ISSA  reaches lower values on both 

axes compared to MO-SSA, which proves that every solution of MO-SSA is dominated by 

solutions obtained by MO-ISSA, showing once again the superior capability of the pro-

posed algorithm. 

5. Conclusions 

In this paper, a recently developed metaheuristic technique has been investigated in 

solving the optimal reactive power dispatch in transmission systems, namely the salp 

swarm algorithm (SSA). As metaheuristic algorithms require a large number of objective 

function evaluations, a faster load flow method, the current-mismatch Newton-Raphson, 
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is employed in order to help reduce the computational time. Two objectives have been 

considered in solving the ORPD problem, more specifically the power loss minimization 

and the voltage deviations reduction. In this regard, the ORPD problem is approached as 

both single- and multi-objective. Considering the complexity and the non-linearity of the 

ORPD problem, several improvements have been applied to the conventional SSA model. 

To verify the validity and effectiveness of the proposed improved salp swarm algorithm 

(ISSA), multiple comparison analyses are performed in this study. Firstly, the perfor-

mances of the original SSA and the improved model have been tested on 23 benchmark 

functions frequently used in literature. The modification of the exploration and exploita-

tion processes is reflected in the superior results obtained by the improved method in 

most of the analyzed cases. Secondly, the efficiency of the ISSA model in solving the sin-

gle-objective ORPD problem is compared to the original SSA and multiple recent me-

taheuristic techniques, such as differential evolution, sine-cosine algorithm and the ma-

rine predator algorithm. Once again, the proposed model obtains the best results for the 

two objective functions. Finally, the ORPD analysis is approached as a multi-objective op-

timization problem aiming at the power losses minimization, while maintaining reduced 

bus voltage deviations. The analysis included a comparison with other state-of-the-art al-

gorithms, such as the multi-objective grey wolf optimizer. The Pareto fronts obtained for 

the evaluated algorithms show the superiority of the solutions provided by the proposed 

method, which points out the effectiveness and applicability of the model in solving com-

plex single- and multi-objective optimization problems specific to power systems opera-

tion. 

In terms of model’s further development, future work considers hybridization tech-

niques for a better integration of discrete variables in the optimization problem definition. 

Future research regarding power systems concerning problems should focus on the high 

penetration of the renewable energy sources, as well as the dynamic approach of the 

ORPD problem (24-h analysis). 
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