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Abstract: The optimal reactive power dispatch (ORPD) problem represents a fundamental concern in
the efficient and reliable operation of power systems, based on the proper coordination of numerous
devices. Therefore, the ORPD calculation is an elaborate nonlinear optimization problem that requires
highly performing computational algorithms to identify the optimal solution. In this paper, the
potential of metaheuristic methods is explored for solving complex optimization problems specific to
power systems. In this regard, an improved salp swarm algorithm is proposed to solve the ORPD
problem for the IEEE-14 and IEEE-30 bus systems, by approaching the reactive power planning as
both a single- and a multi- objective problem and aiming at minimizing the real power losses and the
bus voltage deviations. Multiple comparison studies are conducted based on the obtained results to
assess the proposed approach performance with respect to other state-of-the-art techniques. In all
cases, the results demonstrate the potential of the developed method and reflect its effectiveness in
solving challenging problems.

Keywords: optimal reactive power dispatch; power loss minimization; voltage deviation; salp swarm
algorithm; current mismatch Newton-Raphson

1. Introduction

Ensuring an adequate amount of reactive power (var) is essential for the reliable
operation of power transmission systems, as the var insufficiency may lead to severe volt-
age collapse and major power interruptions [1]. Including various regulation procedures,
reactive power planning has become a challenging issue that contributes to the secure and
economic development of power systems [2]. The optimal reactive power dispatch can be
addressed as a single- or multi-objective problem aiming at the total generation cost reduc-
tion reflected in the active power losses minimization. This goal is achieved by the proper
coordination of various control equipment, such as the reactive output of generation units,
transformers’ tap settings and the static var compensator operation, while responding to
the functioning constraints of the power grid. Considering the continuous and discrete vari-
ables that define the reactive power planning, highly performant algorithms are needed in
order to solve the resulting nonlinear optimization problem [3]. Various optimization meth-
ods have been proposed over years in literature for solving the ORPD problem. Initially,
classical optimization methods including the gradient method [4], linear programming [5],
interior point [6] or nonlinear programming [7], have been used to solve the reactive power
planning problem. Nonetheless, the complex infrastructure of power systems, implying the
control of numerous types of resources, brings challenges in finding the optimal solution
by applying these algorithms. In order to deal with the numerous decision variables that
define the ORPD problem, the implementation of new advanced methods is required. In
this regard, recent studies propose the approach of meta-heuristic algorithms, such as
genetic algorithms [8], the gravitational search algorithm [9], the differential search algo-
rithm [10] or the moth-flame optimization [11]. Meta-heuristic algorithms are distinct from
deterministic methods as they are capable of systematically driving the solution during
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the computation process to the nearest possible optimal solution position, avoiding the
convergence to local optima at an early stage. No matter the type of the decision variables,
the solution is continuous, as the results for both discrete and integer variables are rounded
off to obtain a plausible solution. The final solution is further obtained based solely on
the actual continuous variables. The newly resulted solutions may be far from the global
optimal or unfeasible. In order to reduce the probability of stagnation in local minima,
numerous metaheuristic algorithms have been developed over years, each with specific
strategies for the solution space exploration in search of the global optimum. Numerous
previous studies approach the ORPD problem as the optimization of one objective function
or of two objective functions computed separately. For a more detailed analysis of reactive
power planning, recent works define the ORPD as a multi-objective optimization problem,
focusing on the power losses reduction, bus voltage setting, as well as voltage stability
issues. Numerous real-world problems require the optimization of conflicting multiple
objectives, including minimizing or maximizing synchronously [12], which leads to a set of
solutions that compose the so-called Pareto front. For an improved spreading of the solu-
tions over the Pareto front, current research relies more and more on the implementation
of metaheuristic techniques for solving these complex problems. Many studies proposed
multi-objective approaches, such as the non-dominated sorting genetic algorithm [13],
the multi-objective particle swarm optimization [14] or the strength pareto evolutionary
algorithm [15], in order to solve the ORPD problem. The salp swarm algorithm (SSA) is a
novel nature-inspired optimizer recommended for solving single and multiple objectives,
defined by high convergence and coverage [16]. Considering these features, recently, this
new metaheuristic technique finds its use also in the power systems sector. In [17], the
salp swarm optimization algorithm is applied for developing an intelligent and robust
controller for islanded microgrids, the optimal allocation of wind-based distributed gen-
eration in existing networks is determined in [18] based on SSA, a convolutional neural
network is used in conjunction with SSA in [19] for power forecasting of photovoltaic
systems, while authors of [20] propose a modified version of the algorithm to solve the
optimal power flow problem in transmission systems. As the need of reliable metaheuristic
optimizers continues, the authors of this paper propose an improved salp swarm algorithm
aiming at increased efficiency and consistency in identifying the optimal solution. The
main contribution of this work can be summarized as follows:

(1) Solving the ORPD, both as a single- and multi- objective problem, based on a novel
optimization technique, namely the salp swarm algorithm.

(2) Improvement of the original algorithm tested on 23 frequently used benchmark functions.
(3) The validity of the proposed model for total power loss reduction and voltage

profile enhancement.

The rest of the paper is organized as follows: Section 2 is dedicated to a brief de-
scription and the mathematical formulation of optimal reactive power dispatch (ORPD)
problem. The optimizer implementation is further described in Section 3 along with a
short description of the SSA model and proposed improvements. The simulation results
and the techniques comparison on the IEEE 14-bus and IEEE 30-bus test systems are pro-
vided in Section 4. Finally, Section 5 presents the conclusions of the study and outlines the
future works.

2. ORPD Problem Formulation

The ORPD problem can be formulated as a single- or multi-objective problem aiming
to determine the optimal settings of the decision variables in order to minimize the vari-
ous objectives, while satisfying various equality and inequality constraints. The decision
variables that define the ORPD problem include the control settings for the reactive power
and the bus voltage. Therefore, the vector of independent variables, x, contains the reactive
power output of the generators, the functional settings of the capacitors banks (CB) and the
transformers’ operating tap ratios, while the vector of dependent variables, denoted by y,
includes the active power injected by the slack bus, Pslack, the voltage at each load bus and
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the current flow through transmission power lines. Accordingly, x and y can be expressed
as follows:

x = [QG,NG , NCB,NCB , TNT ] (1)

y = [Pslack, VN , Iij] (2)

2.1. Objective Functions

Two objectives have been considered in this paper, namely the active power losses
and bus voltage deviations, as they represent basic concerns in both transmission and
distribution systems operation, considering the involved derived economic loss and
reliability problems.

2.1.1. Function 1: Total Active Power Losses

The first objective function, F1, addresses the economic aspects of the reactive power
planning problem by aiming to minimize the total active power losses in the system. In
this study, the active power losses are computed by subtracting from the slack bus power
injection the difference between the active power demand, PD,i, and the active power
output of deployed generators, PG,i, while N denotes the set of buses in the system:

min F1 = Pslack −
(

∑
i∈N

PD,i − ∑
i∈N

PG,i

)
(3)

2.1.2. Function 2: Bus Voltage Deviation

The second objective function, F2, addresses the quality aspects of the power supply
in solving the ORPD problem, focusing on the voltage profile enhancement. Monitoring
the bus voltage across the system is a highly important security concern for maintaining an
adequate reactive power reserve. In this regard, the objective aims at the voltage magnitude
deviation reduction with respect to a predefined reference value, Vre f

i , as follows:

min F2 = ∑
i∈NL

∣∣∣Vi −Vre f
i

∣∣∣ (4)

where NL is the set of load buses.

2.1.3. Multi-Objective Approach

The proper functioning of power systems is based on engineering optimization solu-
tions that often pursue conflicting objectives. Under these conditions, the application of
techniques for simultaneous optimization of opposite goals can be a challenge in identify-
ing a compromise solution. In this study, the ORPD calculation is also investigated as a
multi-objective problem, aiming at the simultaneous minimization of total power losses
and bus voltage deviation:

min (F1, F2) (5)

2.2. Equality Constraints

For the proper functioning of the system, the load flow equations must be met regard-
less of the operating conditions. Representing the equality constraints of the optimization
problem, the load flow equations are calculated in this paper using the current mismatch
and Cartesian coordinates of the Newton-Raphson method (presented in Section 3.1),
considering its efficiency in terms of computation performance corresponding to the trans-
mission networks features.

2.3. Inequality Constraints

The inequality constraints of the ORPD problem define the operational restrictions
of the various devices involved, including the capacitor banks and the generators func-
tional constraints, the transformers’ tap settings, as well as the bus voltage and lines
capacity limits.
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2.3.1. Generator Constraints

The operation restriction of generators involves the maintenance of their reactive
power output within the interval delimited by its upper and lower boundaries, given by:

Qmin
G,i ≤ QG,i ≤ Qmax

G,i , ∀i ∈ NG (6)

where NG denotes the set of buses where the generators are installed in the system.

2.3.2. Capacitor Banks Constraints

The reactive power compensated by the shunt capacitor banks is restricted within the
upper and lower limits, as follows:

Qmin
CB,i ≤ QCB,i ≤ Qmax

CB,i, ∀i ∈ NCB (7)

where NCB represents the set of buses where the capacitor banks are connected.

2.3.3. OLTC Transformers Constraints

Transformer’s tap operation settings can vary between the minimum and maximum
available value:

Tmin
i ≤ Ti ≤ Tmax

i , ∀i = 1 . . . NT (8)

where NT is the number of transformers.

2.3.4. Load Bus Voltage Constraints

Under any condition, the bus voltage magnitude at each load bus i must be maintained
within the admitted minimum and maximum boundaries, as formulated below:

Vmin
i ≤ Vi ≤ Vmax

i , ∀i ∈ NL (9)

2.3.5. Lines Transmission Capacity

The current crossing the power lines must be restricted within their thermal limits, in
order to avoid the lines overloading:∣∣Iij

∣∣ ≤ Imax
ij , ∀i, j ∈ N (10)

where ij is the index for the transmission line connecting buses i and j.

3. Model Implementation
3.1. Load Flow Calculation

The power flow computation represents the most important tool for power grid
operation, as it determines the steady state conditions of the system. The power flow
results underlie any operation, control or planning analysis. There are numerous methods
that can be applied in load flow computation, among which the Newton power flow
method is preferred in terms of quadratic convergence and robustness [21]. Based on the
problem formulation (power or current mismatch computation) and coordinates (Cartesian,
polar or complex form), the Newton–Raphson method can be applied as six different
approaches in solving the power flow problem [22].

In this paper, the current mismatch formulation of Newton-Raphson method is imple-
mented for load flow calculation using Cartesian coordinates representation of the state
variables, introduced in [23], where the Jacobian matrix is composed of 2 × 2 blocks. The
real and imaginary parts of the current mismatch can be expressed as follows:

∆Ire
i =

Psp
i Vre

i + Qsp
i Vim

i(
Vre

i
)2

+
(
Vim

i
)2 −

N

∑
j=1

(
GijVre

j − BijVim
j

)
∀i, j ∈ N (11)

∆Iim
i =

Psp
i Vim

i −Qsp
i Vre

i(
Vre

i
)2

+
(
Vim

i
)2 −

N

∑
j=1

(
GijVim

j − BijVre
j

)
∀i, j ∈ N (12)
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where Psp
i and Qsp

i are the specified active and reactive power at bus i, while Gij and Bij
represent the conductance and susceptance between bus i and bus j.

Based on Equations (11) and (12), the partial derivatives of the current mismatches can
be computed with respect to the real and imaginary parts of the voltage, Vre

i and Vim
i , using

the formulas centralized in Table 1. The major advantage of the Cartesian representation
in the current mismatch Newton-Raphson is given by the off-diagonal elements of the
Jacobian, which are equal to elements in the nodal admittance matrix. Therefore, they
can be computed before starting the iterative process, which leads to a reduction of the
required computational effort.

Table 1. Partial derivatives in the current mismatch load flow formulation considering Cartesian coordinates.

i 6= j i = j

∂∆Ire

∂Vim = Bij ∂∆Ire

∂Vim = Bii +
Qsp

i

(
(Vre

i )2−(Vim
i )

2
)
−2Vre

i Vim
i Psp

i

|Vi |4

∂∆Ire

∂Vre = −Gij ∂∆Ire

∂Vre = −Gii −
Psp

i

(
(Vre

i )2−(Vim
i )

2
)
+2Vre

i Vim
i Qsp

i

|Vi |4

∂∆Iim

∂Vim = −Gij ∂∆Iim

∂Vim = −Gii +
Psp

i

(
(Vre

i )2−(Vim
i )

2
)
+2Vre

i Vim
i Qsp

i

|Vi |4

∂∆Iim

∂Vre = Bij ∂∆Iim

∂Vre = −Bii +
Qsp

i

(
(Vre

i )2−(Vim
i )

2
)
−2Vre

i Vim
i Psp

i

|Vi |4

Numerous studies of the ORPD problem consider the specified voltage at generator
buses as a control variable [24–29]. In the proposed model, the control variable for gen-
erators (except for the slack bus) is the reactive power setpoint, which operates within
the specified limits, thus the load flow method can only consider PQ type buses. Without
the requirement of checking reactive power boundaries of PV buses during the iterative
process, a faster convergence of the load flow calculation is assured.

3.2. Salp Swarm Optimization

Salps are a species of marine organisms from the family of Salpidae, with similar
appearance to jellyfish. In the process of searching food, salps exhibit a swarm behavior,
forming a salp-chain, which inspired the salp swarm algorithm (SSA) proposed by Mirjalili
et al. in [16]. The population in a salp-chain consists of a leader and a group of followers,
where the leader searches for a food source and the followers change their position with
respect to the salp ahead of them, and consequently to the leader. Considering an optimiza-
tion problem with n variables, and xi the position of salp i, represented by a vector of n
elements xi = [x1

i, x2
i, . . . , xn

i], the leader of the salp-chain updates its position using the
following equation:

x1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
, c3> 0.5

Fj − c1
((

ubj − lbj
)
c2 + lbj

)
, c3 ≤ 0.5

(13)

where Fj is the value in the jth dimension of the food source F (the best known position),
ubj and lbj are the upper bound and lower bound, respectively, in the jth dimension and
parameters c2 and c3 are randomly generated numbers in the interval [0,1]. Parameter c1 is
computed using the following equation:

c1 = 2e−(
4t
T )

2
(14)

where t is the current iteration and T is the total number of iterations.
Once the leader’s position is updated, the followers are changing their position using

the equation below:

xi
j =

1
2

(
xi

j + xi−j
j

)
(15)

where xi
j is the position in jth dimension of salp i, with 2 ≤ i ≤ n.
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Parameter c1 is crucial for the SSA model, as it influences both the exploration and
exploitation of the solution space for the optimization problem. The iterative process begins
with high values for c1, which allows higher random modifications to the leader’s position,
emphasizing the exploration of the search space. The exploitation phase occurs as the
parameter is exponentially decaying, allowing the leader to make smaller adjustments
around the food source.

3.3. Multi-Objective SSA

A salp swarm algorithm can also be formulated in a multi-objective optimization
approach by using a fixed-sized archive that stores the best non-dominated solutions
during the iterative process. This methodology requires two steps. Firstly, the algorithm
searches for the non-dominated solutions among the archive members and the population
of salps at the current iteration and updates the archive with the identified non-dominated
solutions. In the second step, if the archive contains more solutions than the maximum
size, the algorithm removes solutions until the archive reaches the imposed dimension.

The procedure starts with computing the distance between two solutions in the
archive, di. If the distance between the two points is smaller than a threshold, determined
by Equation (16), the rank of the solutions is increased by one [16]. Once the process is
repeated for every pair of solutions in the archive, a roulette wheel selection is applied
on the solutions’ ranks, deleting the selected solutions from the archive until it reaches
the maximum size. The ranking process ensures a better distribution of the solutions,
favoring the elimination of similar solutions. In the following equation, maxi and mini are
the maximum and minimum values of the objective function i in the archive, and n is the
number of objective functions:

di =
maxi −mini
Archive_Size

, ∀i = 1 . . . n (16)

In the single-objective algorithm, the salp leader updates its position with respect to
the food position, which represents the best-known position attained since the start of the
iterative process. As there cannot be defined a single best solution in multi-objective prob-
lems, the food position is selected from the archive solutions. Aiming at the distribution
improvement, a roulette wheel is once again applied for the solutions’ rank, in this case
emphasizing solutions in less crowded neighborhoods.

3.4. Proposed Improvements

Despite the numerous advantages of the SSA, defined by Equations (13)–(15), the
algorithm can be modified in order to accelerate the convergence speed and balance the
exploration and exploitation phases [30]. The modifications proposed for the original salp
swarm algorithm include an opposition-based learning strategy in forming the initial
population to ensure a better distribution of the salps in the search space. Also, a new
type of salps, called exploring salps, are integrated to boost the exploration capabilities of
the swarm. Frequently used in population-based optimization algorithms, crossover and
mutation operators are added in the position updating process of salps and the survival of
the fittest mechanism is applied to further increase exploration of salps during the entire
iterative process.

3.4.1. Opposition-Based Learning Initial Population

The performance of population-based metaheuristic algorithms heavily relies on the
initial population. In most optimization problems, no information about the global opti-
mum location is available a-priori, therefore individuals comprised in the initial population
should be uniformly distributed across the search space. Since population-based meta-
heuristic algorithms are computationally demanding, researchers are usually inclined to
reduce the population size for obtaining a faster convergence speed. In this context, the
traditional initialization method, that consists in generating random individuals, is not
provided with sufficient individuals to assure an adequate coverage of the search space. For
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solving this issue, this paper explores the benefits of a larger initial population. Moreover,
it can be reasonably assumed that the randomly generated individuals can be far away
from the optimal solution, even oppositely placed. To mitigate the aforementioned risk, an
Opposition-Based Learning (OBL) strategy is also employed in the proposed initialization
method. OBL is a machine learning concept introduced in 2005 by Tizhoosh in [31], that
consists in generating the opposite individuals x̃i

j, computed as follows:

x̃i
j = lbj + ubj − xi

j (17)

The proposed initialization method consists in choosing a number of initial individuals
(Ninit) larger than the population size (Ntot). Half of the initial individuals (Ninit/2) are
provided by the traditional random generation method, while the rest of the population is
completed by generating the opposite individuals according to (17). Finally, the objective
function is evaluated for all the initial individuals, and the best Ntot individuals are retained
in the first iteration of ISSA [32].

3.4.2. Introducing the Exploring Salps and Performance Hierarchy

In the original SSA, the search process is guided mostly by the leader salp, which may
lead to a decreased performance as the leader is the only independent individual within
the population. Based on these premises, the authors of this paper introduce a new salp
category called “exploring salps”, which behave similarly to the leading salp. However,
the follower salps continue to be guided by the leader. In this manner, an improvement
of both exploration (during the first iterations) and exploitation (during the final stages)
processes is obtained.

Each follower salp is influenced by the previous one, according to (15). In this case,
a better convergence rate can be achieved through the previous salps sorting based
on a performance ranking. The best individual is selected as the leader salp, the fol-
lowing Nexp as exploring salps and the remainder Nfol are considered as follower salps
(Nfol = Ntot − 1 − Nexp). Finally, the number of exploring salps, Nexp, is linearly increas-
ing as iterations advance for assuring a better support to the exploitation process during
final iterations.

3.4.3. Crossover

The third improvement proposed by this paper is also focusing on exploitation process
improvement. A classical crossover operator is added as an additional position updating
mechanism for the exploring salps, activated with a probability (pCO) that is increased
during the iterative process. The crossover operator generates a single offspring as the
weighted average [33] between its two parents, namely the selected exploring salp and
the food source. Moreover, a second variation for the crossover operator is introduced
using Equation (18) to increase the food source influence upon the offspring, with the same
pCO probability:

xi
j =

{
Fj · r2 + xi

j · (1− r2), r1 > 0.5
Fj · (1− r2/2) + xi

j · r2/2, r1 ≤ 0.5
(18)

where r1 and r2 are randomly generated numbers in the interval [0,1].

3.4.4. Mutation

Metaheuristic algorithms are constantly challenged by the increasing complexity of
engineering optimization problems. To mitigate the risk of stagnation in local optima, the
proposed algorithm includes a mutation operator, which aims to enhance the exploration
capabilities of the conventional SSA. The operator is applied only for the follower salps with
a mutation probability pmut. In this regard, the mutated follower salp copies the position
of a randomly selected salp and then it behaves similar to an exploring salp around that
position. To avoid interfering with the exploitation process, the mutation probability is
linearly decreased as iterations progress:
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x1
j =

{
xj + m1

((
ubj − lbj

)
m2 + lbj

)
, m3> 0.5

xj −m1
((

ubj − lbj
)
m2 + lbj

)
, m3 ≤ 0.5

(19)

where m1, m2 and m3 are randomly generated numbers in the interval [0, 1].

3.4.5. Survival of the Fittest

The evolutionary metaheuristic algorithms are built upon the survival of the fittest
(SOF) principle, as it provides better survival and reproduction chances to the most per-
formant individuals and lower chances to the individuals with worse objective functions
values. In this purpose, an elimination mechanism is introduced in [34], in order to remove
the weakest individuals from the population and replace them with new randomly gen-
erated individuals. The algorithm proposed in this paper also integrates the elimination
mechanism to the least performant NSOF salps. In this manner, the population diversity is
increased, only at the cost of losing the weakest individuals.

Figure 1 depicts the flowchart of the modified salp swarm algorithm with the integra-
tion of proposed improvements. The source code for the proposed improved salp swarm
algorithm (ISSA) is publicly available (for the source code of ISSA see: https://www.
mathworks.com/matlabcentral/fileexchange/87172-improved-salp-swarm-algorithm (ac-
cessed on 24 February 2021)). A validation process of the model is conducted in the case
study on typical benchmark functions by comparing its performance with the original SSA.
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Figure 1. Flowchart of ISSA methodology.

4. Case Study
4.1. Load Flow Validation

As the ORPD problem requires multiple load flow computations and faster conver-
gence to solution, two different approaches of the Newton-Raphson method, namely the
power-mismatch Newton-Raphson (NR-P) and the current mismatch Newton-Raphson
(NR-C), have been investigated in this study in terms of accuracy and computational
time. The validation of the implemented NR-P and NR-C methods is carried out on the
IEEE 30-bus test system using as reference the results generated by the dedicated tool
for power systems analysis, MATPOWER [35]. Figure 2 depicts the relative errors of the
bus voltages for both methods. It can be observed that good results have been provided
by both algorithms, with a maximum relative error of 2.6 × 10−7 recorded for the NR-P
method, and 6.51 × 10−8 in NR-C method, respectively. For a better evaluation of the

https://www.mathworks.com/matlabcentral/fileexchange/87172-improved-salp-swarm-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/87172-improved-salp-swarm-algorithm
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accuracy, 10,000 randomly load flow scenarios were generated. MATPOWER has been
applied to solve the 10,000 load flow scenarios, and the obtained results have been further
compared to the results provided by the implemented NR-P and NR-C methods for the
same scenarios. NR-P method showed an average voltage relative error of 3.7 × 10−6,
while NR-C obtains an average error of 9.9 × 10−6.
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The load flow computation time for both the power-mismatch Newton-Raphson
and the current mismatch approach are also compared for the 10,000 scenarios previously
mentioned. The NR-P method completed the simulations in 11.57 s, while the NR-C method
finalized the same task in 6.81 s, outperforming the classical NR-P method by 41.14% in
terms of convergence speed. Given the desired goal of obtaining a more rapid load flow
calculation method, NR-C has been further used in the study for solving the ORPD problem
using the proposed ISSA optimizer.

4.2. Conventional SSA vs. ISSA

In this section, the comparison of the standard SSA, whose source code can be accessed
at [36], and the proposed ISSA is performed by running both algorithms 30 times on 23 typical
benchmark functions used in literature [16]. The performance evaluation is carried out by
assessing the following metrics: the best, average and worst solutions, as well as the standard
deviation, all presented in Table 2. It can be observed that the proposed ISSA methodology
shows improved results on most of the benchmark functions in comparison to the standard
SSA. On 13 functions (marked in bold), ISSA obtained a better solution, while the same best
solution is identified by both algorithms for the other 10 functions.

The 23 benchmark functions introduce various challenges for metaheuristic opti-
mization algorithms in finding the global optimum. There are seven unimodal functions
(F1–F7), six multimodal functions (F8–F13) and ten fixed-dimension multimodal functions
(F14–F23). For several functions, the enhanced exploration provided by the implemented
improvements allowed ISSA to reach a significantly lower value of the objective func-
tion (e.g., the objective function value in F9 is 9.49586 for SSA and 1.28 × 10−13 for ISSA,
respectively). The average value of the solutions reflects the overall performance of the
algorithms, and as it can be seen, ISSA is outperformed by the standard algorithm for only
one function (F8). In other cases, ISSA shows considerably lower averages (e.g., F7, F11,
F12). For function F5, even though SSA finds a better solution, ISSA achieves lower average
and a reduced standard deviation. The proposed algorithm obtains lower values in terms
of standard deviation for all functions, except F8 and F20, proving the improvements role
in increasing the consistency of the algorithm. Overall, the results obtained by ISSA in
solving the benchmark functions prove that the proposed algorithm can provide superior
solutions for complex engineering problems, such as the ORPD.
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Table 2. Results of SSA and ISSA on the benchmark test functions.

Benchmark
Function

Best Average Worst Std. Dev.

ISSA SSA ISSA SSA ISSA SSA ISSA SSA

F1 5.64 × 10−13 5.15 × 10−9 6.38 × 10−12 6.96 × 10−9 1.45 × 10−11 1.05 × 10−8 4.02 × 10−12 1.21 × 10−9

F2 1.18 × 10−7 3.68 × 10−6 3.08 × 10−7 5.48 × 10−6 5.72 × 10−7 8.03 × 10−6 1.10 × 10−7 9.74 × 10−7

F3 8.90 × 10−14 1.83 × 10−10 2.53 × 10−12 4.35 × 10−10 6.48 × 10−12 8.45 × 10−10 1.72 × 10−12 1.94 × 10−10

F4 1.32 × 10−7 6.45 × 10−6 6.71 × 10−7 1.19 × 10−5 1.55 × 10−6 1.74 × 10−5 3.81 × 10−7 2.33 × 10−6

F5 2.587318 0.011634 4.110208 117.4396 4.858855 1183.956 0.429069 244.1039
F6 2.16 × 10−10 1.72 × 10−10 3.19 × 10−10 4.50 × 10−10 5.01 × 10−10 7.88 × 10−10 7.59 × 10−11 1.65 × 10−10

F7 1.08 × 10−6 0.000552 2.23 × 10−5 0.002002 8.94 × 10−5 0.005095 2.38 × 10−5 0.001264
F8 −3854.25 −3617.37 −2877.61 −3052.87 −2402.63 −2531.64 329.3672 316.8193
F9 1.28 × 10−13 9.949586 1.01 × 10−12 22.85084 3.01 × 10−12 44.77286 7.44 × 10−13 9.469586

F10 1.91 × 10−7 7.44 × 10−6 4.79 × 10−7 0.810233 1.06 × 10−6 2.316849 1.99 × 10−7 0.817508
F11 4.46 × 10−13 0.132949 5.91 × 10−12 0.33718 2.84 × 10−11 0.693639 6.39 × 10−12 0.14227
F12 8.13 × 10−13 9.42 × 10−13 2.56 × 10−12 0.051897 3.99 × 10−12 0.62195 7.46 × 10−13 0.143383
F13 2.42 × 10−12 4.49 × 10−12 0.000366 0.001099 0.010987 0.010987 0.002006 0.003353
F14 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 1.62 × 10−16 2.31 × 10−16

F15 0.000307 0.000618 0.000307 0.000829 0.000307 0.001223 3.41 × 10−14 0.000204
F16 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 8.04 × 10−16 5.80 × 10−15

F17 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 7.99 × 10−16 1.33 × 10−14

F18 3 3 3 3 3 3 1.38 × 10−14 7.38 × 10−14

F19 −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 1.61 × 10−15 5.99 × 10−15

F20 −3.322 −3.322 −3.23084 −3.21497 −3.2031 −3.20301 0.051146 0.036284
F21 −10.1532 −10.1532 −10.1532 −8.80506 −10.1532 −2.63047 4.91 × 10−12 2.543965
F22 −10.4029 −10.4029 −10.0486 −8.46635 −5.08767 −5.08767 1.348527 2.588702
F23 −10.5364 −10.5364 −10.5364 −9.28557 −10.5364 −5.17565 3.47 × 10−12 2.30611

As the authors of the original SSA stated in [16], the algorithm exploration is not
proper balanced to its exploitation capabilities. The additions to the standard algorithm
introduced in this paper are solving the exploration deficiencies, as the proposed ISSA
achieves better results compared to the original SSA for most of the objective functions.
The exploitation ability and overall robustness of the algorithm are further increased, as
the standard deviations in ISSA have considerably lower values in comparison with SSA
for the evaluated benchmark functions.

4.3. Single-Objective ORPD Results

The proposed optimization algorithm is employed for the ORPD problem on two
frequently used test systems, namely the IEEE 14-bus and IEEE 30-bus test systems [37],
considering real power losses and bus voltage deviation minimization as objective functions.

4.3.1. IEEE 14-Bus System

The IEEE 14-bus test system contains nine controllable devices, including the slack
bus, four generators, one shunt capacitor and three on-load tap-changing transformers,
with their limits presented in Table 3. The settings for the transformer taps and the shunt ca-
pacitor are defined as discrete variables, which vary in steps of 0.01 p.u. for the transformer
taps and in steps of 0.005 p.u. for the capacitor bank.

Table 3. Control variables limits for IEEE 14-bus system.

Control
variable

QG2
[p.u.]

QG3
[p.u.]

QG6
[p.u.]

QG8
[p.u.]

Transformers Tap
[p.u.]

Capacitor Bank
[p.u.]

Min. −0.4 0 −0.06 −0.06 0.9 0
Max. 0.5 0.4 0.24 0.24 1.1 0.18

In this case study, the proposed ISSA method is applied on the IEEE 14-bus system
for each objective function considered and the results are further compared to the stan-
dard algorithm, as well as other methods studied in the literature, such as the particle
swarm optimizer (PSO), the gravitational search algorithm (GSA), the improved gravi-
tational search algorithm (IGSA) [38], the diversity enhanced PSO (DEPSO) and JAYA
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algorithm [39]. Furthermore, 30 simulations are conducted for both SSA and ISSA in or-
der to test the algorithms’ consistency in finding the optimal solution and a statistical
comparison is performed.

Power Loss Minimization

The first objective function considered in this study is the total real power loss mini-
mization, described by Equation (3). The optimal control variables obtained by the proposed
algorithm and the other metaheuristic techniques are presented below. As mentioned in
Section 3.1, the developed load flow calculation method only considers PQ buses, as it
ensures reduced computation time, thus the reactive power output of generators is a speci-
fied fixed value. Table 4 displays the voltages at the generator buses instead, in order to
properly compare SSA and ISSA results to other algorithms presented in the literature,
where the control variables values correspond to the best simulation for each algorithm.

Table 4. Optimal control variables settings for power-loss minimization for IEEE 14-bus system.

Control Variables GSA PSO IGSA DEPSO JAYA SSA ISSA

Bus
voltages

(p.u)

V1 1.1 1.1 1.1 1.019 0.959 1.1 1.1
V2 1.076398 1.077022 1.076578 1.0393 0.9604 1.085801 1.085802
V3 1.052355 1.046782 1.046787 0.9817 0.9664 1.05631 1.056346
V6 1.008185 1.020621 1.062305 1.0246 1.0389 1.096912 1.096919
V8 1.049006 1.071699 1.097861 1.0015 1.0019 1.1 1.1

Transformer
tap ratio

(p.u.)

T1 1.04 1.02 1.02 1.03 1.0451 1.03 1.03
T2 1.02 1 0.94 0.95 0.9733 0.9 0.9
T3 1 1.04 1 1.03 1.0135 0.98 0.98

Capacitor
bank
(p.u.)

Q9 0.035 0 0.05 0.14 0.15 0.18 0.18

Power Losses (MW) 12.64782 12.46588 12.39706 13.4086 13.466 12.2834 12.2834

As it can be observed, both SSA and ISSA converged into similar solutions. Both
algorithms achieve total power losses of 12.2834 MW, which represents the best value of the
objective function reached among the highlighted algorithms, with 0.9% better compared
to the next best solution, obtained by IGSA. However, even if ISSA and SSA show the same
performance in at least one trial, Table 5 and Figure 3 depict that ISSA shows better stability
by achieving lower values for both the average value and the standard deviation. After
the 30 trials, the median value (represented by the red line) of the power losses obtained
by ISSA was 12.2866 MW, while the value for SSA was 12.2879 MW. Therefore, it can be
concluded that the improvements proposed for the standard SSA enhance the robustness
of the algorithm.

Table 5. Statistical comparison of the results for power loss minimization for IEEE 14-bus system.

GSA PSO IGSA DEPSO JAYA SSA ISSA

Min. ∆P 12.64782 12.46588 12.39706 13.4086 13.466 12.2834 12.2834
Avg. ∆P 13.21897 12.78373 12.46443 - - 12.2899 12.2885
Max. ∆P 14.36926 13.67714 12.90281 - - 12.3099 12.3062
Std. dev.

∆P 0.52 0.38 0.094 - - 0.0066 0.0061

As the previous comparison study on the benchmark functions reveals in Section 4.2,
the SSA and ISSA algorithms provide similar results when applied on small problems. As
the IEEE 14-bus implies few control variables, a resemblance can be observed in the results
obtained by the two methods, with the outperformance of ISSA over SSA by only a small
margin in terms of consistency in achieving the optimal settings for the ORPD problem.
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Voltage Deviation (VD) Minimization

Another purpose in solving the ORPD problem is the minimization of bus voltages
deviation from the reference value. In this case, the objective function is defined by Equation
(4), considering Vref = 1 p.u. The control variables for the assessed methods are displayed
in Table 6.

Table 6. Optimal control variables settings for voltage deviation minimization for IEEE 14-bus system.

Control Variables GSA PSO IGSA SSA ISSA

Bus
voltages

(p.u)

V1 1.061589 1.061683 1.060879 1.1 1.036251
V2 1.035651 1.042381 1.040856 1.033085 1.007634
V3 0.99018 1.013994 1.011222 0.989761 1.021722
V6 1.024779 1.023954 1.016776 1.0198 1.036232
V8 1.030956 1.018293 1.035129 1.026928 1.073828

Transformer
tap ratio

(p.u.)

T1 1.04 1.1 1.04 1.04 1.04
T2 0.94 0.9 0.9 0.93 0.92
T3 0.96 0.9 0.92 0.92 0.91

Capacitor
Bank
(p.u.)

Q9 0.03 0.05 0.05 0.17 0.07

Voltage deviation (p.u.) 0.06727 0.08808 0.0339 0.0373 0.0353

The best solutions for ISSA and SSA of VD minimization are 0.0353 p.u. and 0.0373 p.u,
respectively. Despite the fact that IGSA achieves a VD of 0.0339 p.u, the proposed algorithm
shows the best average and standard deviation among the highlighted methods in this
study, as it can be observed in Table 7. In this case, the standard deviation for ISSA is
0.003 p.u, which is 40% lower compared to the standard algorithm.

Table 7. Statistical comparison of results for voltage deviation minimization for IEEE 14-bus system.

GSA PSO IGSA SSA ISSA

Min. VD 0.06727 0.08808 0.0339 0.0373 0.0353
Avg. VD 0.1791 0.18294 0.04583 0.0415 0.0404
Max. VD 0.30376 0.27049 0.09056 0.0594 0.0512

Std. dev. VD 0.066 0.0603 0.017 0.0052 0.003

The boxplots resulted from the 30 trials are displayed in Figure 4. As the results reveal,
ISSA proves a more consistent performance than the SSA. The standard algorithm found
5 solutions with VD over 0.045 p.u. in the performedsimulations, while the improved
algorithm presents only one outlier, with the value of 0.0512 p.u.
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4.3.2. IEEE 30-Bus System

The controllable devices of the IEEE 30-bus test system include six generators, four
transformers and nine shunt capacitors, with their boundaries displayed in Table 8. The
transformers’ tap, as well as the shunt capacitors output are modeled as continuous vari-
ables, for an adequate comparison with the ORPD results available in literature, obtained
by other meta-heuristic techniques.

Table 8. Control variables limits for IEEE 30-bus system.

Control
Variable

QG2
[p.u.]

QG5
[p.u.]

QG8
[p.u.]

QG11
[p.u.]

QG13
[p.u.]

Transformers Tap
[p.u.]

Capacitor Banks
[p.u.]

Min. −0.2 −0.15 −0.15 −0.10 −0.15 0.9 0
Max. 1 0.8 0.6 0.5 0.6 1.1 0.05

ISSA efficiency in solving the ORPD problem for the IEEE 30 test system is evaluated by
comparing the results obtained for the considered objective functions with the conventional
SSA, as well as six other optimization algorithms, including the differential evolution
(DE) [24], the quasi-oppositional teaching learning based optimization (QOTLBO) model
proposed in [25], a PSO-tabu search (PSO-TS) hybrid model developed in [26], the chemical
reaction optimization (CRO) [27], a modified sine-cosine algorithm (MSCA) proposed
in [28] and the marine predator algorithm (MPA) [29].

Power Loss Minimization

Analogous to the previous study, the considered first objective function is the mini-
mization of active power losses. The optimal solutions of ISSA, the conventional SSA and
the other algorithms proposed in the literature are presented in Table 9.

As it can be observed, ISSA achieved 4.5149 MW in power losses, which is the best
value among the evaluated algorithms. Despite the similarity of the solutions obtained
by most of the algorithms, a better solution is reached by ISSA due to the mechanisms
implemented to enhance exploration and exploitation. A summary of the obtained results
is provided in Table 10, containing the minimum, maximum, average and the standard
deviation values of the objective function for the SSA, ISSA and the other assessed al-
gorithms. It can be observed that ISSA achieved the best results for all criteria, with a
low standard deviation as well, proving the algorithm’s numerical consistency in solving
complex problems, such as the ORPD.

An assessment on the robustness and efficiency of both the original SSA and ISSA in
solving the ORPD problem is conducted by running 30 simulations as well, and statistically
comparing the results. For a better qualitative and quantitative analysis of the results,
the boxplot representation has been used in Figure 5. The boxplots reveal that in the
30 trials, where the active power losses minimization was considered as objective, the
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worst solutions found by SSA and ISSA are 4.5595 MW and 4.5472 MW, respectively,
while the best solutions are 4.5172 MW for SSA and 4.5149 MW for ISSA. As reflected in
Figure 5, ISSA finds low values of the objective function more often, with a median value
of 4.5253 MW, while the median for SSA is 4.5317 MW.

Table 9. Optimal control variables settings for power-loss minimization using different algorithms
for IEEE 30-bus system.

Control Variables MPA PSO-TS CRO QOTLBO DE MSCA SSA ISSA

Bus
voltages

(p.u)

V1 1.1 1.1 1.0998 1.1 1.1 1.1 1.1 1.1
V2 1.0949 1.0943 1.0939 1.0942 1.0931 1.0945 1.0941 1.0944
V5 1.0761 1.0749 1.0743 1.0745 1.0736 1.0753 1.0746 1.0749
V8 1.078 1.0766 1.0762 1.0765 1.0756 1.0769 1.0765 1.0766
V11 1.0873 1.1 1.0997 1.1 1.1 1.1 1.1 1.1
V13 1.1 1.1 1.0999 1.0999 1.1 1.1 1.1 1.1

Transformer
tap ratio

(p.u.)

T1 0.9807 0.9744 0.9765 1.0251 1.0465 1.0355 1.0262 1.0466
T2 1.0222 1.051 0.9574 0.9439 0.9097 0.9063 0.9039 0.9
T3 0.9765 0.9 0.9748 0.9992 0.9867 0.98591 0.9784 0.9761
T4 0.9707 0.9635 0.9546 0.9732 0.9689 0.9679 0.9655 0.9639

Capacitor
Bank

Reactive
Power
Output

(p.u.)

Q10 0.0179 0.05 0.0499 0.05 0.05 0.0499 0.0291 0.05
Q12 0.0483 0.05 0.0499 0.05 0.05 0.0499 0.05 0.0389
Q15 0.0397 0.05 0.0499 0.05 0.05 0.04949 0.0406 0.043
Q17 0.0499 0.05 0.0499 0.05 0.05 0.05 0.05 0.05
Q20 0.0422 0.0386 0.0422 0.0445 0.04406 0.0487 0.0356 0.0428
Q21 0.0461 0.05 0.0499 0.05 0.05 0.0499 0.05 0.05
Q23 0.0469 0.05 0.0263 0.0283 0.028004 0.0397 0.0353 0.0316
Q24 0.0412 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Q29 0.0329 0.0213 0.0228 0.0256 0.025979 0.0251 0.0251 0.0211

Power Losses (MW) 4.5335 4.5213 4.5322 4.5594 4.555 4.5399 4.5172 4.5149

Table 10. Statistical comparison of results for power loss minimization for IEEE 30-bus system.

MPA PSO-TS CRO QOTLBO DE MSCA SSA ISSA

Min. ∆P 4.5335 4.5213 4.5322 4.5594 4.555 4.5399 4.5172 4.5149
Avg. ∆P 4.55389 - 4.5413 4.5601 - 4.5518 4.5317 4.5269
Max. ∆P 4.6006 - 4.5476 4.5617 - 4.5768 4.5595 4.5472
Std. dev.

∆P - - - 0.037 - - 0.0110 0.0088
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Voltage Deviation (VD) Minimization

The second objective function considered in solving the ORPD problem in the IEEE
30-bus system is the minimization of load bus voltage deviations. Once again, a comparison
is performed between the proposed ISSA and other metaheuristic optimizers. The results
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for the control variables obtained by the assessed algorithms are displayed in Table 11. As
it can be observed, ISSA solution led to a voltage deviation of 0.0831 p.u., achieving an
improvement of 2.69% compared to the standard SSA, while also reaching the best value
among the analyzed approaches.

Table 11. Optimal control variables settings for VD minimization using different algorithms for IEEE
30-bus system.

Control Variables MPA PSO-TS CRO QOTLBO DE MSCA SSA ISSA

Bus
voltages

(p.u)

V1 0.9971 0.9867 1.0089 1.0005 1.01 1.0574 1.0054 0.9793
V2 0.9959 0.991 1.0044 0.9919 0.9918 1.015 1.0039 1
V5 1.0164 1.0244 1.0218 1.0217 1.0179 1.0129 1 1.0042
V8 0.9971 1.0042 1.0041 1.0147 1.0183 1.0047 1.0005 0.9996
V11 1.0387 1.0106 1.0027 0.995 1.0114 1.0431 1.0837 1.0966
V13 1.0251 1.0734 1.0284 1.0447 1.0282 1.0072 1.0294 1.0684

Transformer
tap ratio

(p.u.)

T1 1.0556 1.0725 1.0142 1.0076 1.0265 1.0574 1.0847 1.0765
T2 1.018 0.9797 0.9004 0.903 0.9038 0.9134 0.9092 0.9341
T3 1.023 0.9273 1.0136 1.0472 1.0114 0.9668 0.9952 1.0869
T4 0.9676 0.9607 0.9667 0.9674 0.9635 0.9649 0.9339 0.9354

Capacitor
Bank

Reactive
Power
Output

(p.u.)

Q10 0.045 0.0095 0.05 0.0487 0.0494 0.0499 0.0172 0.0343
Q12 0.0497 0.0215 0.0199 0.0304 0.0109 0.0002 0.0097 0.0488
Q15 0.0499 0.0226 0.0498 0.05 0.05 0.0378 0.0127 0.0182
Q17 0.024 0.0005 0 0 0.0024 0.0173 0.0364 0.0118
Q20 0.0463 0.0359 0.05 0.05 0.05 0.0499 0.0345 0.0459
Q21 0.0499 0.0401 0.0499 0.05 0.0491 0.0499 0.0424 0.0487
Q23 0.0426 0.0427 0.05 0.05 0.0499 0.0481 0.0458 0.0364
Q24 0.0499 0.0374 0.05 0.05 0.0497 0.05 0.0378 0.0244
Q29 0.0193 0.021 0.0497 0.0256 0.0223 0.0222 0.0099 0.0113

Voltage Deviation (p.u.) 0.08514 0.0866 0.0849 0.0856 0.0911 0.097 0.0854 0.0831

Similar to the previous cases, 30 simulations are performed for the VD minimization
objective for both SSA and ISSA methods. The results are outlined in Figure 6, using
boxplots of objective functions values, as well as in Table 12, where the performance
metrics for ISSA, SSA and the other algorithms are highlighted. The dimension of the
boxplots demonstrates the superiority of ISSA with respect to SSA in identifying better
solutions for the VD minimization objective. The median value achieved by ISSA in
30 runs is 0.0933 p.u., showing an improvement of 9.3% over the standard SSA median
(0.10294 p.u.). Given the narrower appearance of ISSA boxplot and the position of the 75th
percentile being at 0.0984 p.u. it can be concluded that the proposed method generally
provides better results in comparison with the standard algorithm.
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Table 12. Statistical comparison of results for voltage deviation minimization for IEEE 30-bus system.

MPA PSO-TS CRO QOTLBO DE MSCA SSA ISSA

Min. VD 0.08513 0.0866 0.0849 0.0856 0.0911 0.097 0.0854 0.0831
Avg. VD 0.09454 - 0.0863 0.0872 - 0.1019 0.1088 0.0947
Max. VD 0.099 - 0.0898 0.0907 - 0.138 0.1649 0.1202

Std. dev. VD - - - 0.0314 - - 0.0207 0.0080

In accordance with the results for the benchmark functions, the narrow distribution
of the resulted VD in ISSA leads to a lower standard deviation (0.008 p.u.) compared to
SSA, which achieves a standard deviation of 0.0207 p.u. Although ISSA provides the best
solution among the algorithms presented in Table 12, the algorithm is surpassed by other
methods (i.e., MPA, CRO and QOTLBO) in terms of the worst solution obtained. ISSA’s
worst solution among the 30 simulations was 0.1202 p.u., while MPA worst solution is
0.099 p.u., and CRO is reported to obtain an average VD for the tested system of only
0.0863 p.u. with the worst achieved value of 0.0898 p.u.

4.4. Multi-Objective Approach

In power systems scheduling, the operators must handle both technical and economic
aspects, thus the reactive power dispatching problem must be solved by finding a com-
promise solution considering multiple objectives simultaneously. Giving the conflicting
nature of power losses, determined in Equation (3), and the voltage variation objective,
computed as the sum of voltage deviations at each load bus, defined by Equation (4), the
multi-objective SSA (MO-SSA) is further applied in this study to simultaneously min-
imize these two objective functions. The improvements proposed in this paper for the
single-objective SSA are integrated in the multi-objective approach as well and an anal-
ysis is conducted in order to assess the performance of MO-ISSA with respect to the
standard MO-SSA, as well as three other state-of-the-art metaheuristic algorithms for
multi-objective problems: the non-dominated sorting genetic algorithm (NSGA-III) [40],
the multi-objective particle swarm optimization (MOPSO) [41] and the multi-objective grey
wolf optimizer (MOGWO) [42]. The analysis is performed on both IEEE 14-bus and IEEE
30-bus test systems.

4.4.1. Multi-Objective Optimization on IEEE 14-Bus System

The first test system analyzed in solving the multi-objective ORPD problem using
the five previously mentioned algorithms is the IEEE 14-bus system. The performance
evaluation of the proposed algorithm is conducted by analyzing the Pareto fronts generated
by MO-ISSA and the other considered methodologies, displayed in Figure 7.
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As the results reveal, MOPSO, NSGA-III and MOGWO fail to reach proper diversity
and spreading on the Pareto front in comparison to MO-SSA and MO-ISSA. MOPSO and
NSGA-III achieve a good distribution on the inferior part of the Pareto front, at the cost
of a poor exploration of the superior part of the front, focusing more on the power losses
minimization. MO-SSA presents a better overall performance compared to MOPSO and
NSGA-III, as its solutions achieve lower values on both axes of the Pareto front. On the
other hand, MOGWO reaches good distribution and exploration on the superior part of
the front. On the lower side of the front, the algorithm identifies less solutions, proving
a poor distribution. In the highlighted area of Figure 7, solutions of MOGWO dominate
the solutions of MO-SSA, while also achieving better distribution of solutions. However,
MO-SSA obtains a wider front.

The proposed improvements implemented for the single-objective SSA are also ensur-
ing a good performance in the multi-objective ORPD approach. The Pareto fronts analysis
shows that the proposed algorithm achieves a better distribution of the solutions com-
pared to the standard MO-SSA and the other assessed algorithms. Furthermore, MO-ISSA
provides the best solutions, dominating the solutions obtained by all other methods.

4.4.2. Multi-Objective Optimization on IEEE 30-Bus System

The same analysis is further conducted on the IEEE 30-bus test system. Figure 8 depicts
the Pareto fronts generated based on the optimal sets identified by each algorithm. For the
IEEE 30-bus system, MO-SSA and MO-ISSA outperform the other algorithms in most areas
of the Pareto front, attaining lower values of both the objective functions.
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In the highlighted area from Figure 8, MO-SSA is surpassed in performance by all the
other algorithms, while NSGA-III and MOPSO present comparable solutions to MO-ISSA
in this particular area. Similar to the previous case, the performances of NSGA-III and
MOPSO are generally inferior to the other algorithms, indicating poorer efficiency of the
exploitation process. In this case, MOGWO obtained better coverage of the Pareto front in
comparison to the IEEE 14-bus system. However, MOGWO is giving once again noticeably
inferior results compared to MO-ISSA.

The solutions situated at the extremities of the Pareto front are more focused towards
one objective function, leading to worse values for the conflicting objective function. In
other words, lower values for power losses correspond to unfavorable solutions for voltage
deviations and vice versa. The best power losses, and consequently the worst VD, achieved
by MO-SSA are 4.66 MW and 0.88 p.u., respectively, while in the other extremity of the
Pareto front, VD reaches 0.13 p.u. with power losses of 6.29 MW. On the other hand, the
best solution for power losses withMO-ISSA is 4.6 MW, with a total voltage deviation of
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1.25 p.u., while the lowest achieved VD is 0.1 p.u. with power losses of 5.9 MW. Therefore,
due to reduced exploration capability of the conventional algorithm, MO-SSA provides
worse solutions in comparison to MO-ISSA and lower spread across the Pareto front, since
it stores multiple identical or similar solutions in the archive. The replacing procedure of
non-dominated solutions from the archive fails to reach a proper diversity of solutions for
MO-SSA. The Pareto front for MO-ISSA reaches lower values on both axes compared to
MO-SSA, which proves that every solution of MO-SSA is dominated by solutions obtained
by MO-ISSA, showing once again the superior capability of the proposed algorithm.

5. Conclusions

In this paper, a recently developed metaheuristic technique has been investigated
in solving the optimal reactive power dispatch in transmission systems, namely the salp
swarm algorithm (SSA). As metaheuristic algorithms require a large number of objective
function evaluations, a faster load flow method, the current-mismatch Newton-Raphson,
is employed in order to help reduce the computational time. Two objectives have been
considered in solving the ORPD problem, more specifically the power loss minimization
and the voltage deviations reduction. In this regard, the ORPD problem is approached as
both single- and multi-objective. Considering the complexity and the non-linearity of the
ORPD problem, several improvements have been applied to the conventional SSA model.
To verify the validity and effectiveness of the proposed improved salp swarm algorithm
(ISSA), multiple comparison analyses are performed in this study. Firstly, the performances
of the original SSA and the improved model have been tested on 23 benchmark functions
frequently used in literature. The modification of the exploration and exploitation processes
is reflected in the superior results obtained by the improved method in most of the analyzed
cases. Secondly, the efficiency of the ISSA model in solving the single-objective ORPD
problem is compared to the original SSA and multiple recent metaheuristic techniques,
such as differential evolution, sine-cosine algorithm and the marine predator algorithm.
Once again, the proposed model obtains the best results for the two objective functions.
Finally, the ORPD analysis is approached as a multi-objective optimization problem aiming
at the power losses minimization, while maintaining reduced bus voltage deviations. The
analysis included a comparison with other state-of-the-art algorithms, such as the multi-
objective grey wolf optimizer. The Pareto fronts obtained for the evaluated algorithms show
the superiority of the solutions provided by the proposed method, which points out the
effectiveness and applicability of the model in solving complex single- and multi-objective
optimization problems specific to power systems operation.

In terms of model’s further development, future work considers hybridization tech-
niques for a better integration of discrete variables in the optimization problem definition.
Future research regarding power systems concerning problems should focus on the high
penetration of the renewable energy sources, as well as the dynamic approach of the ORPD
problem (24-h analysis).
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