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Abstract: Hexagonal boron nitride and silicone rubber (h-BN/SR) composites were prepared by the
mechanical stirring method, and their crystal morphology, chemical structure, thermal properties,
and compression stress–strain performance were investigated. The experimental results suggest that
silicone rubber combined with h-BN exhibits better thermal conductivity and mechanical properties.
When the proportion of h-BN is 30 wt%, the thermal conductivity of the h-BN/SR composite material
is 0.58 W/m·K, which is 3.4 times that of pure silicone rubber. At the same time, the compressive
strength of h-BN/SR is 4.27 MPa, which is 6.7 times that of pure silicone rubber. Furthermore, the
finite element model was employed to numerically analyze the thermal behavior of a battery with a
h-BN/SR composite as the thermal interface material. The analytical results show that the highest
temperature of the battery decreased when using h-BN/SR as the thermal interface material in the
battery thermal management system. The h-BN/SR composite can thus effectively improve the safety
properties of batteries.

Keywords: boron nitride particles; silicone rubber; thermal interface material; battery thermal man-
agement

1. Introduction

Generally, thermal interface materials are known to effectively eliminate interface
thermal resistance, thereby enhancing interface heat conduction and heat dissipation. This
is essential to ensure safe operations of electronic materials and prolong their service lives.
Some of the commonly used thermal interface materials are metals, silicone rubber, and
silicone grease [1–3].

Filler thermal interface materials have the advantages of low cost and facilitate ease of
use. Silicone rubber (SR) is a typical interface filler material that possesses good chemical
stability, has excellent electrical insulation, and is environment friendly. However, the poor
mechanical properties and bad thermal conductivity of pure SR limits its practical appli-
cation. To improve the thermal conductivity, various types of high-thermal-conductivity
nanomaterials are generally used as fillers in the silicone rubber, such as Al2O3 [4], ZnO [5],
ALN [6], Si3N4 [7], MWCNT [8,9], graphite [10], and GNPS [11]. Carbon materials are
known to be good thermally conductive additives, but they are not suitable for applications
in insulating electronic packaging owing to their excellent electrical conductivities [12,13].
Hexagonal boron nitride (h-BN) is a low-density and high-thermal-conductivity material,
and its crystal structure is similar to that of graphite. However, compared with graphite, its
major property is that h-BN has a wide energy band gap of up to 5.5 eV; it is an excellent
insulating dielectric material that is suitable for electronic insulation applications [14,15].
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Thermal interface materials are mainly used in the electrical and electronic applica-
tions. With the rapid growth of electric cars and electric devices, the thermal management
of lithium-ion batteries is becoming more important. The rapid charging and discharging
processes cause the temperature of the lithium batteries to rise rapidly and may even cause
explosion or fire. High temperatures therefore seriously affect the safety and life of a battery.
Hence, thermal management of the battery is necessary to reduce battery temperature [16].
Battery thermal management (BTM) can be classified into active and passive methods.
Active coolants (air or water) are used to cool the battery, whereas passive cooling mainly
utilizes phase change materials (PCMs) to cool the battery [17]. To improve heat transfer
effectively, many studies have considered exploring heat-dissipation materials or structural
optimization for heat dissipation, such as improving the heat-exchange performances of
PCMs [18], using high-thermal-conductivity aluminum plates [19], copper pipes [20], and
optimizing the heat-dissipation structures [16]. However, in practice, owing to the surface
flatness and roughness, heat sinks cannot be matched well with the battery surfaces, which
then causes gaps and voids in the contact surface. Some efforts have therefore been invested
into addressing this issue. Tran et al. [21] researched heat pipes for battery pack thermal
management; to enhance heat transfer, silicon resin was used between the battery pack and
aluminum module wall. Wang et al., [22] embedded copper tube into the silicon rubber
plane and attached the thermal silicon rubber with the prismatic batteries to improve heat
exchange. However, these studies did not analyze the extent to which the temperature
of the battery could be reduced using thermal silicone rubber. Hence, it is necessary to
analyze the effects of thermal interface materials on BTM.

For these reasons, in this study, we chose h-BN as the thermally conductive additive
to SR and formulated a h-BN/SR composite material to study its thermal properties and
compression stress–strain performance. Furthermore, the h-BN/SR composite material
was applied to BTM, and finite element software was used to analyze the temperature
variations of the battery under different discharge rates and interface gaps.

2. Materials and Experiments
2.1. Materials

Two-component SR (HY-9310, density 0.98 g/cm3, Shenzhen Hongye Silicone Rub-
ber Co., Ltd., Shenzhen, China) and hexagonal boron nitride (diameter ∼2 µm, density
2.3 g/cm3, thermal conductivity 360 W/m·K, Guangzhou Nano New Materials Co., Ltd.,
Guangzhou, China).

2.2. Preparation of h-BN/SR Composite

As shown in Figure 1, the two-component silicone rubber was first mixed in a weight
ratio of 1:1. Then, a specific proportion of h-BN powder was added to the two-component
SR liquid and stirred evenly in a high-speed shearing disperser to obtain a colloidal liquid.
Finally, the colloidal liquid was cured in a mold at 60 ◦C for 24 h to obtain the h-BN/SR
composite material.
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Figure 1. Illustration of preparation of hexagonal boron nitride and silicone rubber (h-BN/SR) 
composite. 

2.3. Characterization 
Drying oven (DHG-9070G, Shanghai Jinghong Experimental Equipment Co., Ltd.) 

was applied to the hardening of SR. Fourier-transform infrared spectroscopy (FTIR spec-
troscopy, Nicolet 5700) was used to characterize the chemical compositions of samples 
with a scanning range of 500–4000 cm−1. The samples were cut into thin slices with a knife 
blade before FTIR test. Thermogravimetric analysis (TGA4000, PE) was performed in a 
protective atmosphere of Ar gas at a temperature rise rate of 10 °C/min. The crystal struc-
tures of the SR, h-BN, and h-BN/SR were tested by ray diffraction (XRD, D8 ADVANCE 
Bruker). A scanning electron microscope (SEM, JEOL, JSM-6701F) was used to examine 
the microscopic structures of these specimens. The stress strength testing was performed 
with a tensile machine (SUNS, CMT4304) by accuracy of ±1%. The dielectric constant and 
dielectric loss were analyzed using a dielectric performance machine (Waykerr, 6500B). 
The thermal conductivity properties of the prepared SR and h-BN/SR composite samples 
were tested with a thermal conductivity measurement instrument (XIATECH, TC3000, 
accuracy: ±1.5%) at room temperature. The value of the thermal conductivity was obtained 
by three test samples, and each sample was tested three times, averaged and the minimum 
average was selected. The compression test is to test two samples, taking the minimum 
value. The sample size for compressive strength and thermal conductivity testing is φ40 
× 10 mm, and the samples size for the dielectric constant test is φ40 × 2 mm. 

2.4. Battery Thermal Management Simulation 
The BTM simulations were conducted using the COMSOL 5.4 commercial software. 

The battery is the heat source, and the liquid-cooling aluminum plate is the heat sink. To 
analyze the interface thermal resistance effect on battery temperature, different interface 
gaps (10, 20, and 50 μm) are simulated, and the schematic of the numerical model is shown 
in Figure 2. 

Figure 1. Illustration of preparation of hexagonal boron nitride and silicone rubber (h-BN/SR)
composite.

2.3. Characterization

Drying oven (DHG-9070G, Shanghai Jinghong Experimental Equipment Co., Ltd.)
was applied to the hardening of SR. Fourier-transform infrared spectroscopy (FTIR spec-
troscopy, Nicolet 5700) was used to characterize the chemical compositions of samples
with a scanning range of 500–4000 cm−1. The samples were cut into thin slices with a knife
blade before FTIR test. Thermogravimetric analysis (TGA4000, PE) was performed in a
protective atmosphere of Ar gas at a temperature rise rate of 10 ◦C/min. The crystal struc-
tures of the SR, h-BN, and h-BN/SR were tested by ray diffraction (XRD, D8 ADVANCE
Bruker). A scanning electron microscope (SEM, JEOL, JSM-6701F) was used to examine
the microscopic structures of these specimens. The stress strength testing was performed
with a tensile machine (SUNS, CMT4304) by accuracy of ±1%. The dielectric constant and
dielectric loss were analyzed using a dielectric performance machine (Waykerr, 6500B). The
thermal conductivity properties of the prepared SR and h-BN/SR composite samples were
tested with a thermal conductivity measurement instrument (XIATECH, TC3000, accuracy:
±1.5%) at room temperature. The value of the thermal conductivity was obtained by three
test samples, and each sample was tested three times, averaged and the minimum average
was selected. The compression test is to test two samples, taking the minimum value. The
sample size for compressive strength and thermal conductivity testing is ϕ40 × 10 mm,
and the samples size for the dielectric constant test is ϕ40 × 2 mm.

2.4. Battery Thermal Management Simulation

The BTM simulations were conducted using the COMSOL 5.4 commercial software.
The battery is the heat source, and the liquid-cooling aluminum plate is the heat sink. To
analyze the interface thermal resistance effect on battery temperature, different interface
gaps (10, 20, and 50 µm) are simulated, and the schematic of the numerical model is shown
in Figure 2.
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Figure 2. (a) Structural model of battery thermal management simulation; (b) interface between 
battery and aluminum cold plate. 

3. SR, h-BN, and h-BN/SR Composite Characteristics 
3.1. Crystal Morphology 

The crystal morphology of the composite material was analyzed by XRD, as shown 
in Figure 3. Pure SR has an amorphous structure with a steamed-bun-like peak at about 
11.9°, with no other peaks, indicating that SR is amorphous with long-range disorder and 
short-range order. When the additive proportion is 30 wt% of BN, the composite material 
has diffraction peaks at 26.9°, 41.6°, 43.8°, 50.0°, and 55.0°, which correspond to the (002), 
(100), (101), (102), and (104) crystal planes of h-BN, respectively [23]. The addition of 10 
wt% h-BN/SR shows an obvious diffraction peak at 26.9°, and the other peaks of the h-BN 
are not obvious. This is because the content of h-BN in the silicone rubber matrix is low. 
For 30 wt% samples, the intensity ratio of I(002) to I(001) of h-BN diffraction peaks is de-
creased as compared to pristine h-BN. It is demonstrated that the h-BN has a certain ori-
entation in the silicone rubber body due to the rapid stirring in the synthesis process. The 
orientation distribution of boron nitride in the matrix can improve the thermal conductiv-
ity of the composite material [24]. XRD analysis shows that there is no change of the crystal 
structure of paraffin wax and hexagonal boron nitride in the composite. 

Figure 2. (a) Structural model of battery thermal management simulation; (b) interface between
battery and aluminum cold plate.

3. SR, h-BN, and h-BN/SR Composite Characteristics
3.1. Crystal Morphology

The crystal morphology of the composite material was analyzed by XRD, as shown
in Figure 3. Pure SR has an amorphous structure with a steamed-bun-like peak at about
11.9◦, with no other peaks, indicating that SR is amorphous with long-range disorder and
short-range order. When the additive proportion is 30 wt% of BN, the composite material
has diffraction peaks at 26.9◦, 41.6◦, 43.8◦, 50.0◦, and 55.0◦, which correspond to the (002),
(100), (101), (102), and (104) crystal planes of h-BN, respectively [23]. The addition of 10 wt%
h-BN/SR shows an obvious diffraction peak at 26.9◦, and the other peaks of the h-BN are
not obvious. This is because the content of h-BN in the silicone rubber matrix is low. For
30 wt% samples, the intensity ratio of I(002) to I(001) of h-BN diffraction peaks is decreased
as compared to pristine h-BN. It is demonstrated that the h-BN has a certain orientation in
the silicone rubber body due to the rapid stirring in the synthesis process. The orientation
distribution of boron nitride in the matrix can improve the thermal conductivity of the
composite material [24]. XRD analysis shows that there is no change of the crystal structure
of paraffin wax and hexagonal boron nitride in the composite.

3.2. Chemical Structure Analysis

Figure 4 shows the FTIR maps of h-BN, SR, and h-BN/SR. The h-BN has significant
absorption peaks near 808 cm−1 and 1361 cm−1, corresponding to stretching vibration (out-
of-plane vibration, A2u mode) and bending vibration (in-plane vibration, E1u mode) [25].
For pure SR, the two vibration peaks at 1017 cm−1, and 1088 cm−1 belong to the charac-
teristic skeleton (Si-O-Si) absorption peaks, while the peaks at 808 cm−1 and 2962 cm−1

belong to the Si-CH3 groups [26]. In the composite material, the peaks of the h-BN and SR
both exist, indicating that the mixing of SR and h-BN is physical, which is consistent with
the XRD analysis results. Physical mixing is thus beneficial for the h-BN/SR composite to
maintain the inherent characteristics of the SR.



Energies 2021, 14, 999 5 of 15

Energies 2021, 14, 999 5 of 16 
 

 

 
Figure 3. XRD spectra of h-BN, SR, and h-BN/SR composite. 

3.2. Chemical Structure Analysis 
Figure 4 shows the FTIR maps of h-BN, SR, and h-BN/SR. The h-BN has significant 

absorption peaks near 808 cm−1 and 1361 cm−1, corresponding to stretching vibration (out-
of-plane vibration, A2u mode) and bending vibration (in-plane vibration, E1u mode) [25]. 
For pure SR, the two vibration peaks at 1017 cm−1, and 1088 cm−1 belong to the character-
istic skeleton (Si-O-Si) absorption peaks, while the peaks at 808 cm−1 and 2962 cm−1 belong 
to the Si-CH3 groups [26]. In the composite material, the peaks of the h-BN and SR both 
exist, indicating that the mixing of SR and h-BN is physical, which is consistent with the 
XRD analysis results. Physical mixing is thus beneficial for the h-BN/SR composite to 
maintain the inherent characteristics of the SR. 

Figure 3. XRD spectra of h-BN, SR, and h-BN/SR composite.
Energies 2021, 14, 999 6 of 16 
 

 

 
Figure 4. FTIR curves of h-BN, SR, and h-BN/SR. 

3.3. Microscopic Analysis 
The microstructure of h-BN is shown in Figure 5a. The h-BN has a flake-shaped struc-

ture with a lateral size of �1−3 μm, and the h-BN fine particles are prone to aggregation 
and stacking. Figure 5b shows the SEM image of h-BN/SR with a h-BN content of 30 wt%. 
The cross section consists of two parts, namely the SR matrix and h-BN particles. The SR 
matrix is smooth without defects, such as pores, and the h-BN particles are randomly but 
uniformly embedded in the SR matrix, which is beneficial for improving the mechanics of 
the composite SR performance. To further certify the homogeneous dispersion of h-BN in 
the SR matrix, the SR composite was analyzed using the element map. Figure 5c is the 
SEM image of h-BN/SR, while Figure 5d–f are the corresponding B, N, and Si element 
diagrams. It is seen that the B, N, and Si are moderately distributed in the h-BN/SR com-
posite without aggregation. The uniform dispersion of h-BN in the SR body facilitates an 
improvement in heat conductivity. 

Figure 4. FTIR curves of h-BN, SR, and h-BN/SR.

3.3. Microscopic Analysis

The microstructure of h-BN is shown in Figure 5a. The h-BN has a flake-shaped struc-
ture with a lateral size of ∼1−3 µm, and the h-BN fine particles are prone to aggregation
and stacking. Figure 5b shows the SEM image of h-BN/SR with a h-BN content of 30 wt%.
The cross section consists of two parts, namely the SR matrix and h-BN particles. The SR
matrix is smooth without defects, such as pores, and the h-BN particles are randomly but
uniformly embedded in the SR matrix, which is beneficial for improving the mechanics of
the composite SR performance. To further certify the homogeneous dispersion of h-BN in
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the SR matrix, the SR composite was analyzed using the element map. Figure 5c is the SEM
image of h-BN/SR, while Figure 5d–f are the corresponding B, N, and Si element diagrams.
It is seen that the B, N, and Si are moderately distributed in the h-BN/SR composite without
aggregation. The uniform dispersion of h-BN in the SR body facilitates an improvement in
heat conductivity.
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Figure 5. SEM images: (a) morphology of h-BN, (b,c) morphologies of h-BN/SR composite with
different magnifications, and (d–f) corresponding B, N, and Si element mappings.

3.4. Thermal Conductivity

Experimental and theoretical heat conductivities of the h-BN/SR composite are shown
in Figure 6, revealing that pure SR has a relatively low thermal conductivity of only
0.17 W/m·K. With the increasing loading of the h-BN thermally conductive particles, the
thermal conductivity of the composite SR increases owing to h-BN having a much higher
thermal conductivity compared to the SR matrix. When the filling proportion is 30 wt%,
the thermal conductivity of the composite material reaches 0.58 W/m·K, which is 3.4 times
that of pure SR. The thermal conductivity of the composite material was calculated by the
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Maxwell–Eucken [27] and Lewis–Nielsen [28] models, which are commonly applied to
analyze the thermal conductivities of binary composite materials [27]. Equations (1) and
(2) correspond to Maxwell–Eucken and Lewis–Nielsen model, respectively. The equations
are as follows:

λc = λm
2λm + λp + 2Vp

(
λp − λm

)
2λm + λp − 2Vp

(
λp − λm

) (1)

λc = λm
1 + A λp−λm

λp+Aλm
Vp

1− λp−λm
λp+Aλm

(
1 + 1−Φm

Φ2
m

)
Vp

(2)

where λc, λm and λp are the heat conductivity of composite, polymer material and particles,
Vp is volumetric fraction filler particles. In Equation (2), A = kE − 1 is related to the shape
factor of the filler particles, and kE is the Einstein coefficient. With a more irregular shape
of the composite filler, the value of A is bigger than 2 [29]. In this study, the value of A is 8,
which is used to fit the curve. By comparison, it was found that the experimental test values
were higher than the Maxwell–Eucken model calculation values. This is because h-BN
is flake-like and has anisotropy, while the Maxwell-Eucken model is mainly suitable for
thermally conductive fillers with regularly spherical shapes. However, the Lewis–Nielsen
model has a good agreement with the experiment. Under equal volume fraction filling,
the thermal conductivity of h-BN/SR in this study is close to the h-BN@SR composite
researched by other studies [24,30], and higher than that of Al2O3@SR composite in
Reference [4]. This is because h-BN was moderately dispersed in the SR matrix, which
greatly improved the thermal conductivity of the h-BN/SR composite. Furthermore, to
verify the repeatability, based on the three samples tested, the experimental errors were
calculated using the standard deviation approach. It can be seen that the standard deviation
is less than 1%, indicating that the product has good consistency.
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3.5. Thermal Stability Analysis

Figure 7 shows the TGA curves of h-BN, SR, and h-BN/SR composite. The h-BN
sample exhibits good thermal stability. As the temperature of heating is increased to
700 ◦C, there is no obvious weight loss of h-BN. The thermal decomposition of pure SR
reaches 368 ◦C, and the decomposition of SR can be classified into two processes. First,
the side chain C-H is broken down; then, the main chain Si-O-Si begins breaking down
because of the Si-O-Si bond that has a stronger bond energy of up to 462 kJ/mol [31]. The
onset decomposition temperature of the h-BN/SR composite is 394 ◦C, which is 26 ◦C
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higher than that of pure SR, indicating that the presence of h-BN can increase the thermal
decomposition temperature of SR. The excellent thermal stability thus ensures that the
h-BN/SR composite can be used in high-temperature applications.
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3.6. Compression Performance Test

The compressive strength of SR and h-BN/SR is presented in Figure 8. The compres-
sive strength of the h-BN/SR composite increased by the addition of h-BN fine particles,
and the compressive strengths of pure SR, 10 wt% h-BN/SR, 20 wt% h-BN/SR and 30 wt%
h-BN/SR composite are 0.63, 1.49, 2.21 and 4.27 MPa, respectively. Therefore, the maxi-
mum compressive strength, which is almost 6.7 times that of pure SR, is obtained with
SR composites filled with 30 wt% h-BN. Furthermore, an increase in the h-BN resulted
in enhancement of the fracture strain. When the filling amount is 30 wt%, the fracture
strain of h-BN/SR is as high as 0.78, while the pure SR fracture strain is 0.61. The prepared
composite silicone rubber thus has good compressive strength and toughness. This result
is attributed to adequate dispersion of the h-BN in the SR matrix, with fewer defects as
well as the good mechanical properties of h-BN.
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3.7. Dielectric Performance Test

It can be seen from Figure 9a that pure SR has a low dielectric constant. The dielectric
constant value of pure SR is 1.69 at 1 MHz. Compared with pure SR, the h-BN/SR composite
has a higher dielectric constant, which increases with the loading of the h-BN content. This
is mainly because the h-BN itself has a higher dielectric constant (ε = 4) and polarization
effect on the interface between SR and h-BN [30]. It also can be seen that the curves of
all samples are smooth across the entire frequency domain (10–106 Hz), indicating that
the polarization in the composite material can quickly respond to changes in the electric
field frequency [4]. The experimental values of the dielectric loss tangent of the h-BN/SR
composite are shown in Figure 9b. The dielectric loss tangent of the h-BN/SR composite
increased with increasing content of the h-BN filler. This is because the composite material
contains more conductive carriers compared with pure SR, which causes improvement of
the dielectric loss of the h-BN/SR composite. Although the addition of h-BN increases the
dielectric loss tangent of the composite material, this value is still low. At 1 MHz, when the
h-BN filling amount is 30 wt% of the composite SR, the dielectric loss tangent is only 0.02,
indicating that the composite material has good dielectric stability.
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4. Battery Thermal Management Simulation
4.1. Heating Model of Lithium Battery

There are many methods to simulate the heat release in lithium batteries, including the
electrochemical-thermal coupling model [32], equivalent circuit model [33], and Bernardi
model [34]. Compared to the electrochemical-thermal coupling model, the Bernardi model
has advantages of lower calculation time as well as simple model equation and parameters,
which are commonly used to simulate the heat of constant current discharge of the battery.
The Bernardi model equation can be expressed as follows:

.
q =

.
qirr +

.
qr =

I
V

(
EOC −U + Tamb

dEOC
dT

) (3)

In Equation (1),
.
q is the rate of heat release, which is composed of two parts, namely

irreversible heat
.
qirr caused by Joule heating and reversible heat

.
qr generated by entropy

changes during the electrochemical reaction; I, V, Eoc, and U are the current, volume, open
circuit voltage, and operating voltage of the battery, respectively. Tamb is the ambient
temperature (K), which was considered as 293.15 K in this work, and dEOC

dT is the entropy



Energies 2021, 14, 999 10 of 15

heat coefficient of the battery. In this study, the value of dEOC
dT is 0.135 mV·K−1, according to

Reference [19]. The irreversible heat
.
qirr is calculated as follows:

.
qirr =

I
V

EOC −U = I2∗R(SOC)/V (4)

where R is the internal resistance (mΩ) whose value is the function of the battery capacity
(state-of-charge; SOC). The value used in this study was referenced from literature [35], as
shown in Figure 10.
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When the lithium battery is discharged with a constant current, the relationship
between battery SOC and time is

SOC(t) = 1− It/C (5)

In the formula, I is the battery current (A), t is the time (s), and C is the battery capacity
(Ah). Therefore, given the discharge current I, entropy thermal coefficient, and battery
internal resistance R, the heat source

.
q can be obtained by Equation (1). According to the

heating rate of the battery, its surface temperature can be determined from the following
two expressions:

ρCp
∂T
∂t

= λ∇2T +
.
q (6)

− λ∇T = h(T− Tamb) (7)

In these equations, the parameters ρ, Cp, T, and λ correspond to the battery density,
heat capacity, temperature, and thermal conductivity, respectively. The h is the heat transfer
coefficient. In this work, the simulated capacity of the prismatic battery is 20 Ah, and the
material parameters are referred to from the literature [35], as summarized in Table 1 below.

Table 1. Material parameters of the battery and Al cold plate.

Material Dimensions
(mm)

Destiny
(kg/m3)

Cp
J/(kg·K)

Λ

W/(m·K)

Battery 70 × 90 × 27 1940 1000 λx = λz = 1.35
λy = 0.98

Al cold plate 70 × 90 × 2 2700 903 238
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4.2. Grid Independence Verification

The commercial software COMSOL was used to simulate the battery heating. The
battery is discharged at a constant current rate of 3C. The conditions are natural convection
cooling in air with a typical value of the heat transfer coefficient h = 5 W/(m2·K). To
verify that the grid size is independent of the numerical simulation results, the battery
temperature was calculated at different grid sizes. As shown in Figure 11, different grids
sizes have almost no effects on the battery temperature, and the three curves overlap during
the entire discharge period. Therefore, to reduce the computational time, a coarse grid was
used in the subsequent analysis. Moreover, in the battery temperature curve, the maximum
value is 67.6 ◦C under a 3C discharge current rate, which exceeds the battery safety limit of
50 ◦C [34]. Therefore, it is concluded that natural cooling cannot effectively reduce battery
temperature and that thermal management of the battery is required.
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4.3. Battery Thermal Management System with h-BN/SR Composite

For BTM, water is a more suitable coolant than air because liquid cooling with water
has a larger specific heat capacity than air. Studies have shown that air cooling is equiv-
alent to a battery surface heat transfer coefficient of 50 W/(m2·K), while forced liquid
cooling is equivalent to a battery surface convective heat transfer coefficient of 100 or
150 W/(m2·K) [36]; therefore, in this study, the surface heat transfer coefficient of the
liquid-cooled aluminum plate is considered as 150 W/(m2·K), which is equivalent to the
cooling effect with a liquid-cooled plate. To simulate the thermal contact resistance, the
equivalent interface thermal resistance model was adopted in this study because of its
simple model [37]. The equation of this model is given in Equation (8)

hg = k/δ (8)

where k is the thermal conductivity of the gap material, for example air or SR, δ is the
gap thickness, and hg is the gap conductance. In this study, different values of the gap
thickness (10 µm, 20 µm, and 50 µm) were considered. The thermal conductivity of the
h-BN/SR composite was 0.58 W/m·K based on the actual measured value. Figure 12a
depicts the battery temperature curve under a battery discharge rate of 3C. It can be seen
that the battery temperature is lowest under ideal contact (no gap contact). After the 3C
discharge is complete, the battery temperature is 33.9 ◦C. When the gap increases, the
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battery temperature also increases. In the case of a gap of 50 µm, the battery temperature
reached the highest value of 35.9 ◦C, which is 2 ◦C higher than that of the no gap contact
condition; this clearly illustrates that the interface gap decreases the heat dissipation
efficiency of the liquid-cooled aluminum plate. When h-BN/SR is used as filler in the
gap, the highest battery temperatures obtained are 34.0 ◦C (10 µm), 34.05 ◦C (20 µm),
and 34.1 ◦C (50 µm), which is very close to the no gap contact condition value of 33.9 ◦C
and lower than that for gap contact without the h-BN/SR filler. Figure 12b displays the
temperature curve of the battery discharged at a rate of 4C. The highest temperature of
the battery without gap contact is thus 43.1 ◦C after the discharge is complete. Similar to
the 3C rate of discharge with increased interface gap, the battery temperature increased
in this case. At gaps of 10 µm, 20 µm, and 50 µm, the highest temperatures of the battery
were 43.8 ◦C, 44.5 ◦C, and 46.2 ◦C, respectively. When the gap is filled with conductive
SR, the maximum temperatures of the battery are 43.2 ◦C (10 µm), 43.23 ◦C (20 µm), and
43.3 ◦C (50 µm), which are 0.6 ◦C (10 µm), 1.27 ◦C (20 µm), and 2.9 ◦C (50 µm) lower than
those without the thermally conductive SR, respectively. This shows that the thermally
conductive SR can significantly decrease the interface thermal resistance, enhance the
cooling effect, and improve the safety performance of the battery. Figure 13 shows the
simulation model and temperature profile of the battery at the end of the 4C discharge
rate. From the temperature profile, it is noted that the highest temperature of the battery is
at the center position because the center of the battery is farthest from the liquid-cooled
aluminum plate.
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Figure 13. (a) 3D model of the battery and liquid-cooling aluminum plate, (b–d) temperature cloud
charts of the battery and liquid-cooled aluminum plate under battery discharge of 4C, corresponding
to ideal contact without gap, with gap contact (50 µm), and without SR filling (50 µm), respectively.

5. Conclusions

The h-BN/SR composite material was synthesized by a convenient mechanical stirring
method, and its crystal structure, chemical composition, and microscopic structure were
characterized by XRD, FTIR spectroscopy, and SEM, respectively. The material thermal
stability, thermal conductivity, and mechanical properties were measured. The application
of composite SR was then simulated by the finite element method, and the following results
were noted:

(1) FTIR and XRD analyses showed that the h-BN and SR were physically mixed and
that no chemical reactions occurred. The SEM analysis showed that the h-BN had
good dispersion in SR without agglomeration, which is beneficial for improving the
thermal conductivity of the composite.

(2) When the weight proportion of boron nitride is 30 wt%, the thermal conductivity is
0.58 W/m·K, which is 3.4 times that of pure SR, and the strength is 4.27 MPa, which
is 6.7 times that of pure SR. The composite material also has low dielectric constant
and dielectric loss, and it is suitable for electronic packaging applications.

(3) The BTM simulation shows that when the interface is filled with the h-BN/SR com-
posite, the maximum temperature of the battery decreased for different discharge
rates. When the battery was discharged at a constant current rate of 4C, the use
of the thermally conductive h-BN/SR composite material decreased the maximum
temperature of the battery by 0.6 ◦C, 1.27 ◦C, and 2.9 ◦C for interface gaps of 10 µm,
20 µm, and 50 µm, respectively.
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