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Abstract: The point kinetic model is a system of differential equations that enables analysis of reactor
dynamics without the need to solve coupled space-time system of partial differential equations
(PDEs). The random variations, especially during the startup and shutdown, may become severe and
hence should be accounted for in the reactor model. There are two well-known stochastic models for
the point reactor that can be used to estimate the mean and variance of the neutron and precursor
populations. In this paper, we reintroduce a new stochastic model for the point reactor, which we
named the Langevin point kinetic model (LPK). The new LPK model combines the advantages,
accuracy, and efficiency of the available models. The derivation of the LPK model is outlined in
detail, and many test cases are analyzed to investigate the new model compared with the results in
the literature.

Keywords: point kinetic reactor; stochastic processes; stochastic modeling; Langevin point ki-
netic model

1. Introduction

Point kinetic equations (PKEs) [1] are a system of coupled ordinary differential equa-
tions (ODEs) that describes concentrations/populations of neutrons and precursors in
the nuclear reactor. The PKEs are a deterministic system that provides average quantities
only. However, random variation fluctuations of neutron and precursor concentrations are
significant during low-power operation, e.g., the startup or the shutdown of the reactor.

To overcome these difficulties, the authors in [2] derived a model of the stochastic
point kinetic (SPK) equations that can be solved for these fluctuations, which we refer to
as the SPK model. This was the first model in which the space variations are neglected
and hence the analysis is reduced by avoiding the need to solve a space-time of coupled
partial differential equations (PDES). The model [2] requires the computing of the square
root of a matrix in the diffusion term, which is computationally inefficient and could cause
instabilities. To overcome these drawbacks, a second model [3] utilizes alternative modeling
following a procedure developed before in [4]. This second model drives simplified
stochastic point kinetic equations (SSPK) by ignoring the covariances between different
components. The SSPK model was further considered in [5] by using the Wiener-Hermite
expansion (WHE) spectral technique to avoid sampling of the stochastic terms and to allow
for random variation of the model parameters [6].

Additionally, the authors in [7,8] proposed a space-time reactor kinetic model using
the same procedure as in [2] but adding the spatial variations. For a detailed survey of the
different techniques used in analyzing the reactor dynamics, the reader can refer to [5].

In this paper, we consider the second model introduced in [3] without their simplifica-
tion step. We call the new modeling technique the Langevin point kinetic (LPK) model.
The LPK model introduced in this paper does not require computation of the square root of
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the covariance matrix, as in the SPK model; hence, it is computationally efficient and stable.
Moreover, we show that the LPK model has comparable efficiency with the SSPK model
while being theoretically equivalent to the SPK model. Hence, the LPK model combines
the accuracy of SPK and the efficiency of SSPK. In our numerical experiments, we used
the Euler method to analyze the three models of the point kinetic reactors. The proposed
LPK model was tested against benchmark problems and showed efficiency, accuracy, and
stability. In our experiments, we used a modified code from [2,9].

The paper is structured as follows: In Section 2, we introduce the setup of the problem
that we studied in this paper. In Section 3, we review a modeling procedure via stochastic
differential equations (SDEs) used to build the SPK model introduced in [2], along with its
resultant model. In Section 4, we review an alternative modeling procedure via SDEs used
to reintroduce the LKP model, and then the alternative model LPK is derived, along with
its simplified model from [3]. In Section 5, we review the numerical method used in the
analysis of the three models. In Section 6, test cases are considered. The paper is concluded
in Section 7.

2. The Stochastic System Setup

In this section, we consider the setup of the stochastic system which is modeled by
stochastic differential equations (SDEs) in the following sections. In a small-time interval
∆t, consider the stochastic system X with z components and p ≤ z distinct possible random
changes. Moreover, the probability of the jth change in ∆t is set to be pj∆t; then the average
change in X in ∆t is

E(∆X) = f(t, X(t))∆t =
p

∑
j=1

pj(t, X(t))λj∆t, (1)

where

fi =
p

∑
j=1

pj(t, X(t))λj,i, (2)

and λj =
[
λj,1, λj,2, . . . , λj,z

]T is the jth possible change in ∆t. Moreover, the covariance
matrix of the random change in ∆t is computed as

Σ(∆X) = V(t, X(t))∆t =
p

∑
j=1

pj(t, X(t))λjλ
T
j ∆t, (3)

where

vi,l =
p

∑
j=1

pjλj,iλj,l . (4)

The deterministic model that describes the evolution of the system X can be written in
terms of f(t, X(t)) as

dX(t) = f(t, X(t))dt (5)

which is the ordinary differential equation formulation of the model.
For our study, the deterministic model is the point kinetic equations, which can be

written as [2]

dn(t)
dt

= −
[
−ρ + 1− α

l

]
n(t) +

[
1− α− β

l

]
n(t) +

p

∑
i=1

λici(t) + q, (6)

dci(t)
dt

=
βi
l

Σan(t)− λici(t) f or i = 1, 2, . . . , p.

where n(t) is the average of the neutron (power) density, ci(t) is the average of the ith

precursor density, βi is the average of the ith neutron precursor fraction, β is the average of
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the total neutron precursor fraction, λi is the decayed constant of the ith neutron precursor,
α is defined as 1/ν, where ν is the total number of neutron released per fission, Σa is
the absorption cross-section, and q is the average number of neutron injections per unit
volume.

The model Equation (6) is the standard point kinetic equation (PKEs), but the terms
are separated into births, deaths, and transformations.

On the other hand, the stochastic description can be derived by considering the
possible random changes that could occur in ∆t. Then, the discrete stochastic process that
describes the evolution of X could be written as

X(t + ∆t) = X(t) +
p

∑
j=1

rj (7)

where rj is the jth random change in ∆t, which could occur in ∆t with probability pj∆t

defined with an error of order O
(
(∆t)2

)
. Hence, the expectation and variance of the ith

component and jth random change in ∆t are given by λj,i pj∆t and λ2
j,i pj∆t, respectively. In

the following sections, we review two modeling procedures to build stochastic differential
equation models, which approximate the process in Equation (7), along with its application
to the point kinetic equations.

3. The First Modeling Procedure and the Stochastic Point Kinetic Equations (SPK)

In this section, the first stochastic modelling procedure is introduced and applied to
the stochastic point reactor problem.

3.1. The First Procedure

Following [10], we review the first procedure to construct an SDE model for the point
reactor. For large X, the random change ∆X can be approximated by a normal random
variable with mean f∆t and covariance V∆t, i.e.,

∆X− f∆t√
V∆t

∼ N(0, 1). (8)

This approximation could be justified by the central limit theorem (CLT). Thus, the
discrete stochastic processes in Equation (7) could be approximated by

(t + ∆t) = X(t) + f(t, X(t))∆t +
√

V(t, X(t))
√

∆tη, (9)

where η ∈ Rz is a vector of independent standard normal random variables, which
converges in the mean square sense [9] as t→ 0 , to

dX(t) = f(t, X(t))dt +
√

V(t, X(t))dW, X(0) = X0, (10)

where W ∈ Rz is a vector of independent Wiener processes. For more details, the reader
can refer to [10–12].

To summarize, the steps of the first procedure are as follows: Firstly, identify the
possible random changes that could occur in a small-time interval ∆t, along with their
associated probabilities. Secondly, compute the mean and the covariance of the changes in
the small-time interval ∆t. Finally, write the SDE model as in Equation (10).

3.2. The Stochastic Point Kinetic Model

Here, the first procedure is utilized to build the stochastic point kinetic model fol-
lowing [2]. We consider a small-time interval ∆t where only one event could occur and
proceed as follows.
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Firstly, we identify the possible events that could occur in ∆t, along with their associ-
ated probabilities. The events that could occur are summarized as follows:[

∆n
c1

]
1
=

[
−1
0

]
,[

∆n
c1

]
2
=

[
−1 + (1− β)ν

β1ν

]
,[

∆n
c1

]
3
=

[
1
−1

]
,[

∆n
c1

]
4
=

[
1
0

]
,

where the first event is due to neutron capture, the second event is due to fission, the third
event is due to a precursor decay, and the fourth event is due to the injection of a neutron
from the external source. Then, the probability for each event is given as follows:

p1 = dn∆t, p2 = bn∆t, p3 = λ1c1∆t, p4 = q∆t,p5 = 1−∑4
i=1 pi, where d = −ρ+1−α

l is
the neutron death rate due to captures and leakage, b = 1−α−β

l(−1+(1−β)ν)
is the neutron birth

rate due to fission, and the p5 is the probability that no event would occur.
Secondly, we compute the mean and the covariance of the changes that could occur in

∆t. Computing the mean:

E
([

∆n
∆c1

])
=

4

∑
i=1

pi

[
∆n
∆c1

]
i
=

[
ρ−β

l n + λ1c1 + q
β1
l − λ1c1

]
∆t = A

[
n
c1

]
∆t +

[
q
0

]
∆t (11)

defining A as

A =

[
ρ−β

l λ1
β1
l −λ1

]
. (12)

Computing the covariance:

E
([

∆n
∆c1

][
∆n ∆c1

])
=

4

∑
i=1

pi

[
∆n
∆c1

]
i

[
∆n ∆c1

]
i = V∆t, (13)

and defining V as

V =

[
γn + λ1c1 + q β1

l (−1 + (1− β)ν)n− λ1c1
β1
l (−1 + (1− β)ν)n− λ1c1

β2
1ν
l n + λ1c1

]
, (14)

where

γ =
−1− ρ + 2β + (1− β)2ν

l
.

Finally, the SDEs model of the system could be written as

d
[

n
c1

]
= A

[
n
c1

]
dt +

[
q
0

]
dt +

√
VdW. (15)

where W ∈ R2 is a vector of independent Wiener processors.
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Generalization for multi-precursors: For the m—precursor case, the system in Equation
(15) can be generalized as follows [2]:

d


n
c1
c2
...

cm

 = A


n
c1
c2
...

cm

dt +


q
0
0
...
0

dt +
√

VdW, (16)

where W ∈ Rm+1 is a vector of independent Wiener processors, A ∈ R(m+1)×(m+1) is
defined by

A =



ρ−β
l λ1 λ2 . . . λm

β1
l −λ1 0 . . . 0

β2
l 0 −λ2

. . .
...

...
...

. . . . . . 0
βm
l 0 . . . 0 −λm


(17)

and V ∈ R(m+1)×(m+1) is defined by

V =



ζ a1 a2 . . . am
a1 r1 b2,3 . . . b2,m

a2 b2,3 r2
. . . b3,m

...
...

. . . . . .
...

am bm,2 . . . bm,m−1 rm

, (18)

where
ζ = γn + ∑

p
i=1 λici + q, γ = −1−ρ+2β+(1−β)2ν

l ,ai =
βi
l (−1 + (1− β)ν)n− λici,

bi,j =
βi−1β j−1ν

l n, and ri =
β2

i ν
l n + λici.

4. Alternative Modeling Procedure and the Langevin Point Kinetic Equations (LPK)

In this section, the second alternative modeling procedure where there is no need for
the square root of a covariance matrix is outlined in detail.

4.1. The Second Procedure

Following [10], we review the second procedure to construct an alternative SDE
model. For large X, we can approximate the p Poisson random variables in Equation (7) by
p independent normal random variables, then the ith component of X could be written as

Xi(t + ∆t) = Xi(t) + fi(t, X(t))∆t +
p

∑
j=1

λj,i
√

pj
√

∆tηi, (19)

where ηj is a standard normal random variable. This could be justified by the normal
random variable approximation of the Poisson random variable [4]. Hence, the discrete
stochastic process in Equation (7) could be approximated by

X(t + ∆t) = X + f(t, X(t))∆t + G(t, X(t))
√

∆tη, (20)

where η ∈ Rp is a vector of independent standard normal random variables, and G ∈ Rz×p

with the jth column defined as

gj = λj
√

pj
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The discrete system in Equation (20) converges in the mean square sense [10] as
∆t→ 0 , to

dX(t) = f (t, X(t))dt + G(t, X(t))dW,X(0) = X0 (21)

where W ∈ Rp is a vector of independent Wiener processes. For more details, see [4,10,11,13].
Steps of the second procedure can be summarized as follows: Firstly, identify the

possible random changes that could occur in a small-time interval ∆t, along with their
associated probabilities. Secondly, compute the mean vector of the change in ∆t and
construct the diffusion matrix G. Finally, write the SDEs model as in Equation (21).

4.2. Equivalence of the Two Procedures

The above two procedures result in different models with different diffusion matrices.
The two models are equivalent in critical aspects as described below. It is obvious that

(
GGT

)
i,l
=

p

∑
j=1

gi,jgl,j =
p

∑
j=1

pjλj,iλj,l = vi,l = (V)i,l , (22)

e.g., GGT = V. Moreover, due to having the same forward Kolmogorov equation, both
Equations (10) and (21) have solutions that possess the same probability distribution, and a
sample path solution to one model is a sample path solution to the other model [10].

The first procedure follows the same strategy as the one used for modeling ordinary
differential equations (ODEs) systems so it can benefit from its long literature. However,
the computation of the square root of a matrix in the diffusion term reduces its efficiency.
On the other hand, the second procedure eliminates the computation of the square root
of the diffusion matrix, so it is computationally efficient if the number of events is not
much larger than the number of system components [10]. In addition, due to its simple
structure, the resultant model of the second procedure can be simplified, as shown below,
or analyzed by a particular class of models such as Wiener-Hermite expansion [5].

4.3. The Langevin Point Kinetic Model (LPK)

Here, the second procedure is utilized to build the Langevin point kinetic model
(LPK). Again, we consider a small-time interval ∆t, where only one event could occur, and
proceed as follows.

Firstly, we identify the possible events that could occur in ∆t, along with their associ-
ated probabilities. This step is the same as in the first procedure. Secondly, we compute the
mean, which is also the same as in the first procedure, but instead of taking the diffusion
matrix to be

√
V, we put the diffusion matrix as

G =

[
−
√

dn (−1 + (1− β)ν)
√

bn
√

λ1c1
√

q

0 β1ν
√

bn −
√

λ1c1 0

]
. (23)

Finally, the SDEs model of the system can be written as

d
[

n
c1

]
= A

[
n
c1

]
dt +

[
q
0

]
dt + GdW, (24)

where W ∈ R2 is a vector of independent Wiener processors.
Generalization for multi-precursors: For the case of m—precursors, the model in

Equation (24) could easily be generalized to give

d


n
c1
c2
...

cm

 = A


n
c1
c2
...

cm

dt +


q
0
0
...
0

dt + GdW, (25)
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where W ∈ Rm+3 is a vector of independent Wiener processes, A is defined as in Equation (17),
and G ∈ R(m+1)×(m+3) is defined as

G =



−
√

dn (−1 + (1− β)ν)
√

bn
√

λ1c1
√

λ2c2 . . .
√

λmcm
√

q

0 β1ν
√

bn −
√

λ1c1 0 · · · 0 0

0 β2ν
√

bn 0 −
√

λ2c2
. . .

... 0
...

...
...

. . . . . . 0
...

0 βmν
√

bn 0 · · · 0 −
√

λmcm 0


. (26)

4.4. The Simplified Stochastic Point Kinetic Model (SSPK)

To achieve more computational efficiency, the authors in [3] used a theorem related
to adding normal random variables to turn the diffusion matrix of the LPK model into
a diagonal matrix. Adding two independent normal variables results in a third normal
random variable. This theorem behind the addition of independent normal random
variables can be stated as follows:

aN1(0, 1) + bN2(0, 1) =
√

a2 + b2N3(0, 1) (27)

Then, if the covariance is not of concern, the model (25) could be approximated by

d


n
c1
c2
...

cm

 = A


n
c1
c2
...

cm

dt +


q
0
0
...
0

dt + HdW (28)

where W ∈ Rm+1 is a vector of independent Wiener processes, A is defined as Equation
(17), and H ∈ R(m+1)×(m+1) is defined as

H =



√
ζ 0 0 · · · 0

0
√

r1 0 · · · 0

0 0
√

r2
. . .

...
...

...
. . . . . . 0

0 0 · · · 0
√

rm

, (29)

where

γ =
−1− ρ + 2β + (1− β)2ν

l
,

and

ri =
β2

i ν

l
n + λici,

It is obvious that Equations (16), (25) and (28) are reduced to PKEs by setting V, G,
and H, respectively, to zero.

5. Euler Method

In this section, we review the numerical method that we use later to analyze the three
SDE models of the point kinetics nuclear reactor. Equations (16), (25) and (28) could be
written as

dX = ÂXdt + B(t)Xdt + Fdt + MdW (30)
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where M is
√

V, G, or H, respectively, which are defined in Equations (18), (26) and (29), W
is a vector of independent Wiener processes, where its dimension is set to be the same as
the number of columns of the corresponding diffusion matrix,

X =


n
c1
c2
...

cm

, (31)

Â =



−β
l λ1 λ2 . . . λm

β1
l −λ1 0 . . . 0

β2
l 0 −λ2

. . .
...

... . . .
. . . . . . 0

βm
l 0 . . . 0 −λm


, (32)

B(t) =



−ρ(t)
l 0 0 . . . 0

0 0 0 . . . 0

0 0 0
. . .

...
... . . .

. . . . . . 0
0 0 . . . 0 0


, (33)

and

F =


q
0
0
...
0

. (34)

For the cases where ρ(t) and B(t) are slowly changing with time, we can approximate
their values by

ρ(t) = ρ

(
ti − ti+1

2

)
= ρi f or ti ≤ t ≤ ti+1, (35)

B(t) = B
(

ti − ti+1

2

)
= Bi f or ti ≤ t ≤ ti+1, (36)

where i = 0, 1, 2, . . .. Then, the system in Equation (34) could be approximated by

dX = ÂXdt + BiXdt + Fdt + MdW, (37)

on the interval ti ≤ t ≤ ti+1.
Using the Ito formula, we get

d
[
e−(Â+Bi)tX

]
= e−(Â+Bi)tFdt + e−(Â+Bi)t MdW, (38)

which could be approximated using Euler’s method as follows:

e−(Â+Bi)ti+1Xi+1 = e−(Â+Bi)ti xi + he−(Â+Bi)ti F +
√

he−(Â+Bi)ti Mηi. (39)
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where h = ti+1 − ti, and ηi is a vector of independent standard normal random variables
with matching length with M. Dividing by e−(Â+Bi)ti+1 results in

Xi+1 = e(Â+Bi)hXi + he(Â+Bi)hF +
√

he(Â+Bi)h Mηi, (40)

which is the recurrence relation for the numerical method.
To efficiently use the relation in Equation (40) in our experiments, we must compute

the matrix exponential efficiently. This could be done by computing the eigenvalue de-
composition using the method in [9]. Hence, the matrix

(
Â + Bi

)
h could be efficiently

decomposed to
(

YiDiY−1
i

)
h, where Di is a diagonal matrix of the eigenvalues, and Yi is a

matrix of the eigenvectors. Then, we have

Xi+1 = YieDihY−1
i

[
xi + hF(ti) +

√
hMηi

]
. (41)

6. Test Cases and Results

In this section, we consider five test cases. In the first three test cases, the calculations of
neutron and precursor populations at a specific time were considered. However, in the last
two test cases, the calculations of the mean and variance of the time needed for the reactor
to reach a certain neutron (power) level were considered. The Monte Carlo (MC) results
were obtained from [2]. The different numerical techniques used in the computations can
be found in detail in [2–5].

6.1. First Case

As a first test case, a nonphysical nuclear reactor was considered with the following
parameters [2]: λ1 = 0.1, β1 = 0.05 = β, l = 2

3 , ρ = − 1
3 , ν = 2.5. The operation started at

equilibrium initial conditions, x0 = [400, 300], and the neutron source was fixed at q = 200.
In this experiment, the population’s mean and variance were estimated at time t = 2. For
the SDE models, the time interval was divided into 100 steps, and the number of trials
was 10, 000.

Table 1 summarizes the mean and variance of the neutron and precursor populations
at time t = 2. The results were in good agreement using the four techniques. Table 2 shows
the time consumed in seconds of the three SDE models. We can note the equivalence in
higher efficiency in the case of the SSPK and LPK models compared with the SPK model.

Table 1. Population for the first case study at t = 2 s.

MC SPK LPK SSPK

E(n(2)) 400.03 398.42 398.60 398.19
σ(n(2)) 27.311 31.072 31.166 31.511
E(c1(2)) 300.00 300.13 300.15 299.97
σ(c1(2)) 7.8073 8.0586 8.0769 8.0410

MC-Monte Carlo; SPK-Stochastic Point Kinetic; LPK- Langevin point kinetic; SSPK- Simplified Stochastic Point
Kinetic.

Table 2. Computational time for the first case study.

SPK LPK SSPK

Time (s) 161.80 69.367 64.096

6.2. Second Case

As a second test case, an actual prompt subcritical insertion in a nuclear reactor was
considered with the following parameters [2]:

λ = [0.0127; 0.0317; 0.115; 0.311; 1.4; 3.87],
βi = [0.0127; 0.0317; 0.115; 0.311; 1.4; 3.87], β = ∑i βi, l = 0.00002, ρ = 0.003,
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ν = 2.5. The initial conditions were specified as x0 = 100
[
1; β1

λ1l ; . . . ; βm
λm l

]
, and there

was no external source, q = 0. In this experiment, the population’s mean and variance
were estimated at time t = 0.1. For the SDE models, the time interval was divided into 100
steps, and the number of trials was 10, 000 trials.

Figure 1 shows the evolution of the population’s mean (considering only the real parts
for the SPK model) on the interval 0 ≤ t ≤ 0.1 estimated using the three SDE models.
Table 3 summarizes the mean and variance of the neutron and precursor populations at
time t = 0.1. Table 4 shows the time consumed in seconds for the computation of the three
SDE models.

Figure 1. Population for the second case study. (a) Neutron population. (b) Precursor population.

Table 3. Population for the second case study at time t = 0.1 s.

MC SPK LPK SSPK

E(n(0.1)) 183.04 187.41–1.516 × 10−11i 185.18 186.60
σ(n(0.1)) 168.79 166.37 + 5.258 × 10−11i 161.52 165.67

E(∑ci(0.1)) 4.478 × 105 4.490 × 105–3.084 × 10−9i 4.491 × 105 4.490 × 105

σ(∑ci(0.1)) 1495.7 1933.6–5.397 × 10−10i 1952.7 1899.0

Table 4. Computational time for the second case study.

SPK LPK SSPK

Time (s) 481.51 250.05 244.37

Table 3 shows instability (appearance of imaginary numbers) in the computation using
the SPK model; however, Figure 1 and Table 3 show good agreement between the three
SDE models, considering only the real parts for the SPK model. This instability is due to
the computation of the square root in the diffusion term. Moreover, Table 4 shows the
compatible efficiency of the LPK model and the SSPK model, with superiority over the
SPK model.

6.3. Third Case

As a third test case, an actual prompt critical insertion in a nuclear reactor was
considered with similar parameters as in the second test case [2]:

λ = [0.0127; 0.0317; 0.115; 0.311; 1.4; 3.87],
βi = [0.000266; 0.001491; 0.001316; 0.002849; 0.000896; 0.000182], β = ∑i βi,
l = 0.00002, ρ = 0.007, ν = 2.5. The initial conditions were specified as
x0 = 100

[
1; β1

λ1l ; . . . ; βm
λm l

]
, and there was no external source, q = 0. In this experiment,

the population’s mean and variance were estimated at time t = 0.001. For the SDE models,
the time interval was divided into 100, and the number of trials was 10, 000 trials.
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Figure 2 shows the evolution of the population’s mean (considering only the real parts
for the SPK model) on the interval 0 ≤ t ≤ 0.001 estimated using the three SDE models.
Table 5 summarizes the mean and variance of the neutron and precursor populations at
time t = 0.001. Table 6 shows the time consumed in seconds for the computations of the
SDE models.

Figure 2. Population for the third case study. (a) Neutron population. (b) Precursor population.

Table 5. Population for the third case study at time t = 0.001 s.

MC SPK LPK SSPK

E(n(0.001)) 135.67 135.63–1.334 × 10−12i 133.94 135.17
σ(n(0.001)) 93.376 92.737 + 2.196 × 10−12i 93.638 92.853

E(∑ci(0.001)) 4.464 × 105 4.464× 105 + 8.916× 10−12i 4.464 × 105 4.464 × 105

σ(∑ci(0.001)) 16.226 19.408–1.374 × 10−11i 19.495 19.163

Table 6. Computational time for the third case study.

SPK LPK SSPK

Time (s) 18.478 9.9243 9.7573

Table 5 shows instability in the computation using SPK model, due to the computation
of the square root in the diffusion term; however, Figure 2 and Table 5 show a good
agreement between the three SDE models, considering only the real parts for the SPK
model. Moreover, Table 6 shows the compatible efficiency of the LPK model and the SSPK
model, with superiority over the SPK model.

6.4. Fourth Case

As a fourth test case, a nonphysical nuclear reactor, similar to the first test case, was
considered with the following parameters [2]: λ1 = 0.1, β1 = 0.05 = β, l = 0.499002,
ρ = 0.001996, ν = 2.5. The operation started at clear initial conditions, x0 = [0, 0], and
the external source was fixed at q = 200. In this experiment, we computed the mean and
variance of the time needed of the reactor to reach the neutron population level nlevel = 4000.
The step size was specified at h = 0.05, and the number of trials was 10, 000 trials.

Figure 3 shows the histogram of the required time for the neutron population to reach
the density nlevel = 4000. Table 7 summarizes the mean and variance of the required time
for the neutron population to reach the density nlevel = 4000. Table 8 shows the time
consumed in seconds for the computation of the three SDE models.
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Figure 3. Histogram of times for the fourth case study.

Table 7. Mean and variance of times for the fourth case study.

MC SPK LPK SSPK

E(t) 33.136 33.098 33.098 33.115
σ(t) 2.0886 2.7372 2.7061 2.6616

Table 8. Computational time for the fourth case study.

SPK LPK SSPK

Time (s) 1056.7 484.83 441.48

Figure 3 and Table 7 show good agreement between the three SDE models. Table 8
shows the compatible efficiency of the LPK model and the SSPK model, with superiority
over the SPK model.

6.5. Fifth Case

As a fifth test case, we considered the Godiva reactor with the following parameters [2]:
λ = [0.0127; 0.0317; 0.115; 0.311; 1.4; 3.87],

βi = [0.00025; 0.00141; 0.00124; 0.00269; 0.00084; 0.00017], β = βi, l = 0.6 × 10−8,
ρ = 0.00462, ν = 2.57. The operation started at clear initial conditions,

x0 = [0; 0; 0; 0; 0; 0; 0], and the external source was fixed at q = 90. In this experiment,
we computed the mean and variance of the time needed for the reactor to reach the neutron
population level nlevel = 4.2× 103. For the SDE models, the step size was specified at
h = 0.01, and the number of trials was 10, 000 trials.

Figure 4 shows the histogram of the required time for the neutron population to reach
the density n = 4.2× 10. Table 9 summarizes the mean and variance of the required time
for the neutron population to reach the density n = 4.2× 10. Table 10 shows the time
consumed in seconds for the computation of the three SDE models.
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Figure 4. Histogram of times for the fifth case study.

Table 9. Mean and variance of times for the fifth case study.

MC SPK LPK SSPK

E(t) 31.8 30.479 30.416 30.332
σ(t) 4.5826 5.1888 5.0252 4.9750

Table 10. Computational time for the fifth case study.

SPK LPK SSPK

Time (s) 1736.4 740.86 714.70

Figure 4 and Table 9 show a good agreement between the results of the three SDE
models. Table 10 shows the compatible efficiency of the LPK model and the SSPK model,
with superiority over the SPK model.

From the above results, we can deduce that the new LPK model combines the ad-
vantages, accuracy, and efficiency of the available models. The same technique can also
be extended for other applications specially in biology and population dynamics. The
model can be modified by considering the fractional derivatives instead of the integer-order
derivatives. This will account for long-time and/or time-dependent correlations.

7. Conclusions

We reviewed two procedures to construct stochastic differential equation models
and applied them to the point reactor. The first procedure follows the same steps as the
procedure of constructing an ODE system, so we can benefit from its extensive literature.
However, the second procedure has a simple method of construction. The critical benefit
of the second procedure is that it does not require computations of the square root of
the diffusion matrix, so it is more efficient and stable. This benefit loses its effect if the
number of possible changes is much larger than the number of components, which is not
the case with the point reactor. The newly developed LPK model, which is theoretically
equivalent to the SPK model, achieved high performance compatible with the SSPK model
and more stability than the SPK model. Another advantage is that the resultant model can
be analyzed by spectral techniques such as Wiener-Hermite expansion. Many test cases
are performed and the efficiency and accuracy of the newly developed LPK model are
investigated.
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