
energies

Article

A Fault Diagnosis Method for Rolling Bearings Based on
Parameter Transfer Learning under Imbalance Data Sets

Cheng Peng 1,2 , Lingling Li 1, Qing Chen 1, Zhaohui Tang 2,*, Weihua Gui 2 and Jing He 1

����������
�������

Citation: Peng, C.; Li, L.; Chen, Q.;

Tang, Z.; Gui, W.; He, J. A Fault

Diagnosis Method for Rolling

Bearings Based on Parameter Transfer

Learning under Imbalance Data Sets.

Energies 2021, 14, 944. https://

doi.org/10.3390/en14040944

Academic Editor: Ahmed Abu-Siada

Received: 12 January 2021

Accepted: 9 February 2021

Published: 11 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer, Hunan University of Technology, Zhuzhou 412007, China; chengpeng@csu.edu.cn (C.P.);
Lingli@hut.edu.cn (L.L.); qinchen1228@hut.edu.cn (Q.C.); jinghe86@hut.edu.cn (J.H.)

2 School of Automation, Central South University, Changsha 410083, China; whgui@csu.edu.cn
* Correspondence: yfeng1698@hut.edu.cn

Abstract: Fault diagnosis under the condition of data sets or samples with only a few fault labels
has become a hot spot in the field of machinery fault diagnosis. To solve this problem, a fault
diagnosis method based on deep transfer learning is proposed. Firstly, the discriminator of the
generative adversarial network (GAN) is improved by enhancing its sparsity, and then adopts the
adversarial mechanism to continuously optimize the recognition ability of the discriminator; finally,
the parameter transfer learning (PTL) method is applied to transfer the trained discriminator to target
domain to solve the fault diagnosis problem with only a small number of label samples. Experimental
results show that this method has good fault diagnosis performance.

Keywords: fault diagnosis; rolling bearings; unbalance samples; deep transfer learning

1. Introduction

Fault diagnosis is the core of machinery health management. The purpose of fault
diagnosis is to monitor the operation status of equipment or mechanical system, mine the
fault feature information according to the operation status, and then diagnose the feature
information before the machinery fails to stop [1]. Rolling bearings are a key component
of rotating machinery, which is widely used in gearbox, engines, gas turbines, and other
machines. The fault diagnosis of rolling bearings is closely related to the safe operation of
rotating machinery. However, in practical application, the fault data of rolling bearings is
often difficult to obtain, as when the new equipment is often in normal operation, there are
few failures in a short time, thus normal data are easy to collect, while fault data such as
fault location, generation mode, and damage degree are difficult to collect [2]. Secondly,
it is necessary to label and sort the collected fault data, but this is a huge workload, time-
consuming, and requires a lot of manpower, material, and financial resources. Therefore,
even if a large amount of data for analysis is obtained, the computing equipment must
have strong computing capabilities for storage and calculation. To sum up, in actual
industrial production, it is very time-consuming and expensive to collect enough label
data [3], sometimes even impossible. Therefore, it is of great practical significance to study
the new method of rolling bearings fault diagnosis under the imbalance samples.

Transfer learning [4] is a popular method to solve the problem of unbalanced datasets.
According to its features, target domain, and learning method, transfer learning can be
divided into sample-based transfer learning, feature-based transfer learning, parameter-
based transfer learning, and relationship-based transfer learning [5]. The sample-based
transfer learning method performs transfer learning by reusing data samples according
to certain weight generation rules [6]. The principle of this method is easy to understand,
and the operation process is simple and easy to implement. Its limitation lies in that it
is only applicable to the case where the data in the source domain and target domain
have little difference or obey the same distribution. The feature-based transfer learning
method is to select the common features in the source domain and target domain through
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machine learning and then use the feature transformation method to build the model so as
to achieve the ideal transfer effect. However, if the feature selection and transformation
method are not reasonable, it is easy to overfit. At the same time, the optimization process
usually requires high computational cost [7]. The necessary condition of the parameter-
based transfer learning method is to make it clear that the data in the source domain
and the target domain can share model parameters. Usually, fine-tuning in the neural
network can be used to better adapt to the new task field; this method has generalization
and universality [8]. Relationship-based transfer learning performs analogical transfer by
mining, analyzing, and learning the logical relationship between data. This method is only
suitable for the scenario with a small difference and high similarity between the source
domain and target domain. If the difference between the source domain and the target
domain is large and the similarity is low, it is difficult to obtain the logical relationship and
the transfer effect will be affected [9].

Although transfer learning has achieved promising results in fault diagnosis of ma-
chinery, the methods commonly have the following shortcomings: first, most of these them
still need a certain amount of labeled data, for example, reference [10,11] require more than
10 target training samples to achieve effective recognition accuracy; Second, we need to
do a lot of preprocessing work, such as to extract features [12] from spectrum data rather
than the original vibration data; and finally, these methods only transfer the simulation
experiment data set to another simulation experiment data set [13], and the speed, loading,
and fault degree of these data sets changed slightly, so the generalization ability of these
methods are limited. To deal with the above-mentioned limitations, a new deep transfer
learning network, named the transferred discriminator network (TD), is proposed for
fault diagnose of rolling bearings in this paper. The main contributions of this paper are
summarized as follows:

A constrains term was introduced into the sparse auto encoder. The introduction of
constrains not only effectively extracts the features of sensor data, but also greatly reduces
the size of the sparse auto encoder network.

The constrained sparse auto encoder units were constructed to replace the discrim-
inator of the generative adversarial network and adaptively identify the data from the
generator. The dynamic data recalibrations make the distribution of the data from the
source domain and generated domain tend to be consistent, thus improving the information
distinguishability of generative adversarial network.

A new transferred discriminator network is proposed by transferring the parameters
of the generative adversarial network based on the constrained sparse auto encoder units.
The proposed TD is able to provide accurate fault estimations based on imbalanced data
set of rolling bearings and is superior to some existing diagnosis approaches.

The rest of the paper is organized as follows: Section 2 discusses the existing research
status. The framework of the proposed method and related technology are drawn in
Section 3. The process of model construction and training are introduced in Section 4. In
Section 5, we analyze and compare the existing and proposed method. Section 6 concludes
this paper.

2. Related Works

At present, the common fault diagnosis methods under the conditions of only a
few samples mainly include traditional methods, deep learning, and transfer learning.
Traditional fault diagnosis mostly adopts artificial neural network (ANN) and support
vector machine (SVM). For example, Liu et al. [14] applied a small amount of labeled data
to expand the anomaly detection model based on single-class SVM in a semi-supervised
manner, and employed active learning to reduce the cost of manual labeling. Li et al. [15]
constructed a class scale shift-oriented model of a support vector machine when unlabeled
data accounted for a small proportion of the total. However, these methods based on
shallow machine learning models need to re-extract features for different tasks, requires
sufficient prior knowledge and a lot of time. At the same time, the generalization ability
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of the manually extracted features is weak, which cannot guarantee the robustness and
stability of these methods.

Deep learning methods are designed to automatically capture representative features
from raw data, thereby improving the performance of fault recognition. At present, it has
been widely used in the field of fault diagnosis. For example, Min et al. [16] proposed an
intelligent fault diagnosis method, which uses a deep neural network (DNN) based on
stacked noise reduction automatic encoder, and applies this encoder to unlabeled data
in an unsupervised way to learn representative features. Wang et al. [17] introduced
a recognition method based on deep learning. After transforming the controlled auto
regressive (CAR) model into a finite impulse response (FIR) model, a deep auto encoder
was adopted to train the model with a small amount of unlabeled data, and this method
has higher recognition accuracy than the back propagation (BP) neural network. Obviously,
compared with traditional methods, the deep encoder can automatically extract features,
but the sparsity of the automatic encoder is not considered in the above methods. The
sparser the encoder is, the smaller the reconstruction error is, and the more representative
features can be extracted. In order to solve this problem, Chen et al. [18] realized a deep
self-coding network with a new L1/L2 norm of the cost function to diagnose the equipment
operation status under different security risk levels. The experimental results show that
the method can increase the sparsity of the coding network, reduce the reconstruction
errors, and extract more representative features. However, the above method must meet
two prerequisites at the same time; one is sufficient sample label data, and the other is the
training samples and the test samples that are independent and identically distributed,
however in practical applications, it is often difficult to meet [19].

Transfer learning is an emerging method by applying the acquired knowledge or
model to the relevant domain and improving its learning performance [20]. Because of its
ability of generalization, effectiveness, and robustness where there are few label samples,
it is widely used in image processing, medical treatment, natural language processing,
and other fields and has become a research hotspot in fault diagnosis in recent years.
In reference [21], a small number of label samples in the target domain were adopted to
supervise the training of sparse automatic encoder, features extracted by the second encoder,
and then a support vector machine was used for fault diagnosis. Li et al. [22] designed a
method of transferring a deep noise reduction auto encoder in order to effectively solve
the problem of fault diagnosis of aircraft key mechanical parts with few label samples.
Yang et al. [23] solved the fault diagnosis problem of internal combustion engines under
the condition of little labeled data and incomplete fault samples of a single machine by
using the transfer learning idea, which greatly improved the effect compared with the
traditional method.

3. Framework of the Proposed Method

This paper proposes a fault diagnosis model named a transferred discriminator (TD)
based on few sample labels. The basic idea is: first add a new constraint to the sparse
auto encoder to enhance sparsity; second, stack multiple constrained sparse auto encoders
(CSAE) to form a deep constrained sparse auto encoder (DCSAE), and as the discriminator
of the generative adversarial network, we call this discriminator DGAN (DCSAE as a
discriminator in GAN); then, the classification and recognition ability of DGAN was
optimized by using the adversarial mechanism of GAN; finally, the parameters of the
discriminator in DGAN were transferred to the target discriminator TD by the parameter
transfer method, and the discriminator was fine-tuned with a small amount of labeled data
in the target domain, and the fault classification and identification was ultimately realized.
The framework of the proposed method is depicted in Figure 1.
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Figure 1. The framework of the proposed method.

Specific steps are as follows:
Step one: data preprocessing. The data set of the source domain and target domain

are normalized, as shown in Equation (1).

x∗ =
x− xmin

xmax − xmin
(1)

where xmax is the maximum value of the sample data, and xmin is the minimum value of
the sample data.

Step two: DGAN training. First, stack multiple CSAEs to construct a deep network
DGAN, and then divide the data Xs of the source domain into a training sample Xsd and
a test sample Xse, and use the source domain training data Xsd to train DGAN, test the
performance of the discriminator by test sample Xse to obtain trained DGAN.

Step three: parameter transfer. First, for data Xt of the target domain, a small amount
of available labeled data Xtd is selected as training data, and unlabeled data Xte is used as
test data. At this time, the target deep model TD with the same discriminator structure in
DGAN is constructed. Then, the training parameters (including weight and deviation) of
the discriminator in DGAN and softmax classifier are transferred to initialize TD and its
softmax classifier.

V l = W l , ul = bl , l = 1, 2, . . . , L (2)

where V l is the weight between layer l and layer l + 1 in TD, b is the biases of both layers.
Step four: TD training. In order to further improve the performance of the model, it is

necessary to fine-tune the model as a whole. The TD was fine-tuned by the training data
Xtd of the target domain, and the performance of TD was tested by the test data Xte of the
target domain, the loss function of the fine-tuning process is Equation (3). Where, y is the
class label of the real sample, y f is the class label of the generated sample, Kr is the class
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label of the real sample determined by the classifier, K f is the class label of the generated
sample determined by the classifier, N is the real sample, M is the generated sample, α is
the nonnegative constraint penalty, L is the layers of the network, ql represents the hidden
unit number of the final auto encoder, V denotes the weights between the final hidden
layer and softmax classifier.

ETD−DCSAE = −
M ∑N

n=1 yn ln Kn
r + N ∑M

m=1 ym
f ln Km

f

NM
+

α

2

L

∑
l=1

ql

∑
i=1

ql+1

∑
j=1

f
(
Vji(l)

)
(3)

4. Model Constructions and Training
4.1. Constrained Sparse Auto Encoder (CSAE)

Similar to the auto encoder, the sparse auto encoder (SAE) consists of two parts: an
encoder and a decoder. The encoder is composed of an input layer and a hidden layer.
It mines the hidden effective information of the input data and extracts features while
reducing the data dimension. The decoder is composed of a hidden layer and an output
layer. The representative features are reconstructed through decoding, and the input data
is reproduced as much as possible and used as the output [24].

When extracting representative features from high-dimensional data, over-fitting
usually occurs. In order to make the hidden layer expression more sparse, in other words,
when the hidden neuron receives a large amount of data, it can still find important struc-
tures in the data, so that SAE can effectively extract the underlying essential features from
a large amount of data, this paper adds constraints to the SAE to reduce the influence of
weights and minimize the cost function (Equation (3)) in the iterative process. Constraints
are obtained through unsupervised learning; the constraints proposed in this paper are
shown in Equation (4).

Constraint Factor Term =
α

2

2

∑
l=1

ql

∑
i=1

ql+1

∑
j=1

f
(
Wji(l)

)
(4)

α is constraint penalty coefficient, Wji(l) is the weight between node i in layer l and
node j in layer l + 1, the expression of f (∗) is:

f
(
Wji(l)

)
=

{ (
Wji(l)

)2, Wji(l) 6 0
0, Wji(l) > 0

(5)

f (∗) is a weight decay term to prevent weight overfitting. Our goal is to minimize
the Equation (4), reduce the number of non-negative weights of each layer and the over-
all average reconstruction error. We update the weight and biases using the gradient
descent algorithm.

4.2. Deep Constrained Sparse Auto Encoder (DCSAE)

These multiple constrained sparse automatic encoders (CSAE) were stacked to form
a deep constrained sparse auto encoder (DCSAE) to extract the samples’ deep features.
DCSAE consists of an input layer, an output layer and multiple hidden layers. It uses
the softmax classifier as the output layer to identify the fault type of the bearings. As
shown in Figure 2, the training of the model is carried out in two stages: (1) unsupervised
layer-by-layer greedy initialization stage and (2) supervised fine-tuning stage.
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Figure 2. The structure of the DCSAE.

After the depth features of a single CSAE were obtained through layer-by-layer
training, the output feature a = gs(W1X + b1) of the previous layer was used as the input
data of the next layer, then the output feature of the last hidden layer was adopted as the
input to train the softmax classification layer, and its cost function is shown in Equation (6).

Ec−so f tmax = − 1
n

n

∑
i=1

ki ln yi +
α

2

ql

∑
i=1

C

∑
j=1

f
(
Wji(l)

)
(6)

where k is the categories identified by softmax, and C is the total categories of
bearings failures.

The above is the greedy step-by-step layer training, which lays the foundation for
the final fine-tuning. Finally, the overall cost function of DCSAE was constructed. By
minimizing the cost function, the network model was fine-tuned to obtain better fault
recognition results, as shown in Equation (7).

EDCSAE = − 1
n

n

∑
i=1

ci ln yi +
α

2

L

∑
l=1

ql

∑
i=1

ql+1

∑
j=1

f
(
Wji(l)

)
(7)

The related description of the DCSAE training algorithm is shown in Algorithm 1.

4.3. Model Training

The above-mentioned DCSAE was used as the discriminator of GAN [25] and form
DGAN. The generator of DGAN was composed of an input layer, a hidden layer, and
an output layer. It learned representative features from high-dimensional data through
encoding and decoding to generate more realistic samples. Firstly, the random noise
{zm}m

m=1 sampled from Gaussian distribution was input into the coding network to learn
the potential features of the samples. Then, a new sample

{
Xm

f
}M

m=1 was generated by
decoding the network, and the corresponding class label was generated.
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Algorithm 1 DCSAE Training Algorithm

Input: Learning rate learning_rats, Training batch training_epochs, Training data size batch_size,
the number of hidden layer num.
Output: Classification results
1: For i in num:
2: Initialize weight w1, w2, deviation b1, b2
3: For i in num:
4: layeri = x ∗ w1(encoderi) + b1(encoderi)
5: gs(x) = 1/(1 + exp(−x))
6: layeri = x ∗ w1(decoderi) + b1(decoderi)
7: encoder_op = encoder(x) encoder_result = encoder_op decoder_op = decoder(encoder_op)

8: MSE = 1
2n

(
n
∑

i=1
‖XRi − Xi‖2

)
9: KL = β

ql

∑
i=1

(
r log r

r̂j
+ (1− r) log 1−r

1−r̂j

)
10: Constraint Factor Term = α

2

2
∑

l=1

ql

∑
i=1

ql+1
∑

j=1
f
(

Wji(l)
)

11: optimizer = Adam(learning_rate).minimize(loss)
12: init = t f .global_variables_initializer()
13: batch = int(mnist.train.num_examples / batch_size)
14: For epoch in training_epochs :
15: For i in batch:
16: batch_xs, batch_ys = mnist.train.next_batch(batch_size)
17: c = sess. run([optimizer, loss], f eed_dict = {X : batch_xs})
18: End
19: End function

The discriminator of DGAN can distinguish the true sample from the generated
sample and identify the fault type. In the training process, the discriminator generates the
loss function of the original GAN, and at the same time, produces the fault identification
loss and constraint loss. Therefore, the specific definition of the correlation loss function of
the discriminator in the training stage is shown in Equations (8)–(11).

Ecla
DCSAE(D) = −

M
N
∑

n=1
yn ln kn

r + N
M
∑

m=1
ym

f ln km
f

NM
(8)

Econ
DCSAE(D) =

α

2

L

∑
l=1

ql

∑
i=1

ql+1

∑
j=1

f
(
Wji(l)

){ (
Wji(l)

)2, Wji(l) ≤ 0
0, Wji(l) > 0

(9)

Eori
DCSAE(D) = −

M
N
∑

n=1
lnQn

r + N
M
∑

m=1
ln(1−Qm

f )

NM
(10)

EDCSAE(D) = argmin(Ecla
DCSAE(D) + Econ

DCSAE(D)) + Eori
DCSAE(D)) (11)

EDCSAE(D) is the total loss function of discriminator in DGAN, and Ecla
DCSAE(D),

Among them, Econ
DCSAE(D) and Eori

DCSAE(D) represent the loss function of fault classification,
constraint loss function and loss function of original GAN respectively. y is the class
label of the real sample, y f is the class label of the generated sample, kr is the class
label of the real sample determined by the classifier, k f is the class label of the generated
sample determined by the classifier, Qr is the label of real sample, Q f is the label of
generated sample.

The discriminator recognizes the deception of the generator as much as possible, and
judges the real sample is 1, and the generated sample is 0; and the generator should deceive
the discriminator as much as possible. In continuous optimization, the discriminator should
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also judge the generated sample as 1. The update training is achieved by minimizing the
loss function, as shown in Equations (12)–(14).

Ecla
DCSAE(G) = −

M
N
∑

n=1
yn ln kn

r + N
M
∑

m=1
ym

f ln km
f

NM
(12)

Eori
DCSAE(G) = − 1

M

M

∑
m=1

lnQm
f (13)

EDCSAE(G) = argmin(Ecla
DCSAE(G) + Eori

DCSAE(G)) (14)

Among them, EDCSAE(G) is the loss function of the generator in the DGAN model,
Ecla

DCSAE(G) and Eori
DCSAE(D) respectively represent the loss function of the fault classifica-

tion and the loss function of the original GAN.
The principle of DGAN training is shown in Figure 3. The core of DGAN training

is to alternately run the discriminator and generator through the adversarial learning
mechanism and to continuously game and optimize. After calculating the gradient value
derived from the above loss function, and training the discriminator and generator us-
ing the backpropagation algorithm, the independent adaptive learning rate is designed
to update and optimize the different parameters of the DGAN model according to the
Adam algorithm.

Figure 3. DGAN training.

As depicted in Figure 3, the DGAN training process including four stages. The
distribution of the real data set is Pdata(x), x is the real sample, z is the random noise. In the
first stage, the generator has a weak ability to generate “real” samples, and the discriminator
does not have strong discrimination ability, the real sample set and the generated sample
set have the largest difference in distribution. In the second stage, firstly, the generator is
fixed and the discriminator is trained and optimized. Then input the real sample x, and
compare the result label of the discriminator with the label of the real sample (i.e., 1). Next,
input the generated sample, and compare the obtained identification label with the label
of the generated sample (i.e., 0). The gradient descent method is used to maximize the
identification accuracy. It can be seen that the identification ability of the discriminator in
the second stage has been improved. In the third stage, firstly, the discriminator is fixed
and update generator. Then input random noise z to get the generated sample, label it as 1,
and send it to the discriminator for identification. Similarly, the gradient descent method is
applied to maximize the identification accuracy. It can be seen that the “authenticity” of the
sample generated by the generator is increasingly close to the real sample. In the last stage,
the two parts are constantly updated and optimized to improve the fault identification
ability and sample generation ability separately until the final convergence and complete
the training of the DGAN model.
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4.4. Parameter Transfer Learning

After the training of DGAN, the paper adopts parameter transfer learning (PTL) to
transfer the discriminator parameters from the trained DGAN to the new discriminator
named transferred discriminator (TD), in order to solve the fault diagnose problem under
few labeled samples in the target domain, which will reduce the training time and improve
the efficiency. The specific definitions of PTL are as follows.

Given a labeled source domain,

Xs =
{

xsi, ysj
}i∈[1,n1]

j∈[1,C] (15)

A target domain with few labels,

Xt =
{

xti, ytj
}i∈[1,n2]

j∈[1,C] (16)

xsi, ysj are source domain data and category labels, xti and yti are target domain data
and category labels, respectively, C is the number of categories, n1 and n2 are the number of
samples of the source domain and target domain, respectively, and the number of samples
with label in target domain is far less than that in source domain Nytj << Nysj.

Then, the fault diagnosis process based on parameter transfer learning can be divided
into five steps. The first step is to construct DGAN. The training data of the source domain
is used for learning, and the pre-trained DGAN is verified by the test data; The second step
is to construct TD, which has the same structure as the discriminator in DGAN; The third
step is to transfer the parameters of a discriminator in the DGAN to TD; The fourth step
is to fine tune TD by using the limited labeled samples in the target domain; Finally, the
effectiveness of the transferred model TD is tested using unlabeled data of target domain.

5. Experiment and Result Analysis
5.1. Experimental Data

In order to verify the fault diagnosis performance of the method in this paper, when
the rolling bearings fault data contained only a small amount of label, the data sets of two
different domains were analyzed. That is, the rolling bearings data of the experimental
center of Case Western Reserve University was used as the source domain data set. The
rolling bearings data collected from real mechanical equipment was used as the target
domain data set. Figure 4 is target domain data set acquisition equipment [26]. As shown
in Figure 4, two accelerometers were installed on the test bench to measure the horizontal
and vertical vibration signals. These accelerometers measured the raw vibration signal at
10 s intervals with a sampling frequency of 10.24 kHz. This means that 1024 data points
were available every 10 s.

Figure 4. Target domain data set acquisition equipment.



Energies 2021, 14, 944 10 of 18

(1) Source domain data set

Taking the bearing model SKF6205 as the research object to collect relevant data. In
the source domain data set, the single point fault of the inner ring (IR), outer ring (OR), and
rolling body (RB) of the rolling bearings were simulated by the spark erosion technique,
and the fault degree could be divided into 0.007 inches and 0.021 inches. According to the
data collected under four different working conditions, four source domain data subsets
were constructed, namely S1 (1797 rpm, 0 hp), S2 (1772 rpm, 1 hp), S3 (1750 rpm, 2 hp),
and S4 (1730 rpm, 3 hp). Finally, at the sampling rate of 12 kHz for 10 s, 200 samples were
collected for each running state, and one sample was intercepted for every 600 sampling
points, among them 150 samples were used as training data, and the remaining 50 samples
were used as test data.

The experimental data set is shown in Table 1.

Table 1. Source domain dataset.

Condition Fault
Location

Fault
Diameter

(Inch)

Fault
Categories

Training
Sample

(Number)

Test
Sample

(Number)

Normal (RF) - SRF 150 50

S1
(1797 rpm,0 hp) Inner ring (IR) 0.007 SIR07 150 50

S2
(1772 rpm,1 hp) Inner ring (IR) 0.021 SIR21 150 50

S3
(1750 rpm,2 hp) Outer ring (OR) 0.007 SOR07 150 50

Outer ring (OR) 0.021 SOR21 150 50

Ball (RB) 0.007 SRB07 150 50

Ball (RB) 0.021 SRB21 150 50

(2) Target domain data set

The bearing type NSK6308 was taken as the research object to generate relevant data.
In the target domain data set, there were also seven healthy state rolling bearings data,
including the light and severe inner ring (IR), outer ring (OR), single-point failure of the
rolling body (RB), and normal conditions. Under the condition of T (1309 rpm, 1.5 hp),
samples were collected at a sampling rate of 10.24 kHz for nearly 12 s. 200 samples were
obtained in each running state, and one sample was intercepted for every 600 sampling
points, among which a small amount of labeled data was used as training data, and the
remaining samples were used as test data. The experimental data set is shown in Table 2.

Table 2. Target domain.

Condition Fault
Location

Fault
Degree

Fault
Categories

Sample
(Number)

T
(1309 rpm, 1.5 hp)

Normal (RF) - TRF 200
Inner ring (IR) Lighter TIRL 200
Inner ring (IR) More serious TIRW 200

Outer ring (OR) Lighter TORL 200
Outer ring (OR) More serious TORW 200

Ball (RB) Lighter TRBL 200
Ball (RB) More serious TRBW 200

As mentioned above, the vibration signals of the two data sets were also different
when different machines, bearing models, speeds, loads, and sampling rates were used.
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The existing methods also failed to apply other conditions to the model that has been
trained in one condition, especially in the case of less labeled data. However, the two data
sets are very similar in terms of failure modes, types, etc., so it was appropriate to use them
as source domain data and target domain data.

Figure 5 is the diagram of a waveform sample randomly selected from the source
domain working condition data set and the target domain data set. The subgraphs a,c,e,g
of Figure 5 are the diagrams of waveform samples under source regular family (SRF), fault
size of inner ring 0.007 (SIR07), fault size of outer ring 0.021 (SOR21), and fault size of ball
roller 0.021 (SBR21). The subgraphs b,d,f,h of Figure 5 shows the waveform samples under
target regular family (TRF), slight inner ring fault of lower waveform (SIRL), target outer
ring worse (TORW), and target ball roller worse (TBRW). It can be seen that the waveform
of the source domain and target domain are greatly different. If the deep learning method
is used to diagnose these two domains in the same model, the effect is poor. If two models
are trained separately, a lot of time will be spent and resources will be wasted. Therefore,
the introduction of transferring learning in practical applications has significance.

5.2. Parameter Selection

Parameter selection is a very important part of the machine learning method. A set
of appropriate parameters can effectively improve the performance of fault diagnosis.
Because the posterior distribution of deep transfer learning model parameters is often
very complex, its closed probability density function cannot be obtained in many cases. A
natural way to avoid the problem of estimability is to use the Bayesian method, as a large
number of research results show that Bayesian optimization can achieve better performance
on the test set and requires fewer iterations than random search. By using the appropriate
prior distribution, we can calculate the representative posterior distribution and then use
its mean or median to estimate the unknown parameters. In this paper, the parameters of
the hidden layer that needs to be inferred is not a fixed unknown, but a random variable
that follows a certain distribution, that is, multiple estimates of the random variable follow
a certain prior distribution. Combined with the current source domain data, the parameter
estimation before is continuously modified, and it is no longer dependent on the source
domain data set. This section has discussed the model depth, node number and constraint
penalty coefficient α which have a greater impact on performance. Among them, accuracy
is the proportion of all correct predictions (positive and negative). The formula definition
is shown in Equation (17), where TP represents a positive class predicted to be a positive
class (a correctly predicted positive class), FP represents a negative class predicted to be
a positive class, TN represents a negative class predicted to be a negative class, and FN
represents a positive class predicted to be a negative class.

accuracy =
TP + TN

TP + TN + FP + FN
(17)

Figure 6 shows the experimental results of accuracy under different layers (1–5)
and samples with labels (the number is 1, 2, 4, and 10 respectively) in different target
domains, in which the average values of accuracy and time are taken under the four
working conditions.
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Figure 5. Comparison of source and target waveform samples under different working conditions. (a,c,e,g) diagrams of
waveform samples under source regular family (SRF) and (b,d,f,h) waveform samples under target regular family (TRF).
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Figure 6. The accuracy under different hidden layers.

As depicted in Figure 6, with the increase of the number of hidden layers and the
number of labeled samples, the fault identification accuracy constantly improved. The
more samples with labels, the better the model with excellent performance can be trained,
and the more layers, the better the characteristics that can best represent the original data,
and the classification ability is improved. However, when the number of hidden layers
reached 6, the accuracy rate decreased because the increase of the model complexity will
lead to overfitting. In addition, the time of the training model also increased synchronously
with the increase of the number of layers. It also can be seen that when the number of
hidden layers was 3, the accuracy was basically the same as the number of layers was 4,
but the time was much less than the number of layers was 4. Therefore, considering the
recognition accuracy and time, the network model structure with the hidden layer number
of 3 was appropriate.

In Figure 7, we find that if the number of hidden layers remains unchanged, the fewer
nodes in the next layer, the lower the error rate will be. For example, in the first layer, the
second layer and the third layer respectively contained 250, 150, and 50 nodes, and got
better results compared with other node configurations. Assuming that the actual output
value and the expected output value of each set of data inputted into the hidden layer be
Ai and Ti respectively, and the error of each set of data was |Ai − Ti|. m data sets were
selected for testing, the average absolute percentage error (APE) of neural network with
different number of nodes in each hidden layer is

APE =
1
m

m

∑
i=1

∣∣∣∣Ai − Ti
Ai

∣∣∣∣ ∗ 100 (18)

When m = 30, it is calculated by the Equation (18), the error rate is as low as 1.16%.
Therefore, set the network structure to 600–250–150–50–7.

Figure 8 shows the accuracy results under different values. Among them, the value α
was calculated according to the rules of {1 × 10e|e = −5, −4, −3, −2, −1, 0, 1}, and r was
set as 0.3 and β is 3 through experience and adjustment. It can be found that when the
value of α was 0.0001, the best accuracy was 98.84% because the value α can effectively
prevent overfitting phenomenon and limit the weight range.
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Figure 7. Error rate under a different number of nodes.

Figure 8. The accuracy under different α.

5.3. Experimental and Results Analysis

In order to verify the validity of the method in this paper, it is compared with the
basic DSAE and the existing intelligent methods MRSDAE and FE-SSAE-SM. The specific
parameters of the TD-DCSAE method were set through experiments and experience. The
specific description was as follows: the network structure of DCSAE was [600–250–150–50–7],
and the number of iterations for each CSAE was 200. In the fine-tuning stage, the number
of iterations for TD-DCSAE was 30, and the parameters r, β and α were 0.3, 3 and 0.0001,
respectively. The network structure of the DSAE model is [600–250–150–50–7]. The number
of iterations for each SAE is 200, and the parameters r, β are 0.3 and 3, respectively. The
network structure of the MRSDAE model was [600–250–150–50–7], with 500 iterations, the
sparse parameter is 0.1, penalty item was 2, and regular item of L2 norm was 0.005. The
network structure of FE-SSAE-SM model was the same as above. The number of iterations
was 300, the sparse parameter is 0.5, and the penalty term was 0.1. Table 3 shows the accuracy
of the TD-DCSAE method and the other three methods under different working conditions,
and its accuracy was the average of 10 experiments. Under different working conditions, the
TD-DCSAE method achieved the highest values, which were 99.31, 98.08, 98.26, and 99.71%,
respectively. Under working condition S1, the accuracy rate was 12 and 3.27% higher than
that of DSAE and MRSDAE methods, respectively. Under working condition S4, the accuracy
rate is 5.03% higher than that of the FE-SSAE-SM method. The average accuracy was higher
than that of DSAE, MRSDAE, and FE-SSAE-SM methods, respectively 8.98, 1.47, and 2.85%.
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Table 3. The accuracy of different methods under different working condition.

Condition
Methods

TD-DCSAE DSAE MRSDAE FE-SSAE-SM

S1 99.31 87.98 96.04 94.84
S2 98.08 89.94 98.28 96.44
S3 98.26 91.54 96.56 98.00
S4 99.71 89.96 98.60 94.68

Average accuracy 98.84 89.86 97.37 95.99

It is clearly depicted in the Figure 9 that TD-DCSAE method had the highest accuracy
in fault classification and is suitable for fault diagnosis of rolling bearings. In Table 4, the
data sets under S1, S2, S3, and S4 working conditions were respectively taken as the source
domain, and the accuracy of model migration was obtained when the number of samples
with labels in the target domain was different. Figure 10 shows the average accuracy of the
migration under the four working conditions. With the increase of the number of samples
with labels in the target domain, the accuracy was gradually improved, but the degree of
improvement was also rapidly decreasing. For example, the accuracy of one sample with
labels was 87.02%, and that of four samples with labels was 97.19%, an increase of nearly
10 percent. However, when the number of samples with labels increased from 4 to 100, the
accuracy only increased 1%. Therefore, the TD-DCSAE method can accurately diagnose
the rolling bearings fault with only a small number of labeled target samples.

Figure 9. The accuracy of different methods under different working conditions.

Table 4. The accuracy under a different number of labeled samples in the target domain.

Source
Domain(S)-Target

Domain (T)

Number of Labeled Samples in the Target Domain

0.5% (1) 1% (2) 2% (4) 5% (10) 10% (20) 20% (40) 50% (100)

S1-T 87.42 89.36 96.89 97.81 97.94 98.07 98.23
S2-T 87.29 88.91 97.72 97.95 98.07 98.15 98.19
S3-T 87.37 90.19 97.24 97.99 98.12 98.13 98.16
S4-T 85.99 89.61 96.91 97.83 98.10 98.16 98.21

Average accuracy 87.02 89.51 97.19 97.90 98.05 98.13 98.19
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Figure 10. The average accuracy under a different number of labeled samples in the target domain.

Table 5 shows the accuracy of different methods in the case of a different number of
samples with labels in the target domain. The parameter settings of TD-DCSAE, DSAE,
FE-SSAE-SM, and MRSDAE are the same as the above experiments. The network structure
of BPNN was [600–1000–7], the learning rate and momentum terms were 0.4 and 0.95,
respectively, and the number of iterations was 1000. The Gaussian kernel radius of SVM
was 0.65, the penalty coefficient was 8, and the 10-fold cross-validation method was
adopted. As can be seen from Table 5 and Figure 11, the accuracy of the above six methods
all increased with the increase of the number of samples with labels, but the TD-DCSAE
method was superior to the other five methods in the case of the different number of
samples with labels, especially when the number of labels was less than 10. For example,
when the number of labels was 1, the TD-DCSAE method was nearly 46, 49, 55, 36, and
34 percentage points higher than the DSAE, BPNN, SVM, FE-SSAE-SM, and MRSDAE
methods, respectively. In addition, the deep learning method was superior to the shallow
learning method, and it can be seen that BPNN and SVM had the lowest accuracy.

Table 5. The accuracy of different methods under different number of labeled samples in the target domain.

Method
Number of Labeled Samples in the Target Domain

0.5% (1) 1% (2) 2% (4) 5% (10) 10% (20) 20% (40) 50% (100)

TD-DCSAE 87.02 89.51 97.19 97.90 98.05 98.13 98.19
DSAE 41.96 46.23 51.68 75.36 82.24 86.88 89.48
BPNN 38.62 41.89 42.99 48.56 54.25 58.23 60.01
SVM 32.95 40.16 66.12 78.65 83.76 88.78 90.58

FE-SSAE-SM 51.94 56.09 68.82 85.51 89.65 91.73 94.19
MRSDAE 54.12 57.23 62.70 87.68 93.20 94.51 95.00
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Figure 11. The accuracy of different methods under a different number of labeled samples in the
target domain.

6. Conclusions

The method proposed in this paper organically combines the advantages of machine
learning and deep learning. First, this model greatly decreases the demand for the data
with labels, and significantly reduces the time to mark the data, and avoids the overfitting
caused by the training model with less labeled data. Secondly, it is possible to learn
multi-task objectives. For each new task, the model does not have to be trained from
the beginning, and the cost of later training is very low. Finally, the method can achieve
continuous learning so that the model can retain the knowledge learned in the previous
task for the next task, improving the stability and generalization of the model. However,
this paper only proposes a fault diagnosis method for the label problem of imbalanced
data sets. In fact, in practical application, the fault data of the rolling bearings is very
limited, and it is very likely that it cannot be collected easily. Under small samples, it is
often impossible to build a model. Therefore, how to make a fault diagnosis of rolling
bearings under small sample conditions needs to be studied.
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