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Abstract: This paper varies load conditions in a single-phase induction motor and deals with
consequent effects on the electromagnetic characteristics in terms of a balanced and unbalanced
operation. Based on a balanced-load condition, the magnetic field, electromagnetic losses, magnetic
torque are quantified by the time-stepping finite element method at six different loads. The spatial
distribution of the air-gap magnetic field are investigated to characterize the existence between the
load variation and unbalanced operation. The components of electromagnetic losses are analyzed in
terms of main parameters degrading the operating efficiency according to the load variation. The
result can show the importance of building the magnetic balance for a high performance, and the
design guideline for SPIMs running at multiple operating points is discussed.

Keywords: backward rotating magnetic field; electromagnetic losses; finite element method; mag-
netic balance; single-phase induction motor

1. Introduction

Single-phase induction motors (SPIMs) are widely used in various industrial and
household applications where a single-phase source is solely available. Two-pole SPIMs are
constructed by main and auxiliary windings, which are in space quadrature. In addition,
impedance of both windings is adjusted by geometrical changes or additional capacitors
to split into two-phase sources. Even though decreasing prices of inverter-fed drive have
spread to operate two-phase or three-phase motors electronically, but SPIMs still have
strong merits for its simplicity and maintenance [1–4].

SPIMs are generally classified into split-phase, capacitor-start, capacitor-run types.
Split-phase SPIMs have been evaluated to poor starting and running performance, which
lead to limit their application. The problem can be solved by connecting the capacitor in
series into the auxiliary winding. The capacitor has an essential role to adjust equivalent
impedance of the auxiliary winding, thus the magnitude and phase of current into windings
can be split properly to avoid magnetically unbalanced condition.

Many authors have conducted researches on optimal design, numerical, and analytical
analysis of SPIMs. They developed improved SPIMs by geometrical changes [5–8], and
adapting control strategies of an electronic circuit [9–11]. In addition, some studies [12] have
suggested operating scheme of SPIMs using three-phase windings where the two capacitors
are used to operate from single-phase supply. The additional winding and capacitor lead to
a higher degree of freedom to make the operating performance approximately same as three-
phase induction motor. Unfortunately, all SPIMs have an inherent problem, which comes
from a highly unbalanced poly-phase magnetic system, so that magnetic unbalance occurs
almost all operating points except for the specific operating point. Many papers successfully
have concluded their studies, but there are relatively a lack of quantifying the effect of
unbalanced operation on electromagnetic quantities such as magnetic field, losses, force and
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torque, and design approach considering a wide range of loads. Generally, the magnetically
unbalanced operation induces backward rotating magnetic field (RMF), which lead to a
negative torque with respect to a rotating direction of the rotor. Furthermore, elliptical
stator magnetomotive force (MMF) can distort the current distribution of bar current,
a temporal waveform and spatial distribution of the magnetic field. This unbalanced
distribution can increase the stator copper loss, the core loss in both stator and rotor core
and eddy current loss in rotor bars, which deteriorate the operating efficiency. More severe
problems are high torque ripple and unbalanced magnetic force, leading to the vibration,
acoustic noise and poorer performance of applications.

Many applications recently have demanded more than a single operating point, thus
many problems caused by the unbalanced operation are inevitable in SPIMs, which are
running at multiple operating point. Besides, the loading condition can be affected by the
integrated system such as air conditioning applications. For instance, the loading condition
of air-conditioning compressor can be varied due to the change of flow rate of the air [13].
Considering a SPIM applicable to various application, a more quantitative investigation on
the operating characteristics of SPIMs running under unbalanced operation is needed.

The author previously studied the design approach for the magnetically balanced
operation by making the circular stator MMF for the target load condition [14]. Based on
the published model, the initial model is re-designed for a balanced-load condition, and
adverse effects on the model are analyzed when the load torque deviates from the balanced
operation. The spatial distribution of air-gap magnetic flux density and rotor bar currents
are computed by time-stepping finite element analysis [15–17]. The electromagnetic losses
are decomposed into copper loss in stator windings, eddy current loss in rotor bars,
core loss, and negative torque caused by the harmonic rotating magnetic field. The loss
components are normalized with respect to total losses, thus the major loss components
which deteriorate the operating efficiency are illustrated. Finally, possible schemes are
discussed and suggest the design guidelines to keep the superiority of balanced operation
when SPIMs are designed to run for multiple loads.

2. Computation of Electromagnetic Characteristics

In this section, calculation of electromagnetic quantities is described to illustrate the
effect of unbalanced operation. The computation procedures are shown based on the finite
element analysis and characterization of unbalanced operation prior to the calculation. We
select a commercial capacitor-run SPIM, and the size and specification of the motor are
listed in Table 1.

Table 1. The parameters of the capacitor-run SPIM model.

Parameter Value Parameter Value

Rated power 2600 W Stator outer diameter 139 mm
Rated voltage 230 Vrms Number of rotor slots 34

Frequency 60 Hz Rotor outer diameter 71 mm
Number of poles 2 Stack length 105 mm

Number of stator slots 24 Running capacitor 45 µF
Number of turns in the main

winding 162 Number of turns in the
auxiliary winding 160

The distribution of magnetic field can be calculated by given winding configurations,
currents and the geometry of the stator and rotor cores, thus stator MMF is determined by
theses parameters. In Figure 1, the stator MMF primarily acts to magnetize the machine
and then the induced current in every rotor bar creates a reaction field, which is energized
by the rotor MMF. Then, the total magnetizing MMF can be written as the sum of stator
and rotor MMF and this creates the air-gap magnetic field. The phase of magnetizing MMF
is about 90 degrees ahead of that of rotor MMF, which follows the faraday’s law and δ is
a phase shift due to the leakage inductance of rotor core. Subtracting magnetizing and
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rotor MMF can derive the stator MMF, which is φm degrees ahead of magnetizing MMF
according to the loading condition.
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Figure 1. Schematic diagram for the description of MMF components in an induction machine.

Assuming the infinite permeability of stator and rotor core and uniform air-gap length,
the air-gap magnetic flux density Bg is

Bg(θ, t) = Fm(θ, t) ·Λ(θ) = [Fs(θ, t) + Fr(θ, t)] ·Λ(θ) (1)

Λ(θ) = Λ0 + ∑
k
(Λks cos(kqsθ) + Λkr cos(kqrθ)) (2)

where qs and qr are the number of stator and rotor slot, respectively, Λ0 is constant term
and Λks and Λkr are the k-th spatial harmonic component of a permeance due to stator
and rotor slot, respectively. The stator and rotor MMF in (1) include the slotting effect of
stator and rotor core as well as the current distribution in windings and rotor bars. The slot
harmonics in (2) is dependent on the load condition.

The stator MMF generated by sinusoidally distributed main and auxiliary windings
at arbitrary phase angle α and β can be represented as follows:

Fs(θ, t) = Nm Im
2 cos(2π fst + α− pθ) + Na Ia

2 cos
(
2π fst + β− p

(
θ + π

2
))

+Nm Im
2 cos(2π fst + α + pθ) + Na Ia

2 cos
(
2π fst + β + p

(
θ + π

2
)) (3)

where Nm and Na are the total number of turns in main and auxiliary winding respectively,
I is the peak value of the winding current and fs is the supply frequency. Spatial and
temporal distribution of the stator MMF is compared between two specific load conditions,
as described in Figure 2. In balanced-load condition, the stator MMF with respect to the
fundamental frequency rotates with the same magnitude at the fundamental frequency,
but the fluctuation increases as the operation deviates from balanced condition.
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Unlike the stator MMF, the trajectory of magnetizing MMF is rather a circular shape,
referring to some researches [3]. This is because the reaction field created by rotor MMF,
thus the resultant field MMF can be simplified as the term of only forward rotating field, as
written as:

Fm(θ, t) = Fs(θ, t) + Fr(θ, t) = F cos(2π fst− φm − pθ) (4)

Equation (4) indicates that the rotor MMF also have the term of backward RMF caused
by the distribution of the stator MMF. Since the rotor MMF are created by bar currents,
the effect of the unbalance condition can be characterized by analyzing the distribution of
rotor bar currents using finite element analysis.

For quantitative separation of loss components using finite element analysis, stator
copper loss, rotor bar loss, core-loss, and loss caused by backward RMF are calculated
separately. The stator copper loss is expressed as follows using resistance calculated by
reflecting the current and end winding structure of each phase.

Pcopper =
1
T

∫ T

0

(
im(t)

2Rm + ia(t)
2Ra

)
dt (5)

where T is the time period, Rm, Ra are the main and auxiliary winding resistance including
the end-winding, and im, ia are the instantaneous main and auxiliary winding currents,
respectively.

The rotor bar loss is the sum of the eddy current loss throughout rotor bar calculated
using the calculated magnetic vector potential Ab.

Pbar =
1
T

Nb

∑
v=1

∫ T

0

∫
bar

1
σ
|jbv(t)|2dvdt =

1
T

Nb

∑
v=1

∫ T

0

∫
bar

σ

∣∣∣∣dAbv
dt

∣∣∣∣2dvdt (6)

Core-loss can be estimated by the steinmetz equation and high order harmonics
should be considered to reflect the distortion of magnetic field and current waveform
because ignorance of harmonic components can lead to large error of the estimation [18].
Equation (7) shows that the core-loss contains the series expression of n times harmonics
obtained by using Fourier transform of the magnetic flux density waveform in each element
of stator and rotor core:

Pcore =
∫

core
∑
n

[
ch(n fs)|Bn|2 + cc(n fs)

2|Bn|2 + ce(n fs)
1.5|Bn|1.5

]
dv (7)

where ch, cc and ce are the hysteresis, classical eddy current, excess loss coefficients, re-
spectively. These coefficients can be obtained by curve fitting from manufacturer’s data
and various frequency data are needed to calculate harmonic core-loss from exact interpo-
lation with respect to wide frequency range. In this study, we set the constant core-loss
coefficients measured at 60 Hz at all harmonic components. This is because the stator and
rotor core are typically the silicon steel laminations, thus their thickness is much smaller
than the skin depth at 60 Hz fundamental frequency and its space harmonic. However, an
induction motor fed by a pulsewidth modulated (PWM) inverter, which have much higher
fundamental frequency and carrier frequency needs variable core-loss coefficients with
respect to the harmonic frequency.

The electromagnetic torque can be calculated by using the distribution of radial and
tangential components Br, Bθ of air-gap magnetic flux density,

Te(t) =
∮

airgap

→
r ×

→
f · d

→
S =

∮
airgap

rg

(
1

µ0
BrBθ

)
· dS (8)

where rg represents the radius of the air gap, f is surface force density, which can be
calculated by using Maxwell stress tensor method. In Equation (8), the radial component of
magnetic field describes the total magnetizing MMF. In addition, the tangential component
of magnetic field is discontinuous on the boundary of cores, which corresponds to the
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equivalent surface current on the boundary. Assuming the infinite permeability of core, and
stator winding and rotor bar current as a surface current sheet, the tangential component of
magnetic field can be equivalent to the distribution of stator or rotor MMF. Consequently,
torque waveform follows the shape of stator MMF and the pulsating torque can be very
significant under unbalanced operation.

In SPIMs, the input power is the sum of the mechanical power with respect to the
positive and negative torque, stator copper loss, rotor bar loss and core-loss, as follows:

Pi = Tf ·ωm + Tb ·ωm + Pcopper + Pbar + Pcore (9)

Since core-loss is not included during the simulation and obtained separately in the
post-processing, the relationship between input power and output power can be written as
(10). In the right hand side of Equation (10), the first term indicates the mechanical output
and the last term is the loss caused by the backward RMF. Then, using known values
obtained by FEM and combining (9) into (10) can represent the negative torque caused by
backward magnetic field in (11).

PFEM
i = PFEM

o + PFEM
copper + PFEM

bar =
(

Tf − Tb

)
ωm + PFEM

copper + PFEM
bar + 2Tbωm (10)

TFEM
b =

1
2

PFEM
i − PFEM

o − PFEM
copper − PFEM

bar
ωm

(11)

The efficiency can be obtained by substituting (10) into (9), which is represented as

η =
Po

Pi
=

PFEM
o

PFEM
i + PFEM

core
(12)

The stator winding currents, phase difference and efficiency are calculated, and the
results obtained at 60% and 100% loads are compared with measured results in Table 2.

Table 2. Comparison of the calculated and measured results at 60% and 100% loading condition.

Parameter
100% Load 60% Load

Calculated Measured Calculated Measured

Total current (A) 13.258 13.410 8.200 8.302
Main winding current (A) 11.176 11.045 7.422 7.341

Auxiliary winding current (A) 5.367 5.443 5.684 5.747
Phase difference (deg) 79.450 79.588 103.890 102.464

Power factor 0.975 0.979 0.954 0.961
Efficiency (%) 87.332 87.290 86.563 85.720

Since the calculation at two different loads estimates the operating performance well,
compared with the measured value. In Section 3, the initial model is redesigned for the
balanced-load condition at the rated load, referring to our previously published paper [14].
The running capacitor and the number of turns in two windings are changed compared
with the initial model.

3. Analysis of the Effect of Unbalanced Operation

The FE model is constructed and time-stepping fields are solved by a commercial
FEM software, Ansys-Maxwell 2D-transient solver. In this paper, the simulation covers the
steady-state quantities under different loads (55%, 70%, 85%, 100%, 115%, and 130% load).
The varied parameters for the redesigned model is shown in Table 3.
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Table 3. The modified parameters tuning for the balanced-load condition at the rated load.

Parameter Initial Redesigned

Running capacitor (µF) 45 90.7
Number of turns in main winding, Nm 162 164
Number of turns in main winding, Na 160 130

Turns ratio, Na/Nm 0.988 0.793

The calculated current and phase are illustrated in Table 4. For the balanced-load
condition, the current ratio defined in Table 4 should be equal to the turns ratio in Table 3.
Additionally, the phase difference between main and auxiliary current should be 90 degrees,
thus the redesigned model is properly redesigned for the rated load. The efficiency of the
SPIM becomes maximum and decreases significantly at the lighter load.

Table 4. The comparison of operating performance at different loads.

Parameter 55% 70% 85% 100% 115% 130%

Input current (A) 8.181 9.774 11.463 13.218 15.050 16.961
Main winding current, Im (A) 5.501 5.728 6.405 7.978 9.712 11.732

Auxiliary winding current, Ia (A) 11.135 10.906 10.698 10.488 10.268 10.032
Current ratio, Im/Ia 0.494 0.525 0.599 0.761 0.946 1.169

Phase difference (deg) 135.676 116.828 100.909 89.634 82.283 77.725
Power factor 0.928 0.951 0.967 0.979 0.987 0.994

Output power (W) 1473 1867 2258 2644 3025 3401
Efficiency (%) 82.096 85.259 86.843 87.430 87.303 86.592

Figure 3 represents the spatial waveform of the stator MMF, which is obtained by the
calculated current waveform. The magnitude and phase of the main and auxiliary winding
current in Table 4 are substituted in (3), and the fluctuation of stator MMF increases signifi-
cantly as the operating load is away from the balanced-load condition. This unbalanced
RMF can affect the distribution of rotor bar currents, and the consequent winding and rotor
bar losses.
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Figure 4 shows the air-gap magnetic flux density and the rotating magnetic field
obtained by using 2-D fourier transform of spatial and temporal magnetic field waveform.
Each value of rotating field is the peak value of the fundamental component of the magnetic
flux density at each load. In Figure 4a, the magnetic flux density is presented when the
main winding current is maximum, and it can be seen that the phase of the magnetic
flux density changes due to the phase difference between the main and auxiliary winding
current. Referring to the dotted circle in Figure 4, it can be seen that the rotating magnetic
field is rather circular, which does not match that of the stator MMF. This is because the
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rotor MMF can alleviate the unbalance so that the air-gap magnetic field is not sensitive to
the unbalanced condition.
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As shown in Table 5, electromagnetic losses are calculated at the different loads. The
stator copper loss and rotor bar loss tend to decrease monotonically when the value of load
decreases. However, the decrease rate steadily becomes small and the stator copper loss at
55% load increases despite of the lighter load. The core-loss is insignificant to the change of
loads since the air gap magnetic field is rarely affected by the unbalanced condition. The
contribution of negative torque is notable, but the absolute value of the change rate with
respect to the different loads is not quite distinct.

Table 5. The comparison of electromagnetic losses at different loads.

Parameter 55% 70% 85% 100% 115% 130%

Stator copper loss (W) 147.864 146.343 155.155 174.945 207.315 254.511
Rotor bar loss (W) 51.730 58.275 69.850 87.339 112.460 147.102

Core-loss (W) 59.252 57.876 57.176 56.988 57.315 58.019
Loss caused by negative

magnetic field (W) 62.508 60.382 60.096 61.218 63.526 67.888

The losses described in Table 5 are difficult for the fair comparison due to its different
input power, so that losses are normalized by the input power at each load. As illustrated
in Figure 5, the portion of stator copper loss becomes minimum when the SPIM is running
at the balanced-load condition. This is because the current is evenly distributed between
the main and auxiliary winding, which is the criteria for the balanced operation of SPIMs.
In general, the eddy current loss in the rotor bar increases when the heavier load is applied
and the rotating speed of rotor is slower. However, the portion of rotor bar loss is almost
equal or increases below balanced-load condition. The reduction of rotor bar loss can make
the operating efficiency higher, which is the merit of the balanced operation. In case of the
core-loss, its portion steadily decreases because the absolute value of the core-loss is not
really affected by both change of loads and the unbalanced condition. The backward RMF
makes the braking torque and this torque is almost constant despite of the lighter loading
condition. Thus, the loss can be approximate to the constant at operating loads so that the
portion of the loss increases at the lighter load.
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in Figure 6 is similar to that of the stator MMF in Figure 3. This is because the calculation 
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Figure 6 shows the torque waveform calculated at the different loads. As the load
deviates from the balanced condition, the torque ripple largely increases. The waveform in
Figure 6 is similar to that of the stator MMF in Figure 3. This is because the calculation of
the torque contains the tangential component of magnetic field in (8), which follows the
waveform of the stator MMF. Especially, the torque ripple increases more significantly at
the lighter loads, which is the same trend of the efficiency variation at the lighter loads. If
SPIM operates at multiple operating loads except for the balanced-load condition, optimal
design focusing on the target load can deteriorate the operating performance at other
operating points, especially at the lighter load. Therefore, the selection of the proper load
is required for the application using multiple operating loads, and this will be discussed in
Section 4.
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4. Discussion

The result indicates how the unbalanced operation affects the electromagnetic quan-
tities such as the air-gap magnetic field, the subsequent losses, torque. The loss caused
by the backward RMF occupies a large portion of total losses, but the absolute value is
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not sensitive to the change of loads. The torque ripple dramatically increases under un-
balanced operation. The air-gap magnetic field is rather circular, but the stator and rotor
MMF can be still distorted because of uneven distribution of currents. The Lorentz force
on stator windings and rotor bars can be applied and the distribution of force will follow
the distribution of each current. Since the force is proportional to the current flowing into
the rotor bar, the uneven distribution of current can lead to magnify the force on the rotor
bar. The locally concentrated force will make the vibration and acoustic issue. Thus, the
design of SPIMs can face the bottleneck unless the SPIM is primarily designed to run at the
balanced-load condition and the further research dealing with the electromagnetic force
and its structural effects is necessary. In Section 3, we developed the redesigned model
and the model shows the improvement of the performance. However, the disadvantages
of making balanced-load condition at the rated load is that the operating characteristics
drastically deteriorate compared with the balanced operation. Therefore, it is necessary
to find a suitable design target point when SPIM is not used at the fixed operating point.
Additionally, redesigned model is dealt to compare with the models designed for the
different loads. In the same method, the capacitor and the number of turns in windings are
changed and their values are shown in Table 6.

Table 6. The parameters tuning the balanced condition at 100% and 75% loads.

Parameter Initial Redesigned
at 100% Load

Redesigned
at 75% Load

Running capacitor (µF) 45 90.7 70
Number of turns in main winding, Nm 162 164 177
Number of turns in main winding, Na 160 130 134

Turns ratio, Na/Nm 0.988 0.793 0.757

Figure 7 illustrates the efficiency and torque ripple of each model at different load.
Compared to the model designed for 100% load, the model designed for 75% load shows
wider operating efficiency characteristics for both the rated and lighter loads. In particular,
the model designed for the 100% load shows the lower efficiency than that of the original
model at the lighter load. On the other hand, the model designed for 75% load not only
exhibits high overall characteristics compared to the initial model, but also shows higher
efficiency characteristics than the designed model for the 100% load. Torque ripple has the
similar tendency to the efficiency. However, the torque ripple is minimum at the balanced
condition and increases rapidly as it is away from the balance, thus the efficiency and
torque characteristics must be considered mutually.
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Further, typical SPIMs run with a capacitor to generate the rotating magnetic field, and
the frequency response of SPIM has a unique operating point for the magnetically balanced
condition. The idea is to adjust the frequency response of SPIM to the desired loading
condition, or increase the order of the frequency response to make multiple balanced
conditions. The former usually can be solved by utilizing the various frequency inverter
to adjust the supply frequency [9–11]. The latter can be achieved by the pole changing
method or adding multiple capacitor with poly-phase windings [5–8,12].

5. Conclusions

In this paper, the effects of unbalanced operation on the performance of SPIM are
investigated at the different loads. The currents, losses and torque waveform are calculated
by using the finite-element analysis. The characteristics of SPIM under different loads and
unbalanced operation is summarized below:

• The stator MMF reflects the unbalanced operation and affects the rotor MMF.
• The unbalanced stator winding, and rotor bar currents increases the loss and degrade

the efficiency.
• The loss caused by backward magnetic field has large portion and its portion is larger

at the lighter loads.
• The pulsating torque deteriorates as the load deviates from the balanced condition

and significantly increases at the lighter loads.
• Proper selection of the target load should be considered to operate the SPIM at various

load condition.
• The electromagnetic force on the stator winding and rotor bars should be considered

for the vibration and structural analysis, and the effect of unbalanced condition on
these force will be the future research.

That is, the electromagnetic quantities deteriorate significantly when SPIM run at the
unbalanced condition, showing the importance of equilibrium design. Finally, the result
provides the importance to operate SPIMs at the balanced condition so that the loading
condition and load variations of an application should be considered in advance when we
design SPIMs.
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